Tenké vrstvy. aplikace metody přípravy hodnocení vlastností

Rozměr: px
Začít zobrazení ze stránky:

Download "Tenké vrstvy. aplikace metody přípravy hodnocení vlastností"

Transkript

1 Tenké vrstvy aplikace metody přípravy hodnocení vlastností

2 Co je tenká vrstva? Srovnání tloušťek lidského vlasu a tenké vrstvy Zdroj: jectmicro/schools/ 1 / 75

3 Co je tenká vrstva? O tenké vrstvě můžeme hovořit, pokud se jedná o materiál o tloušťce od několika desítek nanometrů až po několik mikrometrů, který je vytvořený na základním materiálu tj. substrátu. Tenké vrstvy se již řadu let používají k povrchovým úpravám různých substrátů. Dnes existují široké možnosti použití tenkých vrstev například v elektrotechnickém průmyslu, strojírenství, energetice, dekorační technice atd. Například velmi tvrdé diamantové vrstvy se nanášejí na řezné nástroje (vrtáky, frézky, pilky), což až několikanásobně zvyšuje jejich životnost. Optické vrstvy se používají například k antireflexnímu pokrytí čoček, na interferenční filtry a k nanesení reflexních vrstev na zrcadla. Kovovými vrstvami (Al, Au, Cu) se tvoří například kontakty na polovodičích a Schottkyho bariéry. 2 / 75

4 Aplikace tenkých vrstev Pro své aplikace jsou velmi zajímavé i tenké vrstvy průhledné ve viditelné oblasti záření a přitom elektricky vodivé (In2O3, SnO2, ZnO, In2O3:Sn). Lze je použít k povrchové úpravě skla či průhledných fólií jako odporové vrstvy sloužící k vyhřívání Jouleovym teplem, ke svádění nežádoucích elektrostatických nábojů z nevodivých povrchů, či jako transparentní elektrody k plochým zobrazovacím prvkům a k solárním článkům. Důležitou aplikací těchto vrstev jsou kvalitní přední elektrody v plochých displejích, přes které musí být vidět zobrazovaná informace. Takové transparentní elektrody se používají v plochých zobrazovacích prvcích založených na principu kapalných krystalů (LCD), plazmatu (PD) nebo elektroluminiscence (ELD) například v digitálních hodinkách, kalkulačkách, monitorech počítačů, měřicích přístrojích, hracích automatech atd. 3 / 75

5 Aplikace tenkých vrstev 4 / 75

6 Povlakování displeje vyrobeného z plastu 4 vrstvy- a to v jediném pracovním procesu: vrstva zajišťující přilnavost vrstva proti oděru vrstva antireflexní vrstva»očistná«, tzv.»easy-to clean«, která má i funkci estetickou. Povlakování sklíček u brýlí, kde první vrstva má funkci ochrany před poškrábáním, druhá je antireflexní a třetí opět easy-to clean. U PET lahví se současně s ochranným povlakem pořizuje i barevný dekor lahví. FOTO: SCHOTT HICOTEC 5 / 75

7 Vrstva Rozhraní Substrát Deponované tenké vrstvy je třeba chápat jako systém, neboť vrstva pro svoji tloušťku dosahuje společně se substrátem specifických vlastností a chování. Samotné tenké vrstvy mají na rozdíl od objemových materiálů rozdílné vlastnosti a to nejen z důvodů svojí tloušťky, ale i následkem depozičních procesů, které lze označit jako nerovnovážné a iniciující vznik metastabilních fází. 6 / 75

8 Pro zajištění požadovaných vlastností je nutné věnovat pozornost všem složkám tvořící daný systém Otěruvzdorná vrstva Odolnost proti opotřebení Redukce tření Korozní odolnost Difúzní bariéra Tepelná bariéra Mezivrstva Adheze Bariéra rozvoje trhlin Kompenzace diletace a pnutí Modifikace struktury a morfologie Substrát Pevnost Tuhost Geometrie 7 / 75

9 Substrát podklad tenké vrstvy Pokud deponujeme (nanášíme tenkou vrstvu na) řezný nástroj frézu, vrták, vyměnitelnou břitovou destičku (VBD) atd. je substrátem celý nástroj, respektive jeho povrch. Povrch nástroje se nemůže deponovat ihned po výrobě nástroje (tak jak je), ale musí se na depozici speciálně připravit, aby se zaručila dokonalá adheze tenké vrstvy k substrátu 8 / 75

10 ADHEZE TENKÉ VRSTVY K SUBSTRÁTU - je velmi důležitou vlastností systému tenká vrstva substrát - bez kvalitního ahezního spojení dochází k degradaci systému - jedním z dějů, které podstatně ovlivňují adhezi vrstvy jsou předdepoziční přípravy substrátu Tenká vrstva Substrát 9 / 75

11 PŘEDDEPOZIČNÍ PŘÍPRAVY - PP Definice: Všechny procesy, které: - předcházejí vlastní depozici tenké vrstvy na nástroj - jakkoliv ovlivňují čistotu, morfologii a chemické složení povrchu substrátu Podle druhu substrátu PP zahrnují tyto činnosti 1) Úprava řezných hran 2) Chemické čištění substrátu 3) Iontové čištení substrátu 4) V případě redepozice tenké vrstvy předchází pochodům 1-3 tzv. stripping odpovlakování Všechny tyto procesy mají nezanedbatelný vliv na ADHEZI 10 / 75

12 ÚPRAVA ŘEZNÝCH HRAN NÁSTROJÚ ZE SLINUTÉHO KARBIDU - SK Hrany jsou po broušení otřepené, plné defektů Hrana před opracováním Úpravou dochází k minimalizaci defektů a ostrých přechodů - v závislosti na zvolené technologii úpravy Po omletí proudem skořápek 11 / 75

13 ÚPRAVA ŘEZNÝCH HRAN NÁSTROJÚ Z SK Před Po otryskání kompozitními elastickými částicemi s abrazivem 12 / 75

14 ÚPRAVA ŘEZNÝCH HRAN NÁSTROJÚ Z SK Hrany jsou po broušení otřepené, plné defektů Předtím Technologie úpravy Tryskání kompozitních elastických částic s abrazivem Po omletí proudem elastických částic s abrazivem 13 / 75

15 ÚPRAVA ŘEZNÝCH HRAN NÁSTROJÚ Z SK Technologie 1) Proud vzduchu, který unáší abrazivní částice přírodní oxidy (minerální abraziva) kovová abraziva např. broky jsou vhodné na objemnější nástroje struska syntetická abraziva (na bázi Al2O3 a SiC) diamantový prášek 2) Kartáčování - ocelová pop různá tvrdá polymerní vlákna impregnovaná abrazivem (NAF Nylon Abrasive Filament) 3) Finišování pomocí gumových disků nebo jiných elementů za přítomnosti abrazivního média (např. vápencové kaše) 14 / 75

16 ÚPRAVA ŘEZNÝCH HRAN NÁSTROJÚ Z SK Technologie ad 1) Speciální technologie AERO LAP Proud vzduchu unáší mokré měkké elastické částice s abrazivem Rozdíl mezi upravou proudem tvrdých a měkkých částic 15 / 75

17 IONTOVÉ ČIŠTĚNÍ = IONTOVÝ BOMBARD Probíhá přímo v depoziční komoře 2 fáze 1) čištení doutnavým výbojem zdrojem iontů je ionizovaný plyn v komoře Ar, H2, N2 2) čištění nízkonapěťovým el. obloukem zdrojem iontů je katodová skvrna Ionty jsou urychlovány záporným předpětím na substrát 16 / 75

18 IONTOVÉ ČIŠTĚNÍ = IONTOVÝ BOMBARD Parametry bombardu BIAS záporné předpětí přiložené na substrát ČAS doba působení iontového čištění PRVEK použitý k bombardu plynné prvky Ar, H2 pro první fázi čištění, zvýšení obsahu H2 podle dosavadních poznatků přispívá ke snížení obsahu oxidických nečistot pevné prvky Ti, Cr pro druhou fázi - čím vyšší je teplota tavení tohoto prvku, tím nižší je výskyt makročástic ulpělých na povrchu po iontovém čištění 17 / 75

19 IONTOVÉ ČIŠTĚNÍ = IONTOVÝ BOMBARD rychlořezné oceli Různé parametry = různé ovlivnění povrchu Před bombardem Po bombardu 18 / 75

20 Znečištěný substrát Nečistoty na již očištěném povrchu nástroje před depozicí. Zhoršená adheze vrstvy následkem nedokonalého očištění povrchu. 19 / 75

21 IONTOVÉ ČIŠTĚNÍ = IONTOVÝ BOMBARD Vliv bombardu na substrát - SK 20 / 75

22 IONTOVÉ ČIŠTĚNÍ = IONTOVÝ BOMBARD Vliv bombardu na substrát - SK 21 / 75

23 STRIPPING Proces, při kterém se tenká vrstva z použitého nástroje odstraňuje 1. Sundání vrstvy z nástroje působením chemických činidel 2. Přeostření nástroje (nutné pro degradaci břitu působením ch. činidel) 3. Depozice nové vrstvy $$ - finanční náklady na dopravu Nástroj na stripping Nástroj na přeostření Depoziční firma Nástroj na depozici Výrobce nástroje 22 / 75

24 STRIPPING rychlořezných ocelí (HSS) Odpovlakování nástrojů z rychlořezných ocelí nepředstavuje v současné době velký problém. Používaná technologie - Anodické rozpouštění nástroj tvoří anodu, která se rozpouští v elektrolytu na bázi hydroxidů nebo volně v roztocích HNO3, HF, H2O2 Postup strippingu lze sledovat měřením změny potenciálu vzhledem k referenční elektrodě v závislosti na době strippingu. roztok KOH nebo NaOH 23 / 75

25 STRIPPING slinutých karbidů V současnosti je velkou výzvou - odpovlakování nástrojů ze slinutého karbidu představuje chemický oříšek. Zatím není dosahováno uspokojivých výsledků Redeponované vzorky vykazují výrazně horší vlastnosti. Strukturní součásti tenké vrstvy (většinou na bázi nitridů a karbidů kovů) a stejně tak i karbidická zrna slinutého karbidu odolávají relativně dobře působení chemických činidel x Kobaltové pojivo je rozpouštědly intenzivně napadáno a dochází tak k narušení substrátu. Kobaltové pojivo zrna 24 / 75

26 Typy vrstev: Monovrstva Monovrstva s adhezní vrstvičkou Sendvičově řešená vrstva Nanostrukturovaná vrstva Nanokompozitní vrstva Gradientní vrstva 25 / 75

27 Nanokompozitní vrstva Nanokompozitní systém AlTiSiN tvořený základní vrstvou s vysokou tvrdostí a povrchovou vrstvou s vysokou tepelnou i chemickou stabilitou Nanokompozitní vrstva tvořená TiAlSiN a zakončená kluznou vrstvou s obsahem oxidů a uhlíku 26 / 75

28 Moderní struktura vrstvy - Nanostrukturované vrstvy Nanovrstevná struktura 100 nm Zdroj: Pavel Holubář, Nová průmyslová technologie povlakování Přednáška Vrstvy a Povlaky 2003 Substrát Schématický postup šíření trhliny multivrstevným systémem 27 / 75

29 Diamantové vrstvy K hlavním výhodám povlakovaných destiček patří větší rozsah výroby, nižší výrobní cena, pružná změna a větší složitost tvaru (např. utvářeč). Diamantový povlak má velmi malý koeficient tření, menší než např. teflon (nižší koeficient tření povlakové vrstvy se projeví ve zvýšení řezného výkonu nástroje), jeho tepelná vodivost je několikrát vyšší než tepelná vodivost mědi. Předlisovaný utvářeč třísky umožňuje zvýšit používané řezné rychlosti. K jejich největším nedostatkům patří nízká houževnatost, nejsou schopny odolávat mechanickým šokům, a proto nejsou vhodné pro hrubovací obrábění a přerušované řezy. Ve srovnání s nepovlakovanými destičkami 10krát - 50krát vyšší životnost (závisí na obráběném materiálu a řezných podmínkách). 28 / 75

30 Teplotní přetížení nástroje nejčastější příčina jeho poškození Vrstvy jako např. Al2O3 popř. AlTiN vytváří účinné tepelné bariéry Lavinovitý otěr nástroje následkem tepelného i mechanického přetížení Rozdělení odváděného tepla v závislosti na řezné rychlosti při obrábění oceli 29 / 75

31 Kluzné vrstvy sp Ternární fázový diagram vazeb u a C:H. Srovnání koef. tření kulička Al2O3 AlTiN Srovnání - "PIN - on - DISC" ball Al2O3 MoS2 1,1 AlTiN Vrstva na bázi uhlíku 1,0 0,9 0,8 koef. tření 0,7 0,6 Vrstva na bázi uhlíku 0,5 0,4 0,3 0,2 MoS2 0,1 Krystalografická mřížka MoS2 0,0 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 Dráha v km 30 / 75

32 V minulosti byla hlavní pozornost věnována ekonomice obrábění Hodnoty trvanlivosti T při limitním opotřebení VB=0,3 mm SK (v=38,52,63,80 m/min) TiN (v=54,64,72,80 m/min) TiN-TiP (v=50,60,70,80 m/min) TiAlN-AlP (v=48,57,68,77 m/min) TiAlSiN-alfa (v=52,62,73,80 m/min) TiAlSiN-beta (v=57,67,75,87 m/min) 250 Ra Trvanlivost T (min) Řezná rychlost v (m/min) Ekonomická stránka je samozřejmostí, hlavní trend vývoje bude sledovat kvalitu, ekologický dopad a snadnou obnovitelnost nástrojů. 31 / 75

33 Tenké vrstvy TiAlSiN a CrAlSiN Tyto nanokrystalické vrstvy se vyznačují především vyšší tvrdostí a vyšší odolností proti opotřebení i za vyšších teplot. Obrábění těžkoobrobitelných materiálů je doprovázeno celou řadou jevů, které přímo či nepřímo ovlivňují řezný proces a celý systém stroj nástroj obrobek. Při obrábění vrtáním je hlavním problémem odvod třísek a s tím i spojený odvod tepla z místa řezu. U vrtání za sucha nástroji ze slinutého karbidu, tak většina tepla zůstává v obrobku a v použitém nástroji. Teplo odvedené třískou tvoří jedinou možnost jak snížit teplotu v řezu. Tím vznikají mnohem vyšší nároky na vhodně zvolený materiál nástroje a vhodně zvolenou tenkou otěruvzdornou vrstvu, jelikož nástroje s vrstvou jsou dlouhodobě vystaveny teplotám převyšujících i 500 C. Navíc během řezného procesu vzniká a průběžně narůstá opotřebení funkčních ploch nástroje, které způsobuje změnu koeficientu tření k horšímu a dochází tak k dalšímu zvýšení řezné teploty. 32 / 75

34 Je zřejmé, že druh a kvalita použité vrstvy má významný vliv na průběh obrábění. S průběhem opotřebení je spojena i změna řezné síly. Rozdíl v řezných silách mezi jednotlivými silami je způsoben koeficientem tření. Změny ve velikosti namáhání nástroje a s tím souvisejícím namáhání vřetena stroje je možné dosáhnout použitím nových nanokrystalických tenkých otěruvzdorných vrstev. Nejenom, že se sníží namáhání soustavy stroj nástroj obrobek, ale použitím těchto vrstev se spotřebuje i mnohem méně práce potřebné na překonání plastických deformací. 33 / 75

35 Trend vývoje požadavek na moderní nástroje s progresivními vrstvami: - Větší trvanlivost nástroje (využití v hromadné výrobě, automaty) - Obrobený povrch s vyšší kvalitou (lepší povrch při stejné ceně vyšší kvalita) - Obrábění s minimálním množstvím procesní kapaliny (ekologie, cena, starosti s recyklací a skladováním) - Odstranění starých vrstev z nástrojů SK bez nutnosti následného přeostření. 34 / 75

36 Depozice tenkých vrstev Depozice vrstev se provádí jako finální operace na hotovém již tepelně zpracovaném substrátu. Pro dobré adhezní vlastnosti musí být povrch substrátu před depozicí kovově čistý. Dále je nutné před samotnou depozicí očistit povrch od organických a anorganických nečistot. Při použití chemického čištění je nutné u všech technologií depozice mechanicky očistit povrch od makronečistot. Při některých druzích depozic je možné provést čištění substrátu pomocí iontového bombardu. 35 / 75

37 Základní depoziční procesy 1050 C 950 C Chemical Vapor Deposition CVD 750 C 10µm CVD 10µm PVD Plasma Assisted Chemical Vapor Deposition PACVD 500 C Physical Vapor Deposition PVD 300 C 36 / 75

38 Za hlavní charakteristický rozdíl je brán způsob přípravy vrstvy, tj. z pevného terče u PVD metod a z plynu u CVD. 37 / 75

39 Chemické metody depozice vrstev CVD (Chemical Vapour Deposition) Mezi výhody tohoto procesu patří vysoká odolnost vůči opotřebení. CVD proces je ekonomicky nejvýhodnější pro tvorbu silných vrstev a je také vhodný všude tam, kde je nutné povlakovat nepřístupné dutiny a drážky. Nevýhodou je vysoká teplota při deponování, nemožnost dělat některé typy vrstev kombinací různých typů kovů (např.tialn). Dalším problémem je skutečnost, že při povlakování se hrany zaoblují (neboť se jedná tlustou vrstvu) a k procesu deponování je použito ekologicky problematických toxických chloridů kovů. Tenká vrstva se na povrchu substrátu vytváří v důsledku chemických procesů probíhajících v objemu plazmatu a přímo na rozhraní mezi plazmatem a povrchem substrátu. Reakční složky jsou přiváděny v plynné fázi, za vysokých teplot se rozkládají a vrstva vzniká na povrchu substrátu heterogenní reakcí. 38 / 75

40 CVD technologií lze připravit velmi rozmanité vrstvy kovů, polovodičů a různých chemických sloučenin buď v krystalickém či amorfním stavu, jež jsou vysoce čisté a mají požadované vlastnosti. Rovněž lze řídit stechiometrii v širokých mezích. Výhodou jsou relativně nízké náklady na zařízení a řízení procesu. Z toho vyplývá vhodnost pro velkovýrobu i střední výrobu a slučitelnost s ostatními výrobními postupy. Použití této metody je značně omezeno vysokou teplotou depozičního procesu ( C). V řadě případů, jako např. u nástrojů z rychlořezné oceli, nelze tuto metodu použít, protože depoziční teplota musí být nižší, aby při depozici nedošlo k tepelné degradaci základního materiálu (např. v případě nástrojů z rychlořezné oceli značně omezeno vysokou teplotou depozičního procesu, proto se používá především k depozici nástrojů ze slinutých karbidů). 39 / 75

41 Zdroj: 40 / 75

42 CVD technologie má několik nedostatků: 1. vysokou energetickou náročnost, 2. dlouhý pracovní cyklus 8-10 hodin, 3. ekologicky nevyhovující pracovní plynné směsi 4. tahová pnutí ve vrstvě (rozdílný koeficient tepelné roztažnosti) Přednosti této depozice: vysoká teplotní stabilita vytvořených vrstev možnost vytvářet poměrně složité vrstvy a to nejen nitridu kovů (Al2O3, uhlíkové kluzné vrstvy, diamantové vrstvy) vysoká adheze vrstev a odolnost proti opotřebení, rovnoměrná tloušťka u tvarově složitých nástrojů a součástí V důsledku uvedených rozdílů ve vlastnostech jsou CVD vrstvy využívány především pro soustružení a frézování, zatímco PVD vrstvy jsou užívány tam, kde by byla trvanlivost v důsledku vydrolování a vysokých řezných sil nízká, např. při obrábění korozivzdorných ocelí. Vrstvy PVD jsou též užívány u nástrojů, které mají velmi pozitivní geometrii ostří (bez zaoblení), jako např. celokarbidové vrtáky a stopkové frézy. 41 / 75

43 Vedle konvenční metody CVD existují další upravené depoziční možnosti: PECVD - Plasma Enhanced CVD, tzv. plazmaticky aktivovaná CVD metoda MWPCVD - MicroWave PlasmA CVD, mikrovlnní plazmatická CVD metoda), která se od klasické CVD metody liší nízkými pracovními teplotami (běžně 600oC, podle některých údajů i méně, např oC), přičemž nemění její princip. Metoda PICVD (Plasma Impulse Chemical Vapour Deposition, chemické povlakování prostřednictvím srážení par za pomoci plazmového impulzu). Deponují se substráty z plastů jako jsou polyetylén, PC, PP a HDPE, a též sklovité povrchy ze SiO2 a TiO2. Nízkotlaková depozice LPCVD CVD za asistence laserového záření (LACVD) Depozice indukovaná iontovým bombardem (IBICVD) 42 / 75

44 PECVD - CVD za použití plazmatu Nejčastěji používanou depoziční metodou přípravy vrstev na bázi uhlíku je metoda CVD za použití plazmatu - PECVD. Metoda PECVD je založena na zvýšení energie plynné atmosféry v komoře pomocí její ionizace a aktivace v plazmatickém výboji. Obecně se využívá vysokofrekvenčního výboje (Rf 100kHz 40MHz) při tlacích 50 mtorr 5 Torr (1 Torr = 133 Pa). Objemová koncentrace μe ~ μi ~ cm-3; střední kinetická energie εe = 1 10 ev. Takto energeticky výbojové prostředí je dostatečné k rozkladu molekul na různé složky elektrony, ionty, atomy v základním a excitovaném stavu, volné radikály, atd. Výsledným efektem chemických reakcí mezi těmito reaktivními molekulárními fragmenty je, že dochází k chemickým reakcím při mnohem nižších teplotách než u konvenčních CVD technik. Takovéto chemicky aktivované plazma umožňuje snížit teplotu potřebnou pro vznik vrstvy na povrchu substrátu. Takže dříve vysokoteplotní reakce mohou úspěšně probíhat i na teplotně citlivých materiálech (substrátech). 43 / 75

45 PECVD - CVD za použití plazmatu Hlavními výhodami tohoto typu povlakování jsou: významně nižší depoziční teploty než v případě CVD a přesnost depozice. Za nevýhody lze považovat skutečnost, že tento druh povlakování jde jen obtížně použít pro povlakování dutin a drážek. Plazma lze vytvořit pomocí vnějšího elektrického napájecího zdroje (nízkofrekvenční střídavé napětí, vysokofrekvenční střídavé napětí, stejnosměrné napětí, pulzní stejnosměrné napětí) nebo reaktivním plynem (např. C2H2, CH4). 44 / 75

46 Fyzikální metody depozice vrstev PVD (Physical Vapour Deposition) Jedná se o ekologicky nejšetrnější metodu depozice vrstev, neboť zde není použito žádného nebezpečného materiálu a při procesu depozice se neuvolňují žádné toxické látky. Dalšími výhodami PVD depozice jsou vysoká odolnost vrstev, nízký koeficient tření, možnost vytvořit velké množství různých druhů (kombinací) vrstev, malá a snadno reprodukovatelná tloušťka vrstev, možnost tvorby přesných tloušťek vrstev. PVD proces se uskutečňuje v prostředí vysokého vakua při teplotách mezi C. Vysoká čistota procesu je dosažena tepelným odpařováním materiálu, jenž je použit k povlakování (z kovů jsou to například titan, chrom, nebo hliník), a také jeho bombardováním ionty (naprašování). Současně je vpuštěn aktivní plyn (např. dusík, nebo jiný plyn obsahující uhlík), který reaguje s kovovými parami, čímž se vytvoří chemická sloučenina. Tato sloučenina se následně deponuje na nástroj nebo součástku v podobě tenké, vysoce přilnavé vrstvy. 45 / 75

47 Fyzikální metody depozice vrstev PVD (Physical Vapour Deposition) Technologie PVD mohou být použity pro vytváření tenkých vrstev nejen na nástrojích z rychlořezné oceli, součástkách z hliníku a plastů, ale dokonce i na velmi tenkých, pouze několik mikrometrů silných fóliích z PP, PE a dalších materiálů bez jejich tepelné degradace během depozice vrstvy. Podstatou fyzikální depozice je vypařování materiálu (vytvářejícího vrstvu) ve vakuu nebo rozprašování ve výboji udržovaném za nízkých tlaků. Celý proces depozice může být obecně rozdělen do třech na sebe navazujících kroků: převedení materiálu do plynné fáze, transport par ze zdroje k substrátu, vytváření vrstvy na povrchu substrátu. Nejčastěji používané fyzikální metody jsou : reaktivní naprašování reaktivní napařování reaktivní iontové plátování 46 / 75

48 Reaktivní napařování Je založeno na odpařování materiálu ve vakuu a na kondenzaci jeho par na substrátu. Odpařování terče lze provádět následujícími způsoby: a) elektronovým svazkem b) obloukovým výbojem c) pomocí laseru Odpařovaný terč se nachází v roztaveném stavu, proto musí být umístěn ve spodní části zařízení obr. Odpařování terče má řadu modifikací, které se od sebe vzájemně liší typem a parametry. 47 / 75

49 Reaktivní naprašování Naprašování vrstev je založeno na rozprašování materiálu katody (terče) energetickými ionty a kondenzací částic odprášeného materiálu na substrátu. Ionty pracovního plynu jsou urychlovány elektrickým polem a dopadají na povrch naprašovaného materiálu ve formě plochého nebo válcového terče (targetu). Jejich účinkem jsou z povrchu vytrhávány atomy terče, které se často průchodem oblasti ionizovaného pracovního plynu samy ionizují a dopadají na povrch povlakovaných součástí. Rozprašování probíhá v přítomnosti plazmatu: a) bud' inertního plynu (chemicky nereaguje s látkou povlaku (obvykle se používá argon) )- depozice vrstev stejného složení jako má rozprašovaný terč b) nebo směsi inertního a reaktivního plynu - reaktivní depozice vrstev různých chemických sloučenin 48 / 75

50 Hlavními přednostmi naprašování proti napařování jsou: a) poměrně přesné přenesení složení slinutého terče do naprášené vrstvy b) homogenní depozice vrstev c) vlivem nepřítomnosti makročástic deponovaného kovu významně lesklý povrch. 49 / 75

51 Magnetronové naprašování Metoda magnetronového naprašování je založena na rozprašování pevného terče, který je katodou, ionty pracovního plynu extrapolovanými z plazmatu doutnavého výboje, který je lokalizován pomocí magnetického pole v těsné blízkosti katody. Elektrony plazmatu se zachycují v "tunelu"siločar magnetického pole a driftují podél tunelu, tím se značně prodlouží jejich dráha, zvýší počet srážek a vytvoří husté plazma. Kladné ionty dopadají z plazmatu na terč. Částice rozprášeného terče prochází plazmatem směrem k substrátu, na kterém je záporné předpětí. 50 / 75

52 Magnetronové naprašování Zdroj: 51 / 75

53 Faktory, kterými se liší techniky PVD a CVD Druh zdroje deponovaných atomů (pevná látka, tavenina, plyn). Fyzikální mechanismy (odpařování nebo srážky) kterými atomy ze zdroje vstupují do plynné fáze. Prostředí sníženého tlaku, kterým jsou plynné částice transportovány. Obecná absence chemických reakcí v plynné fázi a na povrchu substrátu (výjimkou jsou reaktivní PVD procesy). 52 / 75

54 Další trendy depozic Depozice řezné keramiky CVD depozice vrstvy Ti(C,N)+ Al2O3+TiN Substrát neoxidická keramika Si3N4 Al2O3 TiCN Lom systému a hloubkový koncentrační profil pomocí analýzy GD-OES na povrchu je nepatrná vrstva TiN, následuje šedivá Al2O3 a TiCN na rozhraní 53 / 75

55 Inovace v povlakování plastů Metoda PICVD Tato metoda se dnes už používá ve sklářství, hlavně při výrobě lékovek. Avšak potahy prováděné metodou PICVD jsou opatřovány i povrchy předmětů z plastových substrátů jako jsou PE, PC, PP a HDPE, a též sklovité povrchy ze SiO2 a TiO2. Typické povlakování displeje vyrobeného z plastu PMMA opatřuje tento předmět čtyř-mi vrstvami, a to v jediném pracovním pro-cesu: vrstva zajišťující přilnavost vrstva proti oděru vrstva antireflexní vrstva»očistná«, tzv.»easy-to clean«, která má i funkci estetickou. 54 / 75

56 Depoziční procesy Vlastnosti vrstvy Adheze 1050 C 950 C Teplotní stabilita CVD 750 C PACVD 500 C PVD 300 C Pnutí 55 / 75

57 Hodnocení vlastností tenkých vrstev Optická emisní spektroskopie GD-OES Vnikací metoda Mercedes test Scratch test (vrypová zkouška) Měření tloušťky kalotest Tribologická zkouška Metoda PIN-on-DISC Mikrotvrdost tenkých vrstev Zkoušky řezivosti a trvanlivosti břitu nástroje 56 / 75

58 Optická emisní spektroskopie GD-OES (Glow Discharge Optical Emission Spectroscopy) Důležitou charakteristikou ovlivňující vlastnosti systému tenká vrstva-substrát je průběh koncentračního složení jednotlivých prvků v závislosti na hloubce od povrchu. Analýza GD-OES (Glow Discharge Optical Emission Spectroscopy) dovoluje stanovit nejen chemické složení elektricky vodivých objemových materiálů, ale i povrchové vrstvy, jako např. galvanické povlaky, tenké vrstvy nitridů kovů, cementační a nitridační vrstvy. Při postupném odprašování vzorku vstupují do výboje atomy z jednotlivých hloubkových vrstev, čímž je možné sledovat závislost koncentrace prvků na analyzované hloubce. Výsledkem měření je koncentrační profil v závislosti na hloubce odprášení. Excitací atomů se získá záření o vlnové délce typické pro daný prvek, které je po výstupu z lampy analyzováno optickým spektrometrem. 57 / 75

59 Hloubkový koncentrační profil vrstvy TiAlSiN na substrátu z SK 58 / 75

60 Metody měření a hodnocení adhezívně kohezivního chování systémů tenká vrstva substrát Dobrá adheze vrstvy k substrátu je jedním z důležitých parametrů vrstvy charakterizující vlastnosti celého systému. Vnikací metoda Mercedes test patří mezi velmi rozšířené metody ke zjišťování kvality spojení mezi tenkou vrstvou a substrátem. Jedná se o nenáročnou metodu, při které je pnutí na rozhraní systému tenká vrstva-substrát způsobeno vtiskem, při statickém vtlačování indentoru. Iniciované napětí vyvolá na rozhraní vrstva-substrát vznik trhlinek, které se šíří k povrchu. 59 / 75

61 Vyhodnocení vtisků se provádí přiřazením vtisků do jednotlivých kategorií (tříd) s adhezním číslem, které charakterizuje stupeň popraskání či odloupnutí vrstvy (viz obr.). Předností vnikací metody je rychlost provedení spolu s minimálními nároky na měřící zařízení a možnost sledování chování systému přímo na zkoumaných řezných nástrojích nebo vzorcích s různou tvarovou plochou bez jinak nutné destrukce nástroje. Hodnocení porušení okolí vtisku vytvořeného Rockwellovým indentorem při zatížení 1500N. 60 / 75

62 Porušení tenké vrstvy Rozsáhlé adhezní porušení okolí vtisku. Na okraji vtisku vzorku na substrátu ze slinutého karbidu došlo jen v několika malých lokalitách k adheznímu odloupnutí tenké vrstvy. Tyto lokality se navíc nalézají v místech s většími nerovnostmi povrchu. Stav povrchu-reliéf má vliv na adhezi tenké vrstvy k substrátu, a lze předpokládat, že se zvětšujícími se nerovnostmi, drsností povrchu se budou adhezivně-kohezivní vlastnosti zhoršovat. Dle způsobu hodnocení lze tento systém tenká vrstva-substrát ohodnotit jako A1/K2, což znamená malé adhezivně-kohezivní porušení. 61 / 75

63 Scratch test (vrypová zkouška) 62 / 75

64 Scratch test je základní a nejrozšířenější zkouškou pro sledování adheze systému tenká vrstva substrát. Tato metoda našla své uplatnění jako efektivní metoda kvalitativní kontroly. Principem metody je plynulé zatěžování indentoru. Vzorek se pohybuje konstantní rychlostí horizontálně a indentor, který je zatěžován konstantní nebo plynule se zvyšující silou, proniká do povrchu vzorku při jeho pohybu a vytváří tak vryp. Tím se na rozhraní vrstva - substrát generuje pnutí, které při dosažení kritické hodnoty způsobí odtržení vrstvy od substrátu. Hodnota, při níž dojde k poškození vrstvy, se nazývá kritické zatížení Lc a je používána jako míra adheze dané vrstvy. Přístroj zaznamenává průběh normálové Fn a tangenciální síly Ft působící na indentor, hodnoty koeficientu tření µ = Ft / Fn a signál akustické emise (AE- elastické vlny generované uvolněním energie vnitřně vázané ve struktuře materiálu). Hodnotu kritického zatížení Lc, při níž dojde k porušení vrstvy, lze zjišťovat několika způsoby: pomocí připojeného optického mikroskopu, popř. pomocí řádkovacího elektronového mikroskopu doplněné o zpracování zaznamenaných závislostí koeficientu tření a signálu akustické emise na normálovém zatížení. 63 / 75

65 Porušení systému tenká vrstva substrát 64 / 75

66 Měření tloušťky kalotest Tloušťku tenké vrstvy lze měřit pomocí mikroskopu na metalografickém příčném výbrusu nebo pomocí metody označované kalotest, která je používána pro rychlé a jednoduché stanovení tloušťky. Schéma zařízení Princip metody do vzorku vybrousí kulový vrchlík, který se na průmětu jeví jako mezikruží, obvykle se používá otáčející se ocelová kulička o průměru 25 mm potřená brusnou diamantovou pastou. Mikroskopickým proměřením průmětu důlku lze získat příslušné rozměry umožňující vypočítat tloušťku posuzované vrstvy. Oblast použití je poměrně široká: µm. 65 / 75

67 Stanovení tloušťky metodou kalotest Kalota multivrstevného systému 66 / 75

68 Tribologická zkouška Metoda PIN-on-DISC Zařízení pro provádění testů metodou PIN-on-DISC se nazývá tribometr. Princip měření: Měření PIN-on-DISC spočívá ve vtlačování pevně uchyceného zkušebního tělíska (pinu) ve tvaru kuličky nebo hrotu z libovolného materiálu předem definovanou silou (zatížení 1 10 N) do zkušebního vzorku, který se otáčí danou rychlostí. Princip tribometrického měření Ball (PIN)-on-DISC. 67 / 75

69 Přímým výstupem měření je průběh koeficientu tření v závislosti na počtu cyklů. Dalšími hodnotami, které se při zjišťování tribologického chování tenkých vrstev sledují, jsou: charakter opotřebení PIN tělíska adhezivní nebo abrazivní, velikost opotřebení PIN tělíska charakter a velikost vytvořené tribologické stopy na vzorku Tribologická stopa v multivrstevném systému. 68 / 75

70 Mikrotvrdost tenkých vrstev Mikrotvrdost je jedna ze základních hodnot charakterizujících mechanické vlastnosti systému. Toto měření poskytuje informace o elastickém a plastickém chování materiálu v lokálním objemu. Mikrotvrdost je v principu odpor materiálu proti lokální plastické deformaci, která je vyvolána zatěžováním indentoru. Zatížení indentoru se u mikrotvrdosti pohybuje maximálně do 2N. Miktrotvrdost je tedy definována jako podíl velikosti zátěže L a velikosti plochy vtisku A: H= L [ kg ] A [ mm 2 ] 69 / 75

71 Měření mikrotvrdosti pomocí nanoindentoru Nanoindentory umožňují provádět měření při velmi nízkých zatíženích (desetiny gramu až ~ 10g). Po odlehčení tak v materiálu vyhodnocuje. zůstává vtisk, který se Přístroj provádí podrobné měření hloubky proniknutí hrotu v průběhu jeho zatěžování i odlehčování. Z těchto hodnot lze vypočítat nejen hodnotu mikrotvrdosti, ale i podíl elastické de a plastické dp deformace během zatěžovacího cyklu, což vyjadřuje tzv. faktor elastické návratnosti R = de / dp. Z naměřených hodnot se vypočítají hodnoty mikrotvrdosti. Hodnoty jsou vynášeny do grafů závislosti hloubky proniknutí hrotu h [μm] na velikosti zatížení L [g]. Přístroj je řízen počítačem, který zaznamenává a zpracovává naměřené hodnoty. Významným přínosem při měření nanoindentorem je možnost výpočtu modulu pružnosti tenké vrstvy. 70 / 75

72 Výsledkem měření nanotvrdosti je závislost (indentační křivka obr.) okamžité hloubky proniknutí indentoru h v průběhu jeho zatěžování a odlehčování na velikosti zatížení působící na indentor L. Schematické znázornění závislosti hloubky proniknutí hrotu na velikosti zatížení; hmax je hloubka proniknutí hrotu při maximálním zatížení, hf je hloubka proniknutí hrotu po odlehčení, S je sklon počátečního úseku odlehčovací křivky. 71 / 75

73 Zkoušky řezivosti a trvanlivosti břitu nástroje S ohledem na použití tenkých vrstev na řezné nástroje je vhodné pro jejich optimální aplikaci znát zákonitosti a děje, které proces obrábění doprovází. Trvanlivost nástroje je přímo závislá na povaze prováděné operace. Nástroj činné části se nesmí změnit natolik, aby řezný odpor způsobil nadměrné deformace nebo zničení nástroje, obrobku či stroje. Dále pak nesmí dojít k takové změně tvaru, aby nebylo možné zajistit obrábění v dané toleranci obrobku nebo dodržet požadovanou drsnost povrchu. Zkoušky řezivosti a trvanlivosti břitu nástroje 72 / 75

74 Přestože se dnes pro posouzení vlastností systému tenká vrstvasubstrát používají různé laboratorní metody, praktická zkouška řezáním (zkouška řezivosti) si stále udržuje svou nenahraditelnost. Zkouška trvanlivosti zachycuje v nejširším měřítku vliv mechanických a fyzikálních vlastností jednotlivých subjektů, účastnících se řezného procesu. Zkoušky trvanlivosti jsou v podstatě nedílnou součástí zkoušek řezivosti řezného nástroje. Princip zkoušky trvanlivosti spočívá v obrábění řezným nástrojem řeznými podmínkami předem určenými, až do doby, kdy je nástroj opotřeben - dáno velikostí přípustné hodnoty opotřebení. 73 / 75

75 Nárůstek na ostří, zasahující do čela i hřbetu břitu. Porušení břitu břitové destičky 74 / 75

76 Detail nalepení materiálu na hřbetě nástroje v oblasti hranice opotřebení. Poškození vrtáku v oblasti špičky. 75 / 75

77 Tenké vrstvy otázky ke zkoušce 1) Co je tenká vrstva? Aplikace tenkých vrstev. 2) Vliv tenkých vrstev na průběh obrábění. 3) Jaký je trend vývoje a požadavky na nástroje s tenkými vrstvami? 4) Základní depoziční procesy. 5) Předdepoziční přípravy, úprava řezných hran, iontový bombard, stripping. 6) Chemická metoda depozice vrstev CVD. Metoda PECVD 7) Fyzikální metoda depozice vrstev PVD. Reaktivní naprašování, reaktivní napařování. 8) Faktory, kterými se liší techniky PVD a CVD. 9) Hodnocení vlastností tenkých vrstev Optická emisní spektroskopie GD-OES, Vnikací metoda Mercedes test, Scratch test (vrypová zkouška), Měření tloušťky kalotest, Tribologická zkouška Metoda PIN-on-DISC, Mikrotvrdost tenkých vrstev, Zkoušky řezivosti a trvanlivosti břitu nástroje

Tenké vrstvy. metody přípravy. hodnocení vlastností

Tenké vrstvy. metody přípravy. hodnocení vlastností Tenké vrstvy metody přípravy hodnocení vlastností 1 / 39 Depozice tenkých vrstev Depozice vrstev se provádí jako finální operace na hotovém již tepelně zpracovaném substrátu. Pro dobré adhezní vlastnosti

Více

Tenké vrstvy. historie předdepoziční přípravy stripping

Tenké vrstvy. historie předdepoziční přípravy stripping Tenké vrstvy historie předdepoziční přípravy stripping 1 HISTORIE TENKÝCH VRSTEV Historie depozice vrstev obloukovým odpařováním z katody sahá až do devatenáctého století. Pozorování pulzního a později

Více

Tenká vrstva - aplikace

Tenká vrstva - aplikace Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD

VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD 23. 25.11.2010, Jihlava, Česká republika VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD Ing.Petr Beneš Ph.D. Doc.Dr.Ing. Antonín Kříž Katedra

Více

SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH

SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH Západočeská univerzita v Plzni SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH Antonín Kříž Univerzitní 22, 306 14 Plzeň, e-mail: kriz@kmm.zcu.cz Tento příspěvek vznikl na základě řešení

Více

NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE?

NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE? NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE? Příspěvek je ve sborníku na str. 67-72, přednáška na www.ateam.zcu.cz Antonín Kříž 3/37 4/37 Čas jsou peníze Systém tenká vrstva-substrát Vrstva Rozhraní Substrát Deponované

Více

Vrstvy a povlaky 2007

Vrstvy a povlaky 2007 Vrstvy a povlaky 2007 VLIV MECHANICKÝCH ÚPRAV SUBSTRÁTU TU NA ADHEZI TENKÝCH VRSTEV Martina Sosnová Antonín Kříž ZČU v Plzni Úvod Povrchové inženýrství je relativně mladým vědním oborem. Fascinace člověka

Více

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná

Více

ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ

ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ Středoškolská technika 2019 Setkání a prezentace prací středoškolských studentů na ČVUT ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ Jakub Chlaň, Matouš Hyk, Lukáš Procházka Střední škola elektrotechniky

Více

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD

Více

NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE?

NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE? NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE? Vstupní přednáška pro problematiku: Nástrojové oceli Slinuté karbidy Depozice tenkých vrstev Předmět SMA Doc.Dr.Ing. Antonín Kříž 3/37 Čas jsou peníze 4/37 Systém tenká

Více

Vakuové metody přípravy tenkých vrstev

Vakuové metody přípravy tenkých vrstev Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Zkoušení mechanických vlastností zkoušky tvrdosti. Metody charakterizace nanomateriálů 1

Zkoušení mechanických vlastností zkoušky tvrdosti. Metody charakterizace nanomateriálů 1 Zkoušení mechanických vlastností zkoušky tvrdosti Metody charakterizace nanomateriálů 1 Tvrdost definujeme jako odpor, který klade materiál proti vnikání cizího tělesa, na této definici je založena většina

Více

Analýza PIN-on-DISC. Ing. Jiří Hájek Dr. Ing. Antonín Kříž ZÁPADOČESKÁ UNIVERZITA V PLZNI

Analýza PIN-on-DISC. Ing. Jiří Hájek Dr. Ing. Antonín Kříž ZÁPADOČESKÁ UNIVERZITA V PLZNI Analýza PIN-on-DISC Ing. Jiří Hájek Dr. Ing. Antonín Kříž ZÁPADOČESKÁ UNIVERZITA V PLZNI 1/18 TRIBOLOGICKÝ PROCES Tribological process Factors that influence the process: loading, loading type, movement

Více

Vakuová technika. Výroba tenkých vrstev vakuové naprašování

Vakuová technika. Výroba tenkých vrstev vakuové naprašování VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Vakuová technika Výroba tenkých vrstev vakuové naprašování Tomáš Kahánek ID: 106518 Datum: 17.11.2010 Výroba tenkých vrstev

Více

Obrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami

Obrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami Obrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami Antonín Kříž, Miroslav Zetek, Jan Matějka, Josef Formánek, Martina Sosnová, Jiří Hájek, Milan Vnouček Příspěvek vznikl na základě

Více

Disertační práce. Souvislost metod hodnocení adhezívn. Martina Sosnová. Katedra materiálů a strojírenské metalurgie. Doc. Ing. Jana Skálová, CSc.

Disertační práce. Souvislost metod hodnocení adhezívn. Martina Sosnová. Katedra materiálů a strojírenské metalurgie. Doc. Ing. Jana Skálová, CSc. Disertační práce Souvislost metod hodnocení adhezívn vně kohezivního ho chování systému tenká vrstva substrát Martina Sosnová Katedra materiálů a strojírenské metalurgie Školitel: Doc. Ing. Jana Skálová,

Více

Přehled metod depozice a povrchových

Přehled metod depozice a povrchových Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical

Více

TEPLOTNÍ ODOLNOST TENKÝCH VRSTEV A JEJICH PŘÍNOS V OBRÁBĚNÍ TVRDÝCH OCELÍ. Antonín Kříž Petr Beneš Martina Sosonová Jiří Hájek

TEPLOTNÍ ODOLNOST TENKÝCH VRSTEV A JEJICH PŘÍNOS V OBRÁBĚNÍ TVRDÝCH OCELÍ. Antonín Kříž Petr Beneš Martina Sosonová Jiří Hájek TEPLOTNÍ ODOLNOST TENKÝCH VRSTEV A JEJICH PŘÍNOS V OBRÁBĚNÍ TVRDÝCH OCELÍ Antonín Kříž Petr Beneš Martina Sosonová Jiří Hájek Na počátku byla co se kdy žs st a ne s obyčejná zvědavost, na de en po no ech

Více

TENKÉ VRSTVY NA ŘEZNÝCH NÁSTROJÍCH PRO TĚŽKOOBROBITELNÉ PLASTY VÝVOJ TENKÝCH VRSTEV APLIKOVANÝCH NA ŘEZNÝCH NÁSTROJÍCH

TENKÉ VRSTVY NA ŘEZNÝCH NÁSTROJÍCH PRO TĚŽKOOBROBITELNÉ PLASTY VÝVOJ TENKÝCH VRSTEV APLIKOVANÝCH NA ŘEZNÝCH NÁSTROJÍCH TENKÉ VRSTVY NA ŘEZNÝCH NÁSTROJÍCH PRO TĚŽKOOBROBITELNÉ PLASTY VÝVOJ TENKÝCH VRSTEV APLIKOVANÝCH NA ŘEZNÝCH NÁSTROJÍCH Tato přednáška vznikla sloučením dvou původních příspěvků, které jsou uvedeny ve sborníku

Více

Vývoj - grafické znázornění

Vývoj - grafické znázornění Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

NÁSTROJE A TECHNOLOGIE ČESKÉ VÝROBKY VE ŠPIČKOVÉ KVALITĚ

NÁSTROJE A TECHNOLOGIE ČESKÉ VÝROBKY VE ŠPIČKOVÉ KVALITĚ 2015/08 NÁSTROJE A TECHNOLOGIE ČESKÉ VÝROBKY VE ŠPIČKOVÉ KVALITĚ FRÉZY PRO VÝROBU FOREM MIKROFRÉZY 70 HRC KULOVÉ 70 HRC KULOVÉ 55 HRC KUŽELOVÉ 5 FRÉZY VÁLCOVÉ UNIVERZÁLNÍ HRUBOVACÍ DOKONČOVACÍ 70 HRC

Více

1 Moderní nástrojové materiály

1 Moderní nástrojové materiály 1 Řezné materiály jsou podle ISO 513 členěné do šesti základních skupin, podle typu namáhání břitu. - Skupina P zahrnuje nástrojové materiály určené k obrábění většiny ocelí, které dávají dlouhou třísku

Více

PVD povlaky pro nástrojové oceli

PVD povlaky pro nástrojové oceli PVD povlaky pro nástrojové oceli Bc. Martin Rund Vedoucí práce: Ing. Jan Rybníček Ph.D Abstrakt Tato práce se zabývá způsoby a možnostmi depozice PVD povlaků na nástrojové oceli. Obsahuje rešerši o PVD

Více

VLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH. Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek

VLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH. Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek VLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek Hlavní pozornost odborníků zabývajících se testováním tenkých vrstev orientuje na analýzy za normálních

Více

Speciální metody obrábění

Speciální metody obrábění Předmět: Ročník: Vytvořil: Datum: Základy výroby druhý M. Geistová 6. září 2012 Název zpracovaného celku: Speciální metody obrábění Speciální metody obrábění Použití: je to většinou výkonné beztřískové

Více

FYZIKA VE FIRMĚ HVM PLASMA

FYZIKA VE FIRMĚ HVM PLASMA FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody

Více

Plazma v technologiích

Plazma v technologiích Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,

Více

Kontaktní cyklické testování materiálů pomocí IMPACT testeru. Antonín Kříž; Petr Beneš

Kontaktní cyklické testování materiálů pomocí IMPACT testeru. Antonín Kříž; Petr Beneš Kontaktní cyklické testování materiálů pomocí IMPACT testeru Antonín Kříž; Petr Beneš V mnoha průmyslových aplikacích jsou součásti vystaveny intenzivním účinkům kontaktního namáhání Při kontaktním namáhání

Více

HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ

HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ ANALYSIS OF MECHANICAL PROPERTIES OF THIN FILMS SYSTEMS FROM DEPENDENCE OF KIND OF INFORMATION AND

Více

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší

Více

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Mechanické vlastnosti: jak a co lze měřm ěřit na tenkých vrstvách Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Prague, May 2005 OBSAH 1 mechanické vlastnosti objemových materiálů 1 tenké vrstvy a jejich

Více

KATALOG NÁSTROJŮ PRO OBRÁBĚNÍ

KATALOG NÁSTROJŮ PRO OBRÁBĚNÍ 2014/01 tool design & production KATALOG NÁSTROJŮ PRO OBRÁBĚNÍ FRÉZY PRO VÝROBU FOREM Z TVRDOKOVU FRÉZY VÁLCOVÉ NÁSTROJE PRO OBRÁBĚNÍ HLINÍKU NÁSTROJE PRO OBRÁBĚNÍ GRAFITU NÁSTROJE SPECIÁLNÍ A ZAKÁZKOVÉ

Více

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Předmět: Ročník: Vytvořil: Datum: STROJÍRENSKÁ TECHNOLOGIE TŘETÍ JANA ŠPUNDOVÁ 06.04.2014 Název zpracovaného celku: SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Používají se pro obrábění těžkoobrobitelných

Více

Plazmové metody Materiály a technologie přípravy M. Čada

Plazmové metody Materiály a technologie přípravy M. Čada Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze

Více

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU Beneš, P. 1 Sosnová, M. 1 Kříž, A. 1 Vrstvy a Povlaky 2007 Solaň Martan, M. 2 Chmelíčková, H. 3 1- Katedra materiálu a strojírenské metalurgie-

Více

TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV. Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž

TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV. Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž Tenké PVD vrstvy 1968 vytvořena první PVD vrstva TiN Do současnosti vytvořeno mnoho druhů

Více

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké

Více

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází

Více

Katedra obrábění a montáže, TU v Liberci při obrábění podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ je při obrábění ovlivněna řadou parametrů řezného procesu, zejména řeznými podmínkami, geometrií

Více

Teplotní degradace tenkých otěruvzdorných vrstev. Ing.Petr Beneš

Teplotní degradace tenkých otěruvzdorných vrstev. Ing.Petr Beneš Teplotní degradace tenkých otěruvzdorných vrstev Ing.Petr Beneš Důvody nutnosti zkoumání teplotní degradace tenkých PVD vrstev účinkům teplotního zatížení PVD vrstev se věnuje jen malý počet odborných

Více

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných

Více

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce

Více

Základní typy článků:

Základní typy článků: Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,

Více

Tenké vrstvy nitridů kovů výroba, aplikace, vlastnosti

Tenké vrstvy nitridů kovů výroba, aplikace, vlastnosti Tenké vrstvy nitridů kovů výroba, aplikace, vlastnosti Začátek průmyslové aplikace tenkých vrstev v oblasti řezných nástrojů 1968 CVD depozice vrstvy TiC na řezné destičce ze slinutého karbidu 2/49 Co

Více

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat

Více

COMPARISON OF SYSTEM THIN FILM SUBSTRATE WITH VERY DIFFERENT RESISTANCE DURING INDENTATION TESTS. Matyáš Novák, Ivo Štěpánek

COMPARISON OF SYSTEM THIN FILM SUBSTRATE WITH VERY DIFFERENT RESISTANCE DURING INDENTATION TESTS. Matyáš Novák, Ivo Štěpánek POROVNÁNÍ SYSTÉMŮ TENKÁ VRSTVA SUBSTRÁT S VELICE ROZDÍLNOU ODOLNOSTÍ PŘI INDENTAČNÍCH ZKOUŠKÁCH COMPARISON OF SYSTEM THIN FILM SUBSTRATE WITH VERY DIFFERENT RESISTANCE DURING INDENTATION TESTS Matyáš Novák,

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

NÁSTROJOVÉ OCELI CPM 10 V

NÁSTROJOVÉ OCELI CPM 10 V NÁSTROJOVÁ OCEL CPM 10 V CERTIFIKACE DLE ISO 9001 Chem. složení C 2,45 % Cr 5,25 % V 9,75 % Mo 1,30 % Mn 0,50 % Si 0,90 % CPM 10 V Je jedinečná vysokovýkonná ocel, vyráběná společností Crucible (USA) metodou

Více

CPM REX 45 (HS) NÁSTROJOVÁ OCEL. Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ CPM REX 45. Typické oblasti použití FYZIKÁLNÍ VLASTNOSTI.

CPM REX 45 (HS) NÁSTROJOVÁ OCEL. Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ CPM REX 45. Typické oblasti použití FYZIKÁLNÍ VLASTNOSTI. NÁSTROJOVÁ OCEL CPM REX 45 (HS) Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ C Cr V Mo W Co S 1,30% 4,05 % 3,05 % 5,00% 6,25% 8,00% 0,06 % (provedení HS: 0,22 %) CPM REX 45 je vysokovýkonná, kobaltová rychlořezná

Více

C Cr N Mo Ni Mn 0,3% 15,0 % 0,5 % 0,95% 0,5% 1,0%

C Cr N Mo Ni Mn 0,3% 15,0 % 0,5 % 0,95% 0,5% 1,0% NÁSTROJOVÁ OCEL LC 200 N Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ C Cr N Mo Ni Mn 0,3% 15,0 % 0,5 % 0,95% 0,5% 1,0% LC 200 N Je vysoce korozivzdorná, dusíkem legovaná nástrojová ocel s výtečnou houževnatostí

Více

Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů.

Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů. Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů. Výhody laserového kalení: Nižší energetická náročnost (kalení pouze

Více

C Cr N Mo Ni Mn 0,3% 14,0 % 0,4 % 0,1% 0,4% 0,5%

C Cr N Mo Ni Mn 0,3% 14,0 % 0,4 % 0,1% 0,4% 0,5% NÁSTROJOVÁ OCEL LC 185 MP Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ C Cr N Mo Ni Mn 0,3% 14,0 % 0,4 % 0,1% 0,4% 0,5% LC 185 MP Je dusíkem legovaná, korozivzdorná ocel typu matrix s excelentní leštitelností.

Více

člen švýcarské skupiny BCI

člen švýcarské skupiny BCI > úvod povlakování Tento katalog nabízí základní přehled tvrdých a kluzných vrstev deponovaných PVD technologiemi našeho povlakovacího centra na nástroje a strojní součástí včetně možností předúprav. V

Více

HODNOCENÍ VLASTNOSTÍ TENKÝCH VRSTEV NITRIDU KOVU

HODNOCENÍ VLASTNOSTÍ TENKÝCH VRSTEV NITRIDU KOVU HODNOCENÍ VLASTNOSTÍ TENKÝCH VRSTEV NITRIDU KOVU Dr. Ing. Antonín Kříž, ZČU v Plzni, Univerzitní 22, 306 14, kriz@kmm.zcu.cz ANOTACE Wear resistant metal nitride thin films are being produced by means

Více

VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ

VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ Sborník str. 363-370 VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ Antonín Kříž Západočeská univerzita, Univerzitní 22, 306 14, Prášková metalurgie - progresivní technologie

Více

EVALUATION OF FAILURES AND MODIFICATION OF SYSTEMS THIN FILM BASIC MATERIAL TO THE DEPTH OF MATERIAL SYSTEMS

EVALUATION OF FAILURES AND MODIFICATION OF SYSTEMS THIN FILM BASIC MATERIAL TO THE DEPTH OF MATERIAL SYSTEMS STUDIUM PORUŠENÍ A MODIFIKACE SYSTÉMŮ TENKÁ VRSTVA ZÁKLADNÍ MATERIÁL DO HLOUBKY MATERIÁLOVÝCH SYSTÉMŮ Abstrakt EVALUATION OF FAILURES AND MODIFICATION OF SYSTEMS THIN FILM BASIC MATERIAL TO THE DEPTH OF

Více

Aplikace tenkých vrstev ve strojírenství

Aplikace tenkých vrstev ve strojírenství TENKÉ VRSTVY NA ŘEZNÝCH NÁSTROJÍCH PRO TĚŽKOOBROBITELNÉ PLASTY VÝVOJ TENKÝCH VRSTEV APLIKOVANÝCH NA ŘEZNÝCH NÁSTROJÍCH Aplikace tenkých vrstev ve strojírenství Tato přednáška vznikla sloučením dvou původních

Více

CZ.1.07/1.1.30/01.0038 SPŠ

CZ.1.07/1.1.30/01.0038 SPŠ Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 3 Téma: APLIKACE TENKÝCH VRSTEV NA OBRÁBĚCÍCH NÁSTROJÍCH Lektor: Ing. Jiří Hodač Třída/y:

Více

C Cr V Mo Mn Si 2,45% 5,25 % 9,75 % 1,30% 0,50% 0,90%

C Cr V Mo Mn Si 2,45% 5,25 % 9,75 % 1,30% 0,50% 0,90% NÁSTROJOVÁ OCEL CPM 10 V Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ C Cr V Mo Mn Si 2,45% 5,25 % 9,75 % 1,30% 0,50% 0,90% CPM 10 V Je jedinečná vysokovýkonná ocel, vyráběná společností Crucible (USA) metodou

Více

Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141

Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před

Více

Plazmová depozice tenkých vrstev oxidu zinečnatého

Plazmová depozice tenkých vrstev oxidu zinečnatého Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky

Více

Řezné materiály www. www t. u t n u g n a g loy o. y c. z c

Řezné materiály www. www t. u t n u g n a g loy o. y c. z c Řezné materiály www.tungaloy.cz PRODUKTY Povlakované karbidy CVD A002 Povlakované karbidy PVD A003 Keramika A005 Cermety A005 CBN (T-CBN) A006 PCD (T-DIA) A007 Nepovlakované slinuté karbidy A007 Tungaloy

Více

1.1.1 Hodnocení plechů s povlaky [13, 23]

1.1.1 Hodnocení plechů s povlaky [13, 23] 1.1.1 Hodnocení plechů s povlaky [13, 23] Hodnocení povlakovaných plechů musí být komplexní a k určování vlastností základního materiálu přistupuje ještě hodnocení vlastností povlaku v závislosti na jeho

Více

EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ

EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ ZÁPADOČESKÁ UNIVERZITA FAKULTA STROJNÍ KATEDRA TECHNOLOGIE OBRÁBĚNÍ EXPERIMENTÁLNÍ METODY V OBRÁBĚNÍ ÚLOHA č. 4 (Skupina č. 1) OPTIMALIZACE ŘEZNÉHO PROCESU (Trvanlivost břitu, dlouhodobá zkouška obrobitelnosti

Více

VÝROBA ŘEZNÝCH NÁSTROJŮ S OTĚRUVZDORNÝMI TENKÝMI VRSTVAMI

VÝROBA ŘEZNÝCH NÁSTROJŮ S OTĚRUVZDORNÝMI TENKÝMI VRSTVAMI VÝROBA ŘEZNÝCH NÁSTROJŮ S OTĚRUVZDORNÝMI TENKÝMI VRSTVAMI Ing. Josef Fajt, CSc. PILSEN TOOLS s.r.o., Tylova 57, 316 00 Plzeň, tel.: +420 378 134 005, e-mail: fajt@pilsentools.cz ANNOTATION The paper is

Více

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství Otěruvzdorn ruvzdorné povlaky endoprotéz Obsah Základní části endoprotéz Požadavky na materiály Materiály endoprotéz Keramické povlaky DLC povlaky MPC povlaky Metody vytváření povlaků Testy povlaků Závěr

Více

DRUHY A UTVÁŘENÍ TŘÍSEK

DRUHY A UTVÁŘENÍ TŘÍSEK EduCom Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. DRUHY A UTVÁŘENÍ TŘÍSEK Jan Jersák Technická univerzita v Liberci

Více

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Projekt: CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Kurz: Technologie třískového obrábění 1 Obsah Technologie třískového obrábění... 3 Obrábění korozivzdorných ocelí... 4 Obrábění litiny... 5 Obrábění

Více

Metody depozice povlaků - CVD

Metody depozice povlaků - CVD Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční

Více

Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž

Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž TATO PŘEDNÁŠKA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Více

C Cr V Mo 0,80 % 7,50 % 2,75 % 1,30%

C Cr V Mo 0,80 % 7,50 % 2,75 % 1,30% NÁSTROJOVÁ OCEL CPM 3 V Certifikace dle ISO 9001 CHEMICKÉ SLOŽENÍ C Cr V Mo 0,80 % 7,50 % 2,75 % 1,30% CPM 3 V Je nově vyvinutá ultra-houževnatá vysokovýkonná ocel, která je vyráběna společností Crucible

Více

COMPARISON PROPERTIES AND BEHAVIOUR OF SYSTEM WITH THIN FILMS PREPARED BY DIFFERENT TECHNOLOGIES

COMPARISON PROPERTIES AND BEHAVIOUR OF SYSTEM WITH THIN FILMS PREPARED BY DIFFERENT TECHNOLOGIES POROVNÁNÍ VLASTNOSTÍ A CHOVÁNÍ SYSTÉMŮ S TENKÝMI VRSTVAMI Z RŮZNÝCH TECHNOLOGICKÝCH PROCESŮ COMPARISON PROPERTIES AND BEHAVIOUR OF SYSTEM WITH THIN FILMS PREPARED BY DIFFERENT TECHNOLOGIES Ivo Štěpánek

Více

Poškození strojních součástí

Poškození strojních součástí Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami

Více

8. Třískové obrábění

8. Třískové obrábění 8. Třískové obrábění Třískovým obráběním rozumíme výrobu strojních součástí z polotovarů, kdy je přebytečný materiál odebírán řezným nástrojem ve formě třísek. Dynamický vývoj technologií s sebou přinesl

Více

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával.

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Keramika Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Chceme li definovat pojem keramika, můžeme říci, že je to materiál převážně krystalický,

Více

HODNOCENÍ TENKÝCH VRSTEV - NITRIDICKÁ VRSTVA SUBSTRÁTOVÝCH SYSTÉMŮ EVALUATION OF THIN LAYER SUBSTRATE SYSTEM. Milan Vnouček a

HODNOCENÍ TENKÝCH VRSTEV - NITRIDICKÁ VRSTVA SUBSTRÁTOVÝCH SYSTÉMŮ EVALUATION OF THIN LAYER SUBSTRATE SYSTEM. Milan Vnouček a HODNOCENÍ TENKÝCH VRSTEV - NITRIDICKÁ VRSTVA SUBSTRÁTOVÝCH SYSTÉMŮ EVALUATION OF THIN LAYER SUBSTRATE SYSTEM Milan Vnouček a a ZČU, Univerzitní 14, 306 14 Plzeň, ČR, vnoucek@kmm.zcu.cz Abstrakt Tento příspěvek

Více

III. Mezinárodní konference STROJÍRENSKÁ TECHNOLOGIE PLZEŇ 2009 21. 22. 1. 2009

III. Mezinárodní konference STROJÍRENSKÁ TECHNOLOGIE PLZEŇ 2009 21. 22. 1. 2009 HODNOCENÍ VLASTNOSTÍ SYSTÉMŮ TENKÁ VRSTVA-SUBSTRÁT EVALUATION OF PROPERTIES OF THIN FILM-SUBSTRATE SYSTEMS Doc.Dr.Ing.Antonín Kříž Katedra materiálů a strojírenské metalurgie, Fakulta strojní, ZČU, Univerzitní

Více

CYKLICKÁ VRYPOVÁ ZKOUŠKA PRO HODNOCENÍ VÝVOJE PORUŠENÍ A V APROXIMACI ZKOUŠKY OPOTŘEBENÍ. Markéta Podlahová, Ivo Štěpánek, Martin Hrdý

CYKLICKÁ VRYPOVÁ ZKOUŠKA PRO HODNOCENÍ VÝVOJE PORUŠENÍ A V APROXIMACI ZKOUŠKY OPOTŘEBENÍ. Markéta Podlahová, Ivo Štěpánek, Martin Hrdý CYKLICKÁ VRYPOVÁ ZKOUŠKA PRO HODNOCENÍ VÝVOJE PORUŠENÍ A V APROXIMACI ZKOUŠKY OPOTŘEBENÍ. Markéta Podlahová, Ivo Štěpánek, Martin Hrdý Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, ČR,

Více

Hodnocení tribologických vlastností procesních kapalin

Hodnocení tribologických vlastností procesních kapalin Hodnocení tribologických vlastností procesních kapalin Totka Bakalova 1, Petr Louda 1,2, Lukáš Voleský 1,2 1 Ing. Totka Bakalova, PhD., Technická univerzita v Liberci, Ústav pro nanomateriály, pokročilé

Více

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč

Více

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika Lasery v mikroelektrotechnice Soviš Jan Aplikovaná fyzika Obsah Úvod Laserové: žíhání rýhování (orýsování) dolaďování depozice tenkých vrstev dopování příměsí Úvod Vysoká hustota výkonu laseru změna struktury

Více

CHANGING IN ACOUSTIC EMISSION SIGNAL DURING SCRATCH INDENTATION ON DIFFERENT MATERIALS AND CORRELATION WITH MORPHOLOGY OF FAILURES

CHANGING IN ACOUSTIC EMISSION SIGNAL DURING SCRATCH INDENTATION ON DIFFERENT MATERIALS AND CORRELATION WITH MORPHOLOGY OF FAILURES ZMĚNY V PRŮBĚHU SIGNÁLU AKUSTICKÉ EMISE PŘI VRYPOVÉ INDENTACI NA RŮZNÝCH MATERIÁLECH A KORELACE S MORFOLOGIÍ PORUŠENÍ Abstrakt CHANGING IN ACOUSTIC EMISSION SIGNAL DURING SCRATCH INDENTATION ON DIFFERENT

Více

Materiály. Produkty 1-2 1-4 1-6 1-8 1-10 1-12 1-13 1-14 1-15

Materiály. Produkty 1-2 1-4 1-6 1-8 1-10 1-12 1-13 1-14 1-15 Produkty Přehled řezných materiálů... Povlakovaný karbid / CVD... Povlakovaný karbid/ PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Keramika... Nepovlakovaný slinutý karbid... Submikronové slinuté karbidy...

Více

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39 Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857

Více

BEZPEČNÁ PŘEPRAVA NA NOVÝCH KOLECH

BEZPEČNÁ PŘEPRAVA NA NOVÝCH KOLECH BEZPEČNÁ PŘEPRAVA NA NOVÝCH KOLECH www.pramet.com VYMĚNITELNÉ BŘITOVÉ DESTIČKY RCMH - RCMT - RCMX - RCUM OBRÁBĚNÍ NOVÝCH ŽELEZNIČNÍCH KOL ŽELEZNIČNÍ KOLA Železniční kola patří mezi nejdůležitější součásti

Více

MECHANICKÉ VLASTNOSTI SYSTÉMU TENKÁ VRSTVA- SUBSTRÁT S ROZDÍLNOU TLOUŠŤKOU TiN

MECHANICKÉ VLASTNOSTI SYSTÉMU TENKÁ VRSTVA- SUBSTRÁT S ROZDÍLNOU TLOUŠŤKOU TiN MECHANICKÉ VLASTNOSTI SYSTÉMU TENKÁ VRSTVA- SUBSTRÁT S ROZDÍLNOU TLOUŠŤKOU TiN Antonín Kříž ZČU NTC, Univerzitní 8, 306 14 Plzeň, ČR Thin hard nitride coating enhance the lifetime of cutting tool above

Více

Metodika hodnocení opotřebení povlaků

Metodika hodnocení opotřebení povlaků Metodika hodnocení opotřebení povlaků Bc. Petr Mutafov Vedoucí práce: Ing. Tomáš Polcar, Ph.D. Abstrakt Tento příspěvek se věnuje porovnáním kontaktního a bezkontaktního způsobu měření, které byly vybrány

Více

PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž

PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu

Více

MECHANICKÉ VLASTNOSTI STRUKTUR KOV POLYMER SVOČ FST 2010

MECHANICKÉ VLASTNOSTI STRUKTUR KOV POLYMER SVOČ FST 2010 MECHANICKÉ VLASTNOSTI STRUKTUR KOV POLYMER SVOČ FST 21 Petra Bublíková Západočeská univerzita v Plzni, Univerzitní 8, 36 14 Plzeň Česká republika ABSTRAKT Práce se zabývá studiem mechanických vlastností

Více

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5 Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru

Více

Rohová fréza se šroubem upínanými břitovými destičkami. Pro stabilní rohové frézování i při vysokém zatížení.

Rohová fréza se šroubem upínanými břitovými destičkami. Pro stabilní rohové frézování i při vysokém zatížení. NÁSTROJE NOVINKY 2014.01 Update B023CZ Rohová fréza se šroubem upínanými břitovými destičkami Pro stabilní rohové frézování i při vysokém zatížení. Nyní v nabídce nové povlakované nástrojové materiály

Více

ŘEZNÉ MATERIÁLY. SLO/UMT1 Zdeněk Baďura

ŘEZNÉ MATERIÁLY. SLO/UMT1 Zdeněk Baďura ŘEZNÉ MATERIÁLY SLO/UMT1 Zdeněk Baďura Současný poměrně široký sortiment materiálu pro řezné nástroje ( od nástrojových ocelí až po syntetický diamant) je důsledkem dlouholetého intenzivního výzkumu a

Více

3.1 Druhy karbidů a povlaků od firmy Innotool

3.1 Druhy karbidů a povlaků od firmy Innotool KARBIDY A POVLAKY 3.1 Druhy karbidů a povlaků od firmy Innotool 3.1.1 Nepovlakované karbidy IN04S IN05S IN10K IN15K IN30M K10-K20 M10-M20 K10-K25 K20-K50 Jemnozrnný karbid pro obrábění Al slitin s vyšším

Více

HODNOCENÍ VLASTNOSTÍ SYSTÉMŮ TENKÁ VRSTVA-SUBSTRÁT. Antonín Kříž. Vrstvy a Povlaky 2008

HODNOCENÍ VLASTNOSTÍ SYSTÉMŮ TENKÁ VRSTVA-SUBSTRÁT. Antonín Kříž. Vrstvy a Povlaky 2008 HODNOCENÍ VLASTNOSTÍ SYSTÉMŮ TENKÁ VRSTVA-SUBSTRÁT Antonín Kříž Vrstvy a Povlaky 2008 Vrstvy a Povlaky 2007 S ohledem na široké uplatnění tenkých vrstev na řezných nástrojích mají doposud zkoušky trvanlivosti

Více

Vlastnosti V 0,2. Modul pružnosti Součinitel tepelné roztažnosti C od 20 C. Tepelná vodivost W/m. C Měrné teplo J/kg C

Vlastnosti V 0,2. Modul pružnosti Součinitel tepelné roztažnosti C od 20 C. Tepelná vodivost W/m. C Měrné teplo J/kg C 1 CALMAX 2 Charakteristika CALMAX je Cr-Mo-V legovaná ocel, pro kterou jsou charakteristické tyto vlastnosti: Vysoká houževnatost Dobrá odolnost proti opotřebení Dobrá prokalitelnost Dobrá rozměrová stálost

Více

MATURITNÍ TÉMATA (OKRUHY) STROJÍRENSKÁ TECHNOLOGIE. TECHNICKÝ SOFTWARE (Strojírenství)

MATURITNÍ TÉMATA (OKRUHY) STROJÍRENSKÁ TECHNOLOGIE. TECHNICKÝ SOFTWARE (Strojírenství) MATURITNÍ TÉMATA (OKRUHY) STROJÍRENSKÁ TECHNOLOGIE ŠKOLNÍ ROK: 2015-16 a dále SPECIALIZACE: TECHNICKÝ SOFTWARE (Strojírenství) 1.A. ROVNOVÁŽNÝ DIAGRAM Fe Fe3C a) význam rovnovážných diagramů b) nakreslete

Více