Příklady k přednášce 9 - Zpětná vazba

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 9 - Zpětná vazba"

Transkript

1 Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí

2 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat pomalu se měící referečí sigál Struktura: FF řízeí s přibližou iverzí s modelem v FB a velkým zesíleím a malých frekvecích Zesíleí realizujeme itegrátorem (má zesíleí pro ω=0) Můžeme testovat v Simuliku model tak.mdl Fuguje dobře, ale je když model je přesý model a soustava mají skoro stejý počátečí stav referece má je ízké frekvece 2 yt () Michael Šebek Pr-ARI

3 Příklad: Přibližá iverze referece pomalá pp. a zesíleí stejé ref. pomalá, pp. růzé zesíleí stejé x0m = x0s = 0.25, gm = gs = 2 x0m = 4, x0s = 0.25, gm = gs = 2 ref. pomalá, pp. stejé zesíleí růzé x0m = x0s = 0.25, gm = 2, gs = špaté O.K. špaté referece s vyššími frekvecemi (pulsy) tvarovací filtr - dolí propust ahraze čistým zesíleím špaté Michael Šebek Pr-ARI-09-20

4 Proč a kdy vůbec použijeme ZV?. Do ZV obvodu se skutečou soustavou G(s) 2. uměle přikreslíme její zámý model G 0 (s). a ozačíme ový regulátor (s modelem soustavy) Tím jsme ic ezměili! Ks () Cs () = + G () sks () 0 G () s 0 Gs () Gs () G () s 0 4. Pro ovou strukturu platí [ ] f = d + G G u 0 Gs () ( ) 5. ZV sigál zřejmě zmizí f = 0 právě když současě a) G tj. přesě záme soustavu a přitom 0 () s = Gs () b) d = 0 porucha/počátečí stav jsou ulové G () s 0 Pokud bychom to vše zali, eí třeba ZV! Michael Šebek Pr-ARI

5 Proč citlivost? Porovejme přeos otevřeé smyčky ys () = Lsrs ()() + ds () s přeosem uzavřeé smyčky ys () = Ss () Lsr ()() s + S( s) ds () r Ls () d y Zřejmě S(s) vyjadřuje redukci citlivosti systému, dosažeou pomocí ZV Ve skutečosti teto ázev poprvé použil Bode z jiého důvodu: Pro skalárí přeosy formálí derivováí T podle G dává dt d( GK ( + GK)) ( + GK)( K) ( GK)( K) K = = = dg dg ( + GK) ( + GK) K G GK TS = = = + GK G + GK + GK G G 2 ( ) 2 2 dt T dg G = S Ls () = K() sgs () Tedy S(s) je citlivost relativí změy CL přeosu T(s) a relativí změu (chybu) modelu soustavy G(s) Michael Šebek Pr-ARI

6 Př. : Posuutí pólu - Zrychleí pece a pizzu Specifikace: zrychlit 4x změit dobu áběhu a T r = 0.55 hod tj. zmešit časovou kostatu a T = 0.25 tedy posuout pól z - do -4 k s + Řešeí ZV + zesíleí (P regulátor) ávrh je jedoduchý obecý CL charakteristický polyom je chceme ho změit a proto zvolíme k = dostaeme výsledý přeos T() s cs () = ( s+ ) + k = s+ ( + k ) cs () = s+ 4 L = = + L s + 4 přechod je skutečě 4x rychlejší, ale co ustáleá hodota? T = Michael Šebek Pr-ARI T r 2.2

7 Model matchig Lepší bude: posuout pól, ale zachovat ustáleé zesíleí tj. původí přeos změit a Gs () = Fs () = 4 s + s + 4 K tomu je třeba složitější struktura Miule jsme avrhli a tím dostali k = T() s = l s + 4 r l k s + y Teď už je stačí vzít a dostaeme l = 4 4 T() s = s + 4 Systém je 4x rychlejší a ustáleá hodota je stejá! Michael Šebek Pr-ARI

8 Diskuse Zadáí jsme splili, ale je to opravdu tak jedoduché? Můžeme soustavu zrychlovat libovolě? Tedy pól posouvat libovolě? Podle RL se zdá, že ao Ale podívejme se a vstup do soustavy R 4 s + Y s + us () = 4 rs () s + 4 u 0 + s + = lim 4 s = 4 s s+ 4 s Vstupí sigál má vysokou špičku: Čím dále posueme pól, tím bude špička vstupu větší až přestae platit lieárí model Poučeí: Póly esmíme posouvat moc daleko od původích poloh Michael Šebek Pr-ARI

9 Diskuse Jak se projeví skoková změa vější teploty? viz pizza.mdl 4 d s + ys 4 () () () 4 rs 4 ds = + yss = rss + dss s+ s+ a Systém edokáže elimiovat vliv skokové změy vější teploty Na to musí mít regulátor itegračí složku s d s + 7s+ 6 s ys () = rs () + ds () 2 2 ( s+ 4) ( s+ 4) y = r + 0d ss ss ss Michael Šebek Pr-ARI

10 Příklad - 2. řád Navrhěte k tak, aby T 4s a OS% 5% s k s( s+ 2) Y T s 4 4 = = 4 ςω σ σ l(%os 00) ζ = 2 2 π + l (%OS 00) %OS=5 ζ 0.7 ϕ RL k k = k [, 2] k = 0 Michael Šebek Pr-ARI

11 Příklad a druhý a vyšší řád: Spojitý deadbeat Napodobuje typickou diskrétí strategii Skoková odezva se rychle přiblíží pásmu ustáleí a s miimálím překmitem tam už zůstává Typická specifikace:. Rychlá odezva(= miimálí T r a T s ) 2. OS mezi 0,% a 2%. podkývutí < 2% 4. E ss = 0 Empiricky zjištěé hodoty pro výsledé přeosy ω T s s T db2=[ ] db=[ ] db4=[ ] db5=[ ] db6=[ ] db=[;moo(0:6)*db2.';moo(0:6)*db.';moo(0:6)*db4.';moo(0:6)*db5.';moo(0:6)*db6.'] T=./db step(tf(t(2)),tf(t()),tf(t(4)),tf(t(5)),tf(t(6)),0) 2 2řád () = =, = s + αωs+ ω s + αs + ω ω řád () s = = s + αωs + βωs+ ω s + αs + β s + Michael Šebek Pr-ARI s

12 Příklad a druhý a vyšší řád: Spojitý deadbeat Soustava se ZV regulátorem dává přeos uzavřeé smyčky s+ z Gs () =, Cs () = k s s+ s+ p ( ) () s = ( + z) + ( + ) + ( + ) + 2 s p s p k s kz Pomocí předfiltru vykrátíme (stabilí!) ulu a dostaeme celkový přeos z Fs () = s + z T celk T fb k s kz ω () s = = s p s p k s kz s s s ( + ) + ( + ) + + αω + βω + ω Máme parametr avíc, takže třeba zvolíme T s a k tomu vypočteme (ze vzorce pro 2. řád) ω = 4,04 T s Z porováím koeficietů u jedotlivých moci ve s + ( p + ) s + ( p + k) s + kz = s + αωs + βωs + ω dostaeme p+ = αω p= αω ( ) p+ k = βω k = βω p 2 2 kz = ω z = ω k Michael Šebek Pr-ARI

13 Příklad a druhý a vyšší řád: Spojitý deadbeat s+ z z s s s p s z Soustava, ZV regulátor a předfiltr Gs () =, Cs () = k, Fs () = Nejprve zvolíme T s = 2s a k tomu ( + ) + + vypočteme (ze vzorce pro 2. řád) ω = 4,04 Ts = 2,02 Z tabulky odečteme pro. řád α =,9; β = 2, 2, porováme koeficiety ve s + ( p + ) s + ( p + k) s + kz = s + αωs + βωs + ω = s +,84s + 8,98s + 8, 24 A dostaeme p 2,84; k 6,4; z,4 A z toho hledaé s+ z s+, 4 Cs ( ) = k = 6,4 s + p s + 2,84 z, 4 Fs () = = s+ z s+, 4 Tcelk T fb () s = s () s = s s s s s s Michael Šebek Pr-ARI-09-20

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

ž ě č é č ě é č č ý ě č ě ý š ě ý č ě č ě ž č ý č ž ě ň ý č č ý č č é ě ý ž ě ž č ý é ž ě š é é š ž ě ě ě é š úč ň é č ě ě š ý č é š č š Ž é é ý é ž ě ý č é ě č ý ě é ý č š ě č ě ž ě č ýš č š ě š š ž ě

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

3G3HV. Výkonný frekvenční měnič pro všeobecné použití

3G3HV. Výkonný frekvenční měnič pro všeobecné použití Výkoý frekvečí měič pro všeobecé použití APLIKACE Možství zabudovaých fukcí frekvečího měiče může být s výhodou použito v řadě aplikací Dopravíky (řízeí dopravíku) - Zlepšeí účiosti alezeím optimálího

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Č Ř É Ž É č č ó š š ř é é ř é ě ř é š č úč ů ř é Ú ý č č ř é ř Ž Č Č Č ě é č ř ě ř é ě é č č ě č é č č é ó ý č ý č é ó é ó ý č ý ěř č ý ěř č ý ěř š é ě ř é č š ú ěč é úř Ú ý š ě ě č ř ě ř é é ěč č ě ř

Více

Č š ý č čš é č š š é ř Š ř č Š ř é Í é č č Š ř č č ř č č ý ů ý é š č ř š ř šš é é ď š ý šť ý ů ď é ř š ý š ů š š ů ř ý š ď š é ř š ž š š Ž š ý Š é ý é ř š š Ž ý ý ý Í č é š č Č ČŠ é ý ř č é ž č š č š Á

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Č Í Á Ž Ť ť č Ť č š ď Í ť š š Ť ť š č š Ť ť č č Ť č č Ť č č č Ž Ť š č č Ť č š Ť ť Í č Ž č ť Ť č Ž Ť š ň Í Í Ť Ť šš É Ž š š č š š č š Ť ť š Ž Ť č Ť Ť Ť š ť š Ť č Ť č Š š č š Ť š Ť č Ť ť č Ž č Ž č č Ž š

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

č č ť š č Š č ý Í Ž ý Ďš Ž č ň ŇŇ ý č ý Ž č č Í š ý Č Ž ý Í č š Š Í š č š Í Í Č č ý ů Ž č Í Ž š Í Ž č Š Ž Ž ÍŽ Í Ž Ž Í č ý ý Š ý ů Ž Í Č Ó Č Ž Ž Ú ž Č ň Ž ý Í Úč Ú Ž ýš ý č Č Ž Ž Č ú Í š š Ž Ž č Ž ý Š

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

š ý Č Í Á é č š Č č Íč č č Í š ě ě é š š š é ě ě č č š ň š ě ý ě Í š ň ě č šš é é ě š ý š ů ě ý ů é š ě š ě ó š é š š ý ě š Š Ž š š š š š š ě Š ý ý ý ýš ý ě Í ý ý ě Ž ě ě Š ó š ě é é š é é Š ě ě ě č ý

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Ý Ž Š Š Š Ť ů ú ý ž ý ž ý Š ý ú Ž ů ý ů Ž Ž š Ú š ř ý Ž ř ů Ú ů ý ý ž ý ú ů ů Ó ý ř Ó ýš Í ú Ý Ž Š Š Š Š ú ů ý ž ý Ž ý ý ú Ž ů ý ú Ž Ž š ú š ř ý Ž ř ů Í Ú ů š ý ž ó ý ž ý ý ý ř ý ó Ř Ý ř ů ú ý ž ý ž Š

Více

č Ť Ť Ď Ť č č šš š č š Í Í š č š š ň č Í Í š ň š š š š č š č š š š š č š š č č š š ď č č š ť š š ň č ďč č č Í š š Í š šš š Í š ď Ť Ť Í Á č š č Ť Í Ů Ú č č š š š š ď ď ň ť ď ď Ě š ď ď ď š č ď Í č š Ť Ž

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Příklady k přednášce 11 - Regulátory

Příklady k přednášce 11 - Regulátory Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení 2015 23-3-15 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Č š ž ý ČŠ ý š šš é é ďě š ý ě ě š ů ě ě š ů é ě ě ě ě ý ů ě ě š ů Č ď š Í ě Í ě Č é ě ž ů ý ý š š ý Ť Ť ý ý š šš é é ě š ý ě ú é é š ý š é š ě ě ú ž ů ě ý š ě ýš ě ů š é ú ě ť ú ů š š ý š š š ý Ť š ě

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

ý ý š ž š ý ý š š ž ý ú ý ž Í š ý ý ž Ť ý ž ž Ú ý ý ý ý ď ý Í ž ď ýš Ž ž ž ž ď Ť Ž ž ď ž š š ý ú ň ý ý ý ý š ď ý š š ž ž Č Žš š š ýš š ž š ď ýš ž ý š Ú š Í Í ž ž ý ý ý š ž š ž ž ž š ž ý ž š š š ý ý š š

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Í Ý Á Í Í Á Á Í Ě Í š é Í ř ý š ř ů ŘÍ Í ŘÍ É ŘÍ Í Á Í Ř Í ř é Ž ř Í ř é ř ý ý ý š š š ř ř ý ý Š ý ý ý Í š é ř ř š š š ř Í Á Í ř ú š ú ú ó ó ř š ý ď Š ď ó Ý Í ý é ž ř é ř é ý ž ř ř é ý é é é ů ž Í ž ů

Více

č ú ý Ú š ě ě ý ň Ř Č š č č ě é ú č Á ý ě ý ě ě é ý č ý š é ě ň ý ů ž ň ý ě ý ě ý š é č Ů ž ě ý ú č ý ý ů š ň č ž é č ž é ě č ú ý Ú š ě ě Á š ě ý ň Á č Ř ý ů ě ě ě ě ě é ě ě ě ý ě ě ů ýš ě ě š ů ě ý ž

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

ň Ď Ť ř Č ý ůž š ž ý ř ř ž ý ř ž ň ž ž ů ú ž Ž ž ů ééé Ň š ž Š ý ť š Ů ó ó Š Á Á Ž Ě Á Š Ž Ě ÉÉÉ ý ý š ř ů ů é Ž ů úž ň Č ť ž š ř š ž Š ů ů ťý Č Č ú ý ÓÓÓ úž ň š ř ý ž ý š ý š ř ž ú Ť ž ž Š ý Ž Ž ř é Ž

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

š š ý Ú ň Í óš Í ď ýú É Ú Í Í š ý ú ý Ý ž ý š š š ž ž ý ý ú ý ž óď ý ú ý š š ý ý ý ú ý ú Ý Í š ý ý ý ý š š š ž ž ý Í ý ď ý ž ý ď ú ý š š ý ď ý ý ú ý ť Ň ý š ú ý ý š š Ů ú ó ď š Č ň ý ž ž ť Ů ý ť ý ď ý

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Áš á á é ř ý á á Ž úř á ý ú ě á ř é ý ě á á á ř á á é á ý á ř ý á ě ě š ř ů á á ř ý á š áš á ř ý á á ř é é á á á á á á áš á á ú ů á ř ě ř ě ý ě ý ě š á ř š ť á é á ý á ý ů á á ř ě ý ěř ě ě ý ů ý ěř ě ě

Více

Č š ý č Č Í Á š ř š ů ř Č ř č č ů ý ů é ř š ž ř š ř šš é é š ý š ř ů š Š ř š ř ý č ř ř š ý ý š é ů ý é ř š č é Š ř ý č č ý č ů č č čů ů ř š ý ť úč ý ž ů é ř š ý ů ř ř š ů é é ř é š ý č ř š šš ý č ž š š

Více

Á Ú Č ú ř ř ř ú ř ť Ú ň ž Á ď ž š ž ř ž É ž ř ž ú ř ú ú ž ť ř ň ú ď ť ť Ý š Ý Ě ž ž ť ď Ď ž ř ž ř š ž Ť ž ř Ú Ú ř ú ú ň ž ó ř ž ž š Ň ň ť ž ú š ž ž ž ž ř ř ž ř ř ř ř ž š ř Ý ň Á ó ú ř ť ú Č ř ú ž ť ř

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

ň ť č č Ú Ž Š č ó Š č ý Ž Ž č č č ý ř ó č č ó ý ý Ú ě Ž č Š ý Š č š Ú Ž Ď Ú Ž š Ž ýž ň č č č Í Š š Í č š Ú Š č š š š Í Ú Í č ť Ú Ž č č Ú č ý Ú č ý Ž Ž č Í Ó ý Š š č Ú ž č ý ý Ú Ž ýž ň ý Ú č ř č č š Ó ý

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS Jiří Tůma & Jiří Kulháek Abstract: The paper deals with the dyamic properties of the electroic gyroscope as a sesor of agular

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

Š é ď ř ě ř š ěř é š ř č ř é č ř Ž é č ď ěř é ď ď ě č ř ř ď č ř ý é ě ď ř ě Ť ě úř úř ý é ě ř ď Ž ř č š é ř é ě ď ě ř ý š ěř ř š ěř š ď ě ě ř č ě č ú ř é ě č Ú ý ý Ú ý ý ý ý Ú ě Ú ě é ř ě Ž č ý é ě č Ú

Více

č č é č ě č ě ř č ýš č ě ř ý ěř ýš č ý č č Č ř ý ř é č é č ě č ě ř č ýš č ě ř ý ěř ýš č ý č č č ř ý é č ř ý ř é č é é č ě č ě ř č ýš č ě ř ý ěř ýš č ý č č č ř ý ř é č ř ý ř é č é é ýš č é č ě č č ě ř č

Více

š ž é é Č é ě é ě ž Í ž é š ň é ž š ú ě ž ú é ě é Ó ž ě ě ý ý é š é ú ě š ě ú ň Ť ý ý ý ýš ý ý ě ý ýš š ě é ě ň ý ý ě ý š ě ý ě ý ě ě é ě ý ý ě é ě ď ě ý ý ě Ť ě ě ý ý ě ý ě ý ě Í ě ý ž ž é ě ý ě Í ý ě

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

Ě ČÁ Š š š éč Š ď Í Í Í č ů é ý éč Š ž é é č ú Š é ř š ž é ř ž č Č š ž ú č ý č ť é é é é é Č ž é č é ž é ž č ý ý ň č ž ž č č úč ř ů ř ř š ř č ý ý ů č é Š Í Ž é ž é ý ů č Š ý Č éč č ů ý ý ú Ť ž Í é Č é

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

É Á ŠŤ Ý č Ť é Ť č Í š Í é é č Í č č Í č š č ž Í ťč č Ť Ť é Ť Ť é Ť š ž Ť é Ž Ťš ž Í š š č é č č š š Ť č š Í ú šé Ť č č č č š č č č š ř ř š ž ž é Ť Ť Ť Ť Ť š é Ť é Ť Ť Ť ďš š ď é Č ť é ž Č Ť ž č ď š š

Více

ý ě Ž š Š ý ž ú ú ž ě Š ýš Á ýš Á ž ě ě ž š š ž ý ě ý ž ě ě ů ý ý ž Í š ů ý ú ě ý ě ý ě ě ý ů ů ě ý Ť ý ů Ž Ů Ž š ě ů ý š ý ě š ý Ů Í ú ě ě ž Ú ý ě ý Ó Ó Í ě ž ě ě ú ě ý ý Ž ň ň ý Úě ž ě ý Ú ú ú ž ě ýš

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

É Íť Í é š Š ě š šš é é é é š ý ě ě š ů é ě ě ě š ů é š š š ě š ě š ú é š ž é š ě Ž ý š é é ě ů éš Š ě ě ú é é šť ď Ž ů ě ý š ý ž š ě š é šť ž ů é š ý ž ý ž ů š ě š é š Ť ď ý ů ě ž ů ě ů ž é ž ž ý š ě

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

Model helikoptéry H1

Model helikoptéry H1 Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Kopie z www.dslogistic.cz

Kopie z www.dslogistic.cz Ý ú š ú š š š ř ů ň ú š řš ř řš ř ú ú ú ú ř ř ú ů ů š ň ř úó ú ú š řš ú ř Éň ú š ú ú š ú š š š ď ť ř ů ř ř ř š ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ř ú ř š š ř Ů ú ř ú ú ú ú ú š Ů úó ú Č ř ř ú ČÍ ř ú

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

218 www.sigmasport.com

218 www.sigmasport.com OBSAH OBSAH 1 Předmluva a obsah baleí... 219 2 Motáž... 220 2.1 Motáž 2. kola... 221 3 Uvedeí do provozu... 221 4 Změa zobrazeí/obsazeí tlačítek/přehled fukcí... 222 5 Sychroizace... 222 6 Základí astaveí...

Více

š Á š š ů š ý š Č Š Č ň ý ž ů ý ž ů Č ý ž ú Ň Š Í š ý ú ý š š š ý š š š š ý š š š Ů š š š š ý ů ů š ý ň š š š ž ů ň š ž ž ň ý ž š ý ý š ý š ý ú ů ž ý š ž š ú ú š ý ň ň š ý š š š Ú ú š ý ů š š š š š š š

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

É Ý Ú Ó ď Ý Ý Í ň ř Í É Š Ý Í Ž š ř ď ť Ž ř č š š čš ž ř č ů ď š ů ů řš ž ž ř ž ž č ů č ú ž č ř š ž ů ř ž ž šš Ť ň š ů ť č š ř Í ů ž úč ů ř ř Ž š š č ť úč ů č ď š Š ř ř ř ď ď Í č ž š ůž ř úč ůž č ď ž ž

Více