diskriminaci žen letní semestr = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme"

Transkript

1 motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr do studie zahrnuto 100 náhodně vybraných zaměstnanců, z toho 35 žen a 65 mužů měsíční plat žen X35 = Kč měsíční plat mužů Y65 = Kč lze z těchto výsledků usuzovat, že muži mají (v dané firmě) obecně vyšší platy než ženy? 1 Založeno na materiálech doc. Michala Kulicha motovační příklad Párový Otázka: Mají muži vyšší příjem než ženy? přesnější formulace zajímá nás zřejmě porovnání středních hodnot platů mužů a žen, EX a EY porovnání X a Y náhodné veličiny jiný náhodný výběr by zahrnul jiných 100 zaměstnanců dostali bychom odlišné výběrové průměry X a Y Je rozdíl Y X = > 0 Kč dostatečně průkazný na to, abychom mohli tvrdit, že muži mají (v dané firmě) obecně vyšší platy než ženy? Nebo je to jen vliv náhody? Párový = vyhodnocování pravdivostní hodnoty výroků na základě náhodného výběru (tj. ověřování platnosti nějakého výroku) provádíme pomocí statistických testů Hypotéza = výrok, o jehož pravdivosti chceme rozhodnout nulová a H0 tvrzení o populaci, o jehož platnosti rozhodujeme (není rozdíl, nezávisí, neliší se,...) alternativní a H1: alternativa (doplňující možnost) k H0 často tvrzení, které chceme prokázat

2 Statistický test Chyba I. a II. druhu Párový Statistický test = rozhodovací pravidlo, na jehož základě zamítáme nebo nezamítáme H0 testová Tn = Tn(X1,...,Xn) = náhodná veličina, která je funkcí pozorování X1,...,Xn kritický obor C = možné výsledky pokusu, kdy H0 zamítáme Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) Označíme: H0 zamítáme H0 nezamítáme H0 platí chyba 1. druhu OK H0 neplatí OK chyba 2. druhu α = P(chyba 1. druhu) = P(zamítáme H0 H0 platí) β = P(chyba 2. druhu) = P(nezamítáme H0 H0 neplatí) Přirozený požadavek: α,β min bohužel nelze současně Chyba I. a II. druhu Dosažená hladina testu Párový zvoĺıme hladinu testu α (zpravidla α = 0.05) maximální dovolená pst chyby 1. druhu maximální pst falešného prokázání vědecké y voĺıme před pokusem, nezávisle na jeho výsledku pro dané α chceme minimální β maximální 1 β síla testu 1 β pst zamítnutí neplatné H0 pst, s jakou prokážeme platnou vědeckou u H1 nemáme pod kontrolou (závisí na tom, co opravdu platí) můžeme ovlivnit volbou statistického testu, počtem pozorování,... Párový Dosažená hladina testu p-hodnota (angl. p-value) pravděpodobnost, že dostaneme výsledek, který stejně nebo ještě méně podporuje H0, jestliže H0 platí nejmenší hladina α, na které lze ještě H0 zamítnout stupeň důvěry v platnost H0 výsledek provedení statistického testu pomocí softwaru Pravidlo: je-li p α zamítáme H0 α máme plně pod kontrolou, o β toho moc nevíme (chyba 1. druhu je závažnější) je-li p > α nezamítáme H0 (Zapamatovat!)

3 Nesymetrie H 0 a H 1 Párový H0 a H1 nejsou posuzovány symetricky: H0 považujeme a priori za platnou a zamítáme ji jen tehdy, pokud k tomu máme dostatečně silné důvody pokud jsme zamítli H0 můžeme tvrdit, že data svědčí o tom, že H0 neplatí (a prokazujeme platnost H1) pokud jsme H0 nezamítli pak bud H0 opravdu platí anebo H0 neplatí, ale data neposkytují dostatečné důkazy k jejímu zamítnutí (malá síla testu) nutné volit opatrné formulace závěrů (u H0 nelze na základě našich dat zamítnout apod.) Párový Minule: filozofie testování testy střední hodnoty v normálním rozdělení (při známém a neznámém σ 2 ) spec. jednovýběrový Studentovo t-rozdělení intervalové odhady Závěr Hypotézu H0 nemůžeme prokázat, ale pouze vyvrátit : : Příklad Párový Situace: X1,...,Xn náhodný výběr z normálního rozdělení N(µ,σ 2 ), kde σ 2 neznáme. Chceme testovat proti H0 : µ = µ0 H1 : µ µ0 Párový Příklad Provádíme průzkum, jaký skutečný objem piva točí v nejmenované hospodě. Zakoupeno bylo 10 piv a jejich objem byl (v litrech): 0.510, 0.462, 0.491, 0.466, 0.461, 0.503, 0.495, 0.488, 0.512, Testová Tn = n X µ0 má tn 1 rozdělení. Test: je-li Tn > tn 1(1 α 2 ), pak zamítáme H0. Jiné možné altervativy: H1 : µ < µ0 nebo H1 : µ > µ0 modifikace testu Sn Z pohledu zákazníka bychom chtěli otestovat, zda hostinský netočí pod míru. Model: Předpokládejme, že datům odpovídají nezávislé náhodné veličiny s normálním rozdělením N(µ,σ 2 ) Hypotézy: H0 : µ = 0.5 proti H1 : µ < 0.5

4 Příklad pokrač. Příklad výpočet v programu R spočteme odtud X = , S = >t.test(pivo,mu=0.5,alternative= less ) One Sample data: pivo Párový Tn = n X 0.5 S = = H0 zamítáme, pokud Tn < t9(0.95) = nerovnost neplatí H0 nelze na hladině významnosti 5 % zamítnout nelze prokázat, že by hostinský točil pivo pod míru (bud skutečně pod míru netočí nebo tak málo, že tuto odchylku nemůžeme na základě našich dat prokázat) Párový t = , df = 9, p-value = alternative hypothesis: true mean is less than percent confidence interval: Inf sample estimates: mean of x p-hodnota < 0.05 nezamítáme H0 na hladině 5 % Problém Matematický zápis Párový Příklad na každém subjektu měřímě dvě veličiny otázka: Mají tyto dvě veličiny stejnou střední hodnotu? Neboli, jsou co do polohy stejné? Věk rodičů: Jsou otcové starší než matky? Účinnost redukční diety: Je hmotnost po dietě nižší než před ní? Úspěšnost reklamní kampaně: Je prodejnost výrobku vyšší po kampani než před ní? Jsou dvojčata stejně inteligentní?... Párový párová pozorování (X1,Y1),...,(Xn,Yn) nezávislé dvojice náhodných veličin náhodný výběr z dvourozměrného rozdělení Xi a Yi měřeny na stejném subjektu i příklady: věk matky a věk otce, hmotnost před a po redukční dietě,... µx = EXi, µy = EYi chceme otestovat u H0 : µx = µy proti H1 : µx µy. (příp. proti jednostranným H1)

5 Párový Párový Párový Idea: zavedeme Zi = Xi Yi rozdíly (např. rozdíl věku rodičů) předpoklad Z1,...,Zn stejné rozdělení normální zjevně µz = µx µy, a proto H0 : µx = µy platí platí µz = 0 střední hodnota Xi a Yi je stejná Xi koĺısají kolem nuly úloha převedena na jednovýběrový test Párový definujeme Zi = Xi Yi, i = 1,...,n předpokládáme, že Z1,...,ZN náhodný výběr z N(µZ,σ 2 ) test H0 : µz = 0 proti H1 : µz 0 jednovýběrový : spočteme Z odhad µz, S 2 odhad σ 2 testová Tn = n Z S = n X Y S H0 zamítáme ve prospěch H1 : µ 0, pokud Tn > tn 1(1 α/2) ve prospěch H1 : µ > 0, pokud Tn > tn 1(1 α) ve prospěch H1 : µ < 0, pokud Tn < tn 1(1 α) Párový : Poznámky Příklad věk otce vs. věk matky Párový Obecnější y: lze testovat obecněji H0 : µx µy = δ testová : Tn = Zn δ n S Porušení předpokladů: test dodržuje požadovanou hladinu α, pokud Zi mají normální rozdělení, nebo počet pozorovaných dvojic n je dost velký (n > 50) jestliže normalitu nelze předpokládat je-li n dost velké lze párový je-li n malé párový test může dávat nesprávné výsledky nutné použít jiný postup (Wilcoxonův párový test) Párový Otázka: Jsou otcové studentů vyšší než matky studentů? n = 256 studentů z let věk otce a věk matky X - věk otce, Y - věk matky, Z = X Y rozdíl věků test H0 : µz = 0 proti H1 : µz > 0 na hladině α = 0.05 vypočteme X = 48.88, Y = 46.60, Z = 2.28, S = 4.12 testová Tn = = 8.85 kritická hodnota t255(0.95) = 1.65

6 Příklad věk otce vs. věk matky Příklad Věk otce vs. věk matky Párový Tn = 8,85 > t255(0.95) = 1.65 zamítáme u H0 : µx = µy ve prospěch H1 : µx > µy p-hodnota < Závěr: Prokázali jsme, že střední věk otců je statisticky významně vyšší než střední věk matek Párový Otázka: Je střední hodnota věku otce přesně o dva roky vyšší než střední hodnota věku matky? nyní test H0 : µz = 2 proti H0 : µz 0 testová : Tn = = Ověření předpokladu normality: graficky histogram, QQ graf Shapirův-Wilkův test: p-hodnota normalitu dat nelze předpokládat; nicméně n dostatečně vysoké párový lze použít kritická hodnota t255(0.975) = neplatí Tn > 1.97 nelze zamítnout H0 (p-hodnota 0.282) Závěr: Střední věk otců je bud přesně o dva roky vyšší než střední věk matek anebo je rozdíl středního věku tak bĺızko 2 rokům, že odchylku od 2 let na základě nasbíraných dat nedokážeme rozpoznat. Příklad Věk otce vs. věk matky Párový 95 % intervalový odhad rozdílu věku rodičů: obecný vzorec ( Z S tn 1(1 α/2),z + S ) tn 1(1 α/2) n n dosadíme: (1.771, 2.784) interval, který s pravděpodobností 95 % pokryje skutečný rozdíl středních hodnot věku rodičů hodnota 2 leží v tomto intervalu Párový Řešení v programu R: > t.test(vek.otce,vek.matky,mu=2,paired=t) Paired data: vek.otce and vek.matky t = , df = 255, p-value = alternative hypothesis: true difference in means is not equal to 2 95 percent confidence interval: sample estimates: mean of the differences

7 problém Matematický zápis Párový jedna veličina měřená ve dvou nezávislých skupinách m nezávislých pozorování Xi a n nezávislých pozorování Yj navzájem nezávislé zajímá nás porovnání jejich středních hodnot Párový Model: dva nezávislé náhodné výběry X1,...,Xm z normálního rozdělení N(µX,σ 2 X ) Y1,...,Yn z normálního rozdělení N(µY,σ 2 Y ) Příklad předpoklad: shodné rozptyly σ 2 X = σ2 Y výška mužů a žen jsou muži vyšší než ženy? (je v jejich průměrné výšce systematický rozdíl?) plat mužů a žen je plat mužů stejný jako plat žen? (je v platech mužů a žen rozdíl, který se projevuje ve střední hodnotě?) liší se výše cholesterolu u kuřáků a nekuřáků? Chceme otestovat H0 : µx = µy proti H1 : µx µy (resp. proti jednostranným alternativám) dvouvýběrový : odvození : odvození Párový Idea: porovnáme průměry X a Y velký rozdíl zamítnutí y H0 je třeba brát v úvahu také rozsahy výběrů a rozptyl Testová : X Y mn T = S.E.(X Y) = Xm Yn, m+n S Párový Společný odhad rozptylu: umíme odhadnout σ 2 z každého výběru zvlášt pomocí výběrových rozptylů SX 2 = 1 m (Xi Xm) 2 m 1 i=1 SY 2 = 1 n (Yi Yn) 2 n 1 i=1 kde S je společný odhad rozptylu σ 2 spočítaný z obou výběrů vezmeme vážený průměr S 2 1 [ = (m 1)S 2 m+n 2 X +(n 1)SY] 2 Sm,n 2 1 [ = (m 1)S 2 m+n 2 X +(n 1)SY] 2

8 Rozdělení testové statistiky : Párový Model: dva nezávislé náhodné výběry X1,...,Xm z normálního rozdělení N(µX,σ 2 X ) Y1,...,Yn z normálního rozdělení N(µY,σ 2 Y ) shodné rozptyly σ 2 X = σ2 Y Pak za H0 : µx = µy má testová mn Xm Yn T =, m+n S tm+n 2 rozdělení, tj. t-rozdělení s m + n 2 stupni volnosti. Párový H0 : µx = µy zamítáme ve prospěch alternativy ) H1 : µx µy když T > tm+n 2( 1 α ( ) 2 H1 : µx > µy když T > tm+n 2 1 α ( ) H1 : µx < µy když T < tm+n 2 1 α zamítáme-li H0, říkáme, že rozdíl ve výběrových průměrech je statisticky významný Poznámka lze obecnější a H0 : µx µy = δ testová mn Xm Yn δ T = m+n S Ověření předpokladů Příklad plat Párový Normalita ověření normality pro každý výběr zvlášt pro velká n, m porušení normality velmi nevadí Shoda rozptylů S 2 X a S2 Y podobné F-test shody rozptylů H0 : σ 2 X = σ2 Y proti H1 : σ2 X σ2 Y pochyby o shodě Welschův test (modifikace u) Welschův test: model: nezávislé výběry X1,...,Xm z normálního rozdělení N(µX,σ 2 X ) a Y1,...,Yn z normálního rozdělení N(µY,σ2 Y ) stejná testová T T již nemá rozdělení tm+n 2 Párový Problém: Je plat mužů vyšší než plat žen? 100 náhodně vybraných zaměstnanců měsíční plat v Kč 35 žen a 65 mužů X plat žen, Y plat mužů Předpoklady: rozsah průměr směr. odchylka ženy muži normalita muži p-hodnota normalita ženy p-hodnota test shody rozptylů p-hodnota 0.218

9 Příklad grafické znázornění Příklad předpoklady zena muz Párový Plat zena Pohlavi muz Párový Sample Quantiles Percent of Total Plat Q Q graf Sample Quantiles Q Q graf Theoretical Quantiles Theoretical Quantiles Příklad řešení Příklad řešení Párový H0 : µx = µy proti H1 : µx < µy společný odhad rozptylu S 2 = = testová T = = kritická hodnota t98(0.95) = na základě našich dat nelze zamítnout H0 Párový Řešení v programu R: > t.test(zeny,muzi,var.equal=t,alternative= less ) Two Sample data: zeny and muzi t = , df = 98, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y

10 Shrnutí Porušení normality Párový Testy o střední hodnotě 1 jeden výběr jednovýběrový normalita (není nezbytné při dostatečně velkém rozsahu výběru) 2 párová pozorování párový normalita rozdílu (není nezbytné při dostatečně velkém rozsahu výběru) 3 dva nezávislé výběry dvouvýběrový nezávislost normalita (není nezbytné při dostatečně velkém rozsahu výběru) shoda rozptylů (neplatí-li použít Welshův test) Párový Jestliže nelze normalitu předpokládat a rozsah výběru je malý nutné použít jiné testy, které předpoklad normality nepotřebují neparametrické testy založeny na pořadí pořadové testy Uvedeme si jednovýběrový Wilcoxonův test dvouvýběrový Wilcoxonův test

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer

A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer A7B39TUR Úloha B Kvantitativní testování ZS 2013/2014 Software MS Office Word a Open Office Writer Vypracoval: Peter Šourek ( sourepet@fel.cvut.cz ) Obsah 1Úvod...3 1.1Cíl testování...3 1.2Proměnné...3

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat Organizační pokyny k přednášce Matematická statistika MS710P05 Zdeněk Hlávka (Šárka Hudecová, Michal Kulich) Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hlavka@karlin.mff.cuni.cz

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Úvod do statistiky (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 159 1 Explorační analýza

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Jak vnímají studenti VŠ nevěru

Jak vnímají studenti VŠ nevěru UNIVERZITA KARLOVA, FAKULTA FILOSOFICKÁ OBOR PSYCHOLOGIE Psychologická metodologie ZS 2009/2010 SEMESTRÁLNÍ PRÁCE Jak vnímají studenti VŠ nevěru Kvalitativní a kvantitativní výzkum 3. ročník Radka Hnyková

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK

SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK SEXUALITA UŽIVATELŮ MARIHUANY OČIMA PARTNEREK Mgr. Alexandra HROUZKOVÁ Katedra psychologie FFUK, Praha Prof. PhDr. Petr WEISS, PhD. Sexuologický ústav VFN a 1.LF UK, Praha ÚVODEM Konopné drogy jsou po

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Neparametrické testy. 1. Úvod. 2. Medián

Neparametrické testy. 1. Úvod. 2. Medián Neparametrické testy. Úvod Testy hypotéz o parametrech základních souborů, které jsme zatím poznali, jsou založeny na předpokladu, že tyto soubory mají normální rozdělení pravděpodobnosti, popřípadě i

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková

Počítačové cvičení. předmětu M6130 Výpočetní statistika. Marie Budíková Počítačové cvičení předmětu M6130 Výpočetní statistika Marie Budíková 013 Poděkování Tento učební text vznikl za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu

Více

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru

Při statistickém zkoumání se snažíme udělat nějaký závěr ohledně vlastností celého statistického souboru 0.1 Základy statistického zpracování dat 1 0.1 Základy statistického zpracování dat Statistika se zabývá shromažďováním, tříděním a popisem velkých souborů dat. Někdy se pod pojmem statistika myslí přímo

Více

Pravděpodobnost, statistika a operační výzkum

Pravděpodobnost, statistika a operační výzkum Pravděpodobnost, statistika a operační výzkum RNDr. Břetislav Fajmon, Ph.D. Mgr. Jan Koláček, Ph.D. ÚSTAV MATEMATIKY Pravděpodobnost, statistika a operační výzkum 1 Obsah I Statistické metody 7 1 Odhad

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz RNDr. Marie Budíková, Dr., Mgr. Maria Králová, Ph.D., Doc. RNDr. Bohumil Maroš, CSc. Průvodce základními statistickými metodami Vydala Grada Publishing,

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER 1. Podnik Canard chce za účelem snížení odchylek od předem stanovených (režijních) nákladů v jednotlivých

Více

Statistika A. Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu

Statistika A. Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu Statistika A Obsah: (1) Popisná statistika, (2) Pravděpodobnost, (3) Základy odhadu parametrů a testování hypotéz Literatura: (H) Hindls & kol. Statistika pro ekonomy. Professional Publishing 2002 nebo

Více

BAKALÁŘSKÁ PRÁCE. Statistická analýza dojivosti v programu SAS

BAKALÁŘSKÁ PRÁCE. Statistická analýza dojivosti v programu SAS UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Statistická analýza dojivosti v programu SAS Vedoucí diplomové práce: Mgr. Jaroslav

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více