1. Základní příklady a poznatky o monoidech a grupách

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Základní příklady a poznatky o monoidech a grupách"

Transkript

1 Předmět: Algebra I Semestr: Zimní 2015/2016 Přednášel: J. Žemlička Verze z: 6. ledna 2017 Díky za pomoc s řešeními příkladů: Martin Šerý, Štěpán Hojdar, Petr Houška, Péťa Pelikánová. (A určitě další, ale už si nevzpomínám.) Vypracované příklady ze Žemličkových stránek, chyby hlaste na zakravska.katerina@gmail.com. Když budete chtít dělat větší úpravy, klidně si napište o zdroják. Je to psané v TEXu (pdfcsplaintex). Ocením, když mi poté pošlete vaši upravenou verzi. Aktuální verze na: katka/skola/algebra/zkouskove-otazky.pdf 1. Základní příklady a poznatky o monoidech a grupách 1. Napište Eukleidův algoritmus. Vstup: a, b N, a b Výstup: GCD(a,b), x, y Z, pro která GCD(a, b) = xa + yb 0. krok i = 1 (a 0, a 1 ) := (a, b) (x 0, x 1 ) := (1, 0) (y 0, y 1 ) := (0, 1) 1. krok while (a 1 > 0) a i+1 := a i 1 mod a i q i := a i 1 div a i //tj. a i 1 = q i a i + a i+1 x i+1 := x i 1 x i q i y i+1 := y i 1 y i q i i++ 2. krok return a i 1, x i 1, y i 1 2. Napište Čínskou větu o zbytcích (pro Z n ). Nechť n 1, n 2,..., n k jsou kladná čísla a n = n 1 n 2... n k. Definujeme zobrazení H jako H(a) = (a mod n 1,..., a mod n k ). Potom zobrazení H : Z n Π k i=1 Z n i je slučitelné s operací + a s operací. Navíc H je bijekce, právě když jsou čísla n i po dvou nesoudělná. 3. Definujte Eulerovu funkci a uveďte vzorec pro její výpočet. Eulerova funkce je zobrazení ϕ : N N dané předpisem ϕ(n) = {k Z n GCD(k, n) = 1}. Výpočet: Buď p r1 1 pr pr k k prvočíselný rozklad čísla n. Potom ϕ(n) = Π k i=1 (p i 1)p ri 1 i 4. Definujte Eulerovu funkci a napište Eulerovu větu. Eulerova funkce je zobrazení ϕ : N N dané předpisem ϕ(n) = {k Z n GCD(k, n) = 1}. Eulerova věta: Pro všechna přirozená nesoudělná čísla n a a platí, že a ϕ(n) 1 mod n 5. Pro daný monoid M( ) definujte grupu M ( ) invertibilních prvků. M ( ) = {m M m 1 M} 6. Uveďte nějaký postup na výpočet inverzního prvku v grupě invertibilních prvků Z n( ). 1. Použijeme Eulerovu větu přenásobenou a 1, tj. a ϕ(n) 1 a 1 mod n. Spočítáme Eulerovu funkci, za a dosadíme číslo, ke kterému hledáme inverz. Dopočítáme (průběžně modulíme n) a získáme hledaný inverz. 2. Přes Bézoutovy koeficienty. 7. Definujte grupu invertibilních prvků Z n( ) monoidu Z n ( ). Které obsahuje prvky? Z n( ) = {k Z n GCD(k, n) = 1} Obsahuje všechny prvky, které mají inverz vůči operaci (s modulením n). To jest všechny prvky k {1,..., n 1}, které jsou nesoudělné s n. 8. Uveďte definici grupy a nějaký příklad grupy, která není komutativní. G( ) je grupa, je-li G( ) monoid (asociativita, neutrální prvek), jehož každý prvek je invertibilní. S n ( ) není komutativní grupa pro n Uveďte definici komutativní grupy a řekněte, které podgrupy komutativní grupy jsou normální. G( ) je komutativní grupa, je-li G( ) monoid, jehož každý prvek je invertibilní, a je-li komutativní. Všechny podgrupy komutativní grupy jsou normální. 1

2 10. Uveďte definici grupy a podgrupy. G( ) je grupa, je-li G( ) monoid (asociativita, neutrální prvek), jehož každý prvek je invertibilní. Podgrupou grupy G( ) je H podmnožina G, která je uzavřená na, obsahuje neutrální prvek a pro každý její prvek h H platí, že h 1 H. 11. Uveďte definici monoidu a příklad monoidu, který není grupou. Monoid je M( ), kde je asociativní a v M leží neutrální prvek. N( ) je monoid, který není grupou. 2. Kongruence a homomorfismy grup 1. Napište, co rozumíme faktorovou grupou grupy G( ) podle normální podgrupy H. Faktorová grupa je grupa zavedená na faktorové množině. Obvyklý zápis faktorové grupy je G/H( ) := G/rmod H, kde je operace původní grupy G( ), H = [1] rmod H. 2. Napište, co rozumíme ekvivalencí rmod H na grupě G( ), kde H je její podgrupa. Napište Lagrangeovu větu. Co přesně značí [G:H]? Je-li G( ) grupa, H G, definujme na G relaci rmod H předpisem (a, b) rmod H a b 1 H. Lagrangeova věta: Je-li H podgrupa grupy G( ), pak G = [G : H] H. [G : H] je index podgrupy H v grupě G, tj. G/rmod H. 3. Jaký je vztah řádu grupy a řádu jejích podgrup? Je-li G( ) konečná grupa, potom řád každé její podgrupy dělí řád grupy G. 4. Definujte podgrupu a normální podgrupu. Podgrupou grupy G( ) je H podmnožina G, která je uzavřená na, obsahuje neutrální prvek a pro každý její prvek h H platí, že h 1 H. V normální podgrupě navíc platí: g G, h H : g h g 1 H 5. Definujte normální podgrupu a homomorfismus grup. Normální podgrupou grupy G( ) je H podmnožina G, která je uzavřená na, obsahuje neutrální prvek a pro každý její prvek h H platí, že h 1 H. Ještě platí: g G, h H : g h g 1 H. Grupový homomorfismus grup G( ) a H( ) je zobrazení f : G H, které je slučitelné s jejich binárními operacemi. 6. Uveďte definici faktorové grupy (včetně značení a definice operací). Faktorová grupa je grupa zavedená na faktorové množině. Je to grupa G/ρ( ), kde G je grupa a ρ je ekvivalence, podle které faktorizujeme. [a] ρ [b] ρ = [a b] ρ. 7. Uveďte větu o homomorfismu pro grupy. Nechť f : G 1 G 2 je homomorfismus grup G 1 ( ) a G 2 ( ). Je-li H normální podgrupa G 1 ( ), pak existuje homomorfismus g: G 1 /H G 2 splňující podmínku gπ H = f právě tehdy, když H Kerf (tj. rmod H rmod Ker f). Navíc, jestliže g existuje, je g izomorfismus právě tehdy, když f je na a Ker f = H. 8. Uveďte 1. větu o izomorfismu pro grupy. Nechť f : G 1 G 2 je homomorfismus grup G 1 ( ) a G 2 ( ). f(g 1 ) je podgrupa G 2 (tedy opět grupa) a G 1 /Ker f( ) je izomorfní f(g 1 )( ). 9. Uveďte 2. větu o izomorfismu pro grupy. Nechť G( ) je grupa a H, K její normální podgrupy. Jestliže H K, pak K/H je normální podgrupa gurpy G/H( ) a faktorová grupa G/K( ) je izomorfní grupě (G/H)/(K/H)( ). 10. Definujte relaci rmod H pro danou podgrupu H. Je-li G( ) grupa, H G, definujme na G relaci rmod H předpisem (a, b) rmod H a b 1 H. 11. Kdy je relace rmod H kongruence na grupě G( )? Když je H normální podgrupa G. 12. Popište pomocí podgrup všechny ekvivalence slučitelné s grupovou operací. Nechť G( ) je grupa a ρ relace na G. Pak ρ je ekvivalence slučitelná s operací právě tehdy, když H = [1] ρ je normální podgrupa G( ) a ρ = rmod H(= lmod H). 13. Definujte všechny ekvivalence slučitelné s grupovou operací. Nechť G( ) je grupa a ρ relace na G. Pak ρ je ekvivalence slučitelná s operací právě tehdy, když H = [1] ρ je normální podgrupa G( ) a ρ = rmod H(= lmod H). 14. Najděte grupu G( ) a její podgrupu H, aby relace rmod H nebyla slučitelná s. Grupa bude S 7, podgrupa {id, (12)}. 2

3 15. Existuje mezi každou dvojicí grup nějaký homomorfismu? Stručně zdůvodněte. Ano. Všechno zobrazíme na neutrální prvek. 16. Existuje nekonečná grupa, která obsahuje jen jednu normální podgrupu? Stručně zdůvodněte. Ne, protože každá grupa obsahuje 2 triviální podgrupy (sebe a grupu obsahující pouze neutrální prvek). 3. Příklady grup 1. Může mít komutativní grupa nekomutativní vlastní podgrupu? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ne. Operace a její vlastnosti se zachovávají. 2. Může mít nekomutativní grupa komutativní vlastní podgrupu? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano, můžu vybrat podmnožinu obsahující neutrální prvek a jeden jiný. To bude komutativní a bude to podgrupa. Grupa musí být aspoň dvouprvková. 3. Je grupa permutací S 3 ( ) komutativní? Stručně zdůvodněte. Není. (12) (23) = (123), ale (23) (12) = (132) 4. Je grupa A 4 ( ) (= sudé permutace) komutativní? Stručně zdůvodněte. Není. (12)(34) (123)(4) = (1)(243), ale (123)(4) (12)(34) = (134)(2) 5. Je grupa A 3 ( ) (= sudé permutace) komutativní? Stručně zdůvodněte. Ano. A 3 obsahuje identitu, (123) a (132). Ty trojcykly si jsou navzájem inverzama. 6. Je aditivní grupa Z(+) Z(+) komutativní? Stručně zdůvodněte. Ano, protože její prvky jsou po složkách komutativní. (a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) 7. Je {0, 1, 1}( ) grupa? Stručně zdůvodněte. Ne, protože pro 0 neexistuje inverzní prvek (0 krát cokoliv nikdy nevyjde 1) a 0 nemůže být neutrálním prvkem (0 krát cokoliv je 0). 8. Je {1, 1}( ) grupa? Stručně zdůvodněte. Ano. Ověříme definici je asociativní, 1 je neutrální prvek ( 1 1 = 1, 1 1 = 1), pro všechny prvky existuje inverz (sami sobě), je uzavřená na. 9. Tvoří všechny čtvercové matice stupně 7 nad tělesem s násobením grupu? Stručně zdůvodněte. (stupně 7 = má rozměry 7 7) Ne, protože neexistují inverzy (matice může být singulární, tj. nemá rank 7, a ty nemají inverz). 10. Tvoří všechny regulární čtvercové matice nad tělesem s násobením grupu? Stručně zdůvodněte. Ano. Je to asociativní, existuje neutrální prvek (jednotková matice), existují inverzy (regulární matice mají inverzy). 11. Tvoří všechny funkce R R se skládáním grupu? Stručně zdůvodněte. Ne. Funkce nemusí být prostá a pak nebude mít inverz. 12. Uveďte všechny (až na izomorfismus) grupy prvočíselné velikosti p. Jsou to všechny Z p. 13. Napište aspoň tři neizomorfní osmiprvkové grupy. Z 8 (1 generátor), Z 4 Z 2 (2 generátory), Z 2 Z 2 Z 2 (3 generátory) 14. Napište aspoň dvě neizomorfní devítiprvkové grupy. Z 9, Z 3 Z Napište aspoň dvě neizomorfní 24-prvkové grupy. Z 24, Z 4 Z 6 (nebo Z 2 Z 12, která je izomorfní Z 4 Z 6 ) 16. Napište aspoň tři neizomorfní 12-prvkové grupy. Z 12 (1 generátor), Z 2 Z 6 (2 generátory), A 4 (rovnají se velikosti) N = Z = Q Irac. = R = C 4. Podgrupy 1. Rozhodněte, zda iracionální čísla tvoří podgrupu grupy C(+). Stručně zdůvodněte. Ne, protože třeba π + π = 0. (iracionální = mají nekonečný desetinný rozvoj) 3

4 2. Rozhodněte, zda iracionální čísla tvoří podgrupu grupy C ( ). Stručně zdůvodněte. Ne, protože není neutrální prvek vůči násobení 1 není iracionální. 3. Rozhodněte, zda celá čísla tvoří podgrupu grupy C(+). Stručně zdůvodněte. Ano, Z(+) je komutativní grupa (uzavřenost platí zřejmě, neutrální 0, inverz je opačné číslo, asociativita také). 4. Rozhodněte, zda celá čísla tvoří podgrupu grupy C ( ). Stručně zdůvodněte. Ne, protože 0 nemá inverz vůči násobení, proto to nemůže být podgrupa čehokoliv. Navíc C neobsahuje Rozhodněte, zda racionální čísla tvoří podgrupu grupy R(+). Stručně zdůvodněte. (racionální = lze je vyjádřit zlomkem) Ano. Inverzy jsou opačná čísla, neutrální je 0, asociativita jo, uzavřenost ano (součet zlomků zase zlomek). 6. Rozhodněte, zda kladná čísla tvoří podgrupu grupy R(+). Stručně zdůvodněte. Ne, neexistují inverzy. 7. Rozhodněte, zda kladná čísla tvoří podgrupu grupy R ( ). Stručně zdůvodněte. Ano. 8. Rozhodněte, zda tvoří sudá celá čísla podgrupu grupy Q(+). Stručně zdůvodněte. Ano. Asociativita jo, uzavřenost jo (součet kladných je zase kladné číslo), inverzy jo (opačná čísla), neutrální prvek je Rozhodněte, zda tvoří sudá čísla podgrupu grupy Q ( ). Stručně zdůvodněte. Ne, protože Q neobsahují 0, takže nejsou podmnožinou. 10. Rozhodněte, zda přirozená čísla tvoří podgrupu grupy Q(+). Stručně zdůvodněte. Ne, neexistují inverzy. 11. Rozhodněte, zda permutace splňující π 2 = id tvoří podgrupu grupy S 3 ( ). Ne. Permutace na druhou, které dají identitu, jsou identita a transpozice. Ovšem dvě transpozice mohou dát trojcyklus, takže to není uzavřené. 12. Rozhodněte, zda liché permutace tvoří podgrupu grupy S n ( ). Ne, chybí neutrální prvek (identita), ta je sudá. 13. Rozhodněte, zda tvoří množina {1, 7} podgrupu grupy Z 9 ( ). Stručně zdůvodněte. Z 9 = {1, 2, 4, 5, 7, 8} Ne, protože není uzavřená (7 7 = 49 = 4). 14. Rozhodněte, zda tvoří množina {1, 3} podgrupu grupy Z 10( ). Stručně zdůvodněte. Z 10 = {1, 3, 7, 9} Ne, protože není uzavřená (3 3 = 9). 15. Rozhodněte, zda tvoří množina {1, 2, 4, 5, 10} podgrupu grupy Z 11( ). Stručně zdůvodněte. Z 11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Ne, protože není uzavřená (4 2 = 8). 16. Rozhodněte, zda tvoří množina {1, 3, 9} podgrupu grupy Z 13( ). Stručně zdůvodněte. Z 13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} Ano, protože každé číslo (ze Z 13 ) nesoudělné s 13 generuje podgrupu Z = {1, 3, 9}. 17. Rozhodněte, zda tvoří množina {1, 4, 7} podgrupu grupy Z 9 ( ). Stručně zdůvodněte. Z 9 = {1, 2, 4, 5, 7, 8} Ano, protože každé číslo (ze Z 9 ) nesoudělné s 9 generuje podgrupu Z 9. 4 = {1, 4, 7}. 18. Rozhodněte, zda tvoří množina {1, 5} podgrupu grupy Z 12( ). Stručně zdůvodněte. Z 12 = {1, 3, 5, 7, 9, 11} Ano, protože každé číslo (ze Z 12 ) nesoudělné s 12 generuje podgrupu Z = {1, 5}. 19. Rozhodněte, zda lichá čísla tvoří podgrupu grupy Z(+). Stručně zdůvodněte. Ne, protože chybí neutrální prvek (0). 20. Napište, jak vypadají všechny podgrupy grup Z n (+). Stručně zdůvodněte. Triviální podgrupy a grupy generované dělitelama n (každým zvlášť). 21. Napište, jak vypadají všechny podgrupy grupy Z(+). Stručně zdůvodněte. kz, kde k je přirozené číslo. To jsou násobky k. Všechny jsou nekonečné, takže jsou izomorfní s Z(+), a ještě dvě triviální. 4

5 22. Rozhodněte, zda diagonální matice tvoří podgrupu grupy GL n (Q)( ). Stručně zdůvodněte. GL n (Q)( ) jsou regulární čtvercové matice rozměrů n n. Diagonální jsou čtvercové. Ano. Předpokládáme, že diagonální jsou podmnožinou regulárních čtvercových. Uzavřenost jo, neutrální je jednotková, na diagonále nevytvořím nulu, pokud jeden z prvků není nulou, takže rank nesnížíme, takže mají inverzy. 23. Rozhodněte, zda horní trojúhelníkové matice tvoří podgrupu grupy GL n (Q)( ). Stručně zdůvodněte. Ano. Neutrální je jednotková. Pomocí Gauss-Jordanovy eliminace mohu převést na diagonální matici. Ty jsou podgrupou. 24. Rozhodněte, zda dolní trojúhelníkové matice tvoří podgrupu grupy GL n (Q)( ). Stručně zdůvodněte. Ano Cyklické grupy Platí, že Z n je cyklická právě tehdy, když n {2, 4, p, p k, 2p k }, kde p je prvočíslo a k je přirozené číslo. 1. Definujte cyklickou grupu. G( ) je cyklická grupa, existuje-li takový prvek z G, že g = G. 2. Uveďte všechny (až na izomorfismus) cyklické grupy. Z(+), Z n (+), kde n je přirozené číslo. 3. Nechť k {1,..., n}. Za jakých podmínek k = Z n? Kolik podgrup řádu k má grupa Z n? Platí-li GCD(k, n) = 1 a k 0 mod n. Z n má jednu podgrupu řádu k, protože pro každé přirozené k, které dělí řád grupy G, existuje právě jedna podgrupa grupy G řádu k. 4. Kolik existuje podgrup konečné cyklické grupy? Tolik, kolik existuje dělitelů řádu grupy. 5. Kolik generátorů obsahuje konečná a kolik nekonečná cyklická grupa? Všechny konečné grupy jsou izomorfní nějakému Z n, to je 1-generované, protože to je cyklická grupa. Z n obsahuje ϕ(n) generátorů (všechna nesoudělná čísla s n). Nekonečné cyklické grupy jsou izomorfní Z(+) a ta obsahuje 2 generátory (-1,1), takže nekonečná cyklická grupa obsahuje 2 generátory. Ostatní prvky sice mají nekonečný řád, ale negenerují všechna celá čísla. 6. Existují dvě neizomorfní cyklické grupy řádu Stručně zdůvodněte. Ne. Všechny konečné cyklické grupy jsou izomorfní nějakému Z n, tedy nemohou existovat dvě konečné cyklické grupy s prvky, které nejsou izomorfní. 7. Existují dvě neizomorfní cyklické grupy řádu Stručně zdůvodněte. Ne. Všechny jsou konečné cyklické grupy jsou izomorfní nějakému Z n, tedy nemohou existovat dvě konečné cyklické grupy s tolika prvky, které nejsou izomorfní. 8. Existují dvě neizomorfní nekonečné cyklické grupy. Stručně zdůvodněte. Ne. Všechny nekonečné cyklické grupy jsou izomorfní grupě Z(+). 9. Existuje podgrupa či faktorová grupa cyklické grupy, která není cyklická? Ne, všechny jsou cyklické. 10. Obsahuje každá aspoň dvouprvková konečná grupa nějakou konečnou aspoň dvouprvkovou cyklickou podgrupu? Stručně zdůvodněte. Ano. Mám alespoň dva prvky, tak si vezmu ten, který není neutrální. Stále ho mocním a mocním a mocním. Jelikož je ta grupa konečná, tak se musím někdy začít opakovat. Nechť x k x = x i je první zopakovaný prvek, i > 1. Potom ale x k je x i 1 a to je spor, že x i byl první. Takže mi zbývá, že x k x = x 1. Takže prvek x vygeneroval alespoň dva prvky x a x k (ten je neutrální). 11. Obsahuje každá nekonečná grupa nekonečnou cyklickou podgrupu? Stručně zdůvodněte. Ne. Zadefinujeme si nekonečnou grupu, kde každý prvek je sám sobě inverzem. Žádný prvek není nekonečného řádu, takže nenageneruje nekonečnou podgrupu. 1. Uveďte definici algebry a podalgebry. 6. Algebry I množina, zobrazení Ω : I N 0 bude typ. A(α i i I) je algebra typu Ω, je-li A neprázdná a pro každé i I je α i právě Ω(i)-ární operace na A. B je podalgebra, pokud B A a je uzavřená na všechny operace α i, i I. 5

6 2. Uveďte definici homomorfismu mezi algebrami A(α i i I) a B(β i i I). Zobrazení f : A B budeme říkat homomorfismus, je-li slučitelné se všemi operacemi α i. (A algebry jsou stejného typu.) 3. Uveďte definici izomorfismu mezi algebrami A(α i i I) a B(β i i I). Izomorfismus algeber bude bijektivní homomorfismus příslušných algeber. 4. Pro jaké algebry je prázdná množina podalgebrou? Pro algebry bez nulární operace. Jinak pro žádné. 5. Co znamená, že jsou algebry izomorfní? Algebry jsou izomorfní, pokud mezi nimi existuje izomorfismus. 6. Co znamená, že jsou algebry stejného typu? To znamená, že operacím α i a β i je přiřazeno stejné přirozené číslo. (Mají stejně aritní operace.) 7. Existuje vždy nějaký homomorfismus algebry do sebe? Stručně zdůvodněte. Identita, popř. můžu vždy celé zobrazit na nulární operaci (mám-li jednu) z dané algebry. 8. Existuje vždy nějaký izomorfismus algebry do sebe? Stručně zdůvodněte. Identita, jinak nemusí. 9. Existuje mezi každou dvojicí algeber stejného typu nějaký homomorfismus? Stručně zdůvodněte. Ne. Třeba: * c b a a a b a b * A B A B B B A A 10. Existuje nekonečná algebra obsahující jedinou podalgebru? Stručně zdůvodněte. Ano, když budu mít na algebře nulární operaci, tak její podalgebrou nemůže být prázdná množina. Takže bude pouze jedna podalgebra celá algebra. 7. Kongruence na algebrách 1. Uveďte definici faktorové algebry (včetně značení a definice operací). TODO 2. Definujte kongruenci na algebře. A(α i i I) algebra a ρ ekvivalence na množině A, pak ρ nazveme kongruencí, je-li ρ slučitelná se všemi operacemi α i. 3. Je průnik dvou kongruencí na algebře vždy kongruence? Stručně zdůvodněte. Ano. Vezmeme prvky a i, b i A, pro které platí (a k, b k ) je z průniku. Musí být i v každé kongruenci, neboť (α i (a i ), α i (b i )) je z každé kongruence. 4. Je sjednocení dvou kongruencí na algebře vždy kongruence? Stručně zdůvodněte. Ne. Třeba pro Z 10 : sjednocení rmod podle 2Z 10 a rmod podle 5Z 10. (0,2) je v sjednocení, (0,5) také, ale (0,7) už ne (rozbila se tranzitivita). 5. Definujte slučitelnost ekvivalence s n-ární operací. Je každá ekvivalence slučitelná s každou nulární operací? ρ je ekvivalence a α n-ární operace na množině A. ρ je slučitelná s α, jestliže pro každý systém prvků a 1,..., a n, b 1,..., b n A, kde (a i, b i ) ρ, platí, že (α i (a 1,..., a n ), α i (b 1,..., b n )) ρ. Každá ekvivalence je slučitelná s každou nulární operací. 6. Uveďte větu o homomorfismu pro algebry. Nechť f : A B je homomorfismus dvou algeber stejného typu. Je-li ρ kongruence na A, pak existuje homomorfismu g : A/ρ B splňující podmínku gπ ρ = f právě tehdy, když ρ ker f. 7. Uveďte 1. větu o izomorfismu pro algebry. Nechť f : A B je homomorfismus dvou algeber stejného typu. f(a) je podalgebra B a A/ker f je izomorfní f(a). 8. Uveďte 2. větu o izomorfismu pro grupy a algebry. Nechť ρ σ jsou dvě kongruence na algebře A. Pak algebra A/ρ je izomorfní (A/ρ)/(σ/ρ). 9. Uveďte příklady aspoň dvou kongruencí na desetiprvkové algebře. Identita a kongruence lepící vše. 10. Uveďte příklady aspoň dvou kongruencí na nekonečné algebře. Identita a kongruence lepící vše. 6

7 11. Uveďte příklad kongruence a podalgebry na algebře A(α i i I). Kongruencí je identita, podalgebra je prázdná množina nebo algebra celá třeba. 12. Existuje nekonečná algebra, na níž je pouze jedna kongruence? Stručně zdůvodněte. Ne, vždy je identita a kongruence, která slepí vše. 13. Kolik existuje neizomorfních konečných algeber, na nichž je pouze jedna kongruence? Stručně zdůvodněte. Nekonečně mnoho, protože algebry, které nejsou stejného typu, nejsou izomorfní. Pro každou aritu operace na první algebře najdu jinak n-ární operaci na druhé algebře. Algebry jsou jednoprvkové (ty mají pouze jednu kongruenci). 8. (Ne)izomorfní algebry 1. Jsou grupy R(+) a R + ( ) izomorfní? Stručně zdůvodněte. Ano. Zobrazení f definované předpisem a e a. Slučitelnost: a + b e a e b (= e a+b ), neutrální prvek: f(0) e 0 (= 1) 2. Jsou grupy R(+) a R ( ) izomorfní? Stručně zdůvodněte. Ne. Nejsou zachované vlastnosti operace, konkrétně se liší počet prvků, které se po zoperování rovnají neutrálnímu prvku (v první je pouze 0, v druhé 1 a -1). 3. Jsou grupy Q(+) a Q ( ) izomorfní? Stručně zdůvodněte. Ne. Nejsou zachované vlastnosti operace, konkrétně se liší počet prvků, které se po zoperování rovnají neutrálnímu prvku (v první je pouze 0, v druhé 1 a -1). 4. Jsou grupy Q(+) a Z Z(+) izomorfní? Stručně zdůvodněte. Liší se počtem generátorů, první má nekonečně, druhé stačí 4 (0,1), (0,-1), (1,0), (-1,0). 5. Jsou grupy C(+) a R R(+) izomorfní? Stručně zdůvodněte. Ano. (a, b) a + bi 6. Jsou grupy C ( ) a R R ( ) izomorfní? Stručně zdůvodněte. Ne. V komplexních číslech je 5 čísel, které po umocnění na pátou dají 1. V R tohle splňuje pouze Jsou grupy Z 2 (+) a Z ( ) izomorfní? Stručně zdůvodněte. Ano. Z ( ) = { 1, 1}, 1 na 0, -1 na 1 8. Jsou grupy Z 29 (+) a Z 29( ) izomorfní? Stručně zdůvodněte. Ne, rozdílný počet prvků (inverzů je 28). 9. Jsou grupy Z 19 (+) a Z 20( ) izomorfní? Stručně zdůvodněte. Ne, liší se velikostí nosných množin. Z 20( ) = {1, 3, 7, 9, 11, 13, 17, 19} 10. Jsou grupy Z 12 (+) a Z 3 Z 4 (+) izomorfní? Stručně zdůvodněte. Ano, obě jsou 1-generované (v první třeba 7, v druhé třeba (1,1). 11. Jsou grupy Z 16 (+) a Z 4 Z 4 (+) izomorfní? Stručně zdůvodněte. Ne, protože ta druhá je 2-generovaná (dvojice čísel, které vygeneruju z jednoho prvku, bude mít vždy stejný rozdíl mezi sebou nevygeneruju všechny prvky). 12. Jsou grupy Z 12 (+) a Z 2 Z 6 (+) izomorfní? Stručně zdůvodněte. Ne, druhá je 2-generovaná (třeba (0,1) a (1,0)). 13. Jsou grupy Z 15 (+) a Z 3 Z 5 (+) izomorfní? Stručně zdůvodněte. Ano, obě jsou 1-generované (v první třeba 7, v druhé třeba (1,1). 14. Jsou grupy Z 3 (+) a A 3 ( ) izomorfní? Stručně zdůvodněte. Ano. 0 na identitu, zbytek libovolně (prostě). 15. Rozhodněte, zda jsou izomorfní monoidy N(+) a N( ). Stručně zdůvodněte. Ne. Liší se počtem generátorů, pro sčítání to je 1 (a 0), pro násobení všechna prvočísla a mnohé další. 16. Rozhodněte, zda jsou izomorfní monoidy Q( ) a N( ). Stručně zdůvodněte. Ne. V N( ) nejsou inverzy. 17. Rozhodněte, zda jsou izomorfní monoidy Z(+) a Z( ). Stručně zdůvodněte. Ne. V Z( ) nejsou inverzy. 18. Rozhodněte, zda jsou izomorfní algebry Q(, +, 1) a Z(, +, 1). Stručně zdůvodněte. Ne. Z je generované -1 a 1, Q prvočísly a mnohým dalším. 7

8 19. Rozhodněte, zda jsou izomorfní monoidy N( ) a Z( ). Stručně zdůvodněte. Ne. V N má inverz pouze 1, v Z ještě Definujte těleso. 9. Okruhy a tělesa (Komutativní) těleso je (komutativní) okruh, pro který platí, že všechny prvky R\{0} jsou invertibilní a Definujte okruh. Okruh je algebra R(+,,, 0, 1), kde R(+) je komutativní grupa s neutrálním prvkem 0 a operací opačného prvku, R( ) je monoid s neutrálním prvkem 1 a pro každé a, b, c R platí distributivita a (b + c) = a b + a c a (a + b) c = a c + b c. Okruh je komutativní, pokud je komutativní. 3. Definujte pravý a levý ideál okruhu. R(+,,, 0, 1) okruh, I R je levý (pravý) ideál okruhu R, jestliže je I podgrupa R(+) a pro každé i I, r R platí, že r i I (resp. i r I). 4. Definujte ideál okruhu. Množinu nazveme ideálem, je-li pravým a levým ideálem zároveň. 5. Charakterizujte, které okruhy jsou tělesa pomocí pojmu pravý a levý ideál. R je těleso, právě tehdy když R neobsahuje žádný vlastní levý či pravý ideál. 6. Popište maximální ideály oboru polynomů nad tělesem. Všechny násobky ireducibilního (jednoho) polynomu. 7. Zformulujte algoritmus dělení se zbytkem nad okruhem polynomů nad oborem. TODO 8. Uveďte příklad okruhu a nějakého ideálu. Okruh Z(+, ), ideál sudá čísla. 9. Uveďte příklad okruhu, který není tělesem. Okruh Z(+, ). 10. Popište vztah množiny kongruencí a ideálů okruhu. Jsou si izomorfní. 11. Popište všechny ideály okruhu celých čísel. Splývá to s pojmem podgrupy Z(+), takže všechny kz. 12. Najděte aspoň tři kongruence na okruhu celých čísel. Identita, slepím vše, slepím sudá a slepím lichá. 10. Uspořádané množiny a svazy 1. Buď (X, ) uspořádaná množina a A X. Definujte supremum množiny A. Supremem množiny A budeme rozumět nejmenší prvek množiny {n X a A : a n} 2. Buď (X, ) uspořádaná množina a A X. Definujte infimum množiny A. Infimem množiny A budeme rozumět největší prvek množiny {n X a A : n a} 3. Buď (X, ) uspořádaná množina a A X. Definujte největší a nejmenší prvek. Řekneme, že x A je nejmenší (resp. největší) prvek množiny A, jestliže x a (resp. a x) pro všechna a A. 4. Definujte svaz a úplný svaz pomocí relace uspořádání. Dvojice (M, ) je svaz, pokud pro každé dva prvky a, b A existuje supremum a infimum množiny {a, b}. Svaz je úplným svazem, existuje-li supremum a infimum každé podmnožiny množiny M. 5. Definujte distributivní svaz. O svazu S(, ) řekneme, že je distributivní, paltí-li pro každé a, b, c S rovnost a (b c) = (a b) (a c) 6. Uveďte definici svazu jako algebry. TODO 8

9 7. Definujte Booleovu algebru. Booleovou algebrou nazveme takovou algebru S(,, 0, 1, ), že S(, ) je distributivní svaz s největším prvkem 1 a nejmenším prvkem 0 a unární operace přiřadí každému prvku jeho komplement. 8. Definujte komplement prvku ve svazu. Je komplement vždy nejvýše jeden? Stručně zdůvodněte. Komplementem prvku a S nazveme takový prvek a S, že a a = 1 a a a = 0. Ne. Protipříklad: dole nula, zní do a, do b, do c. Z nich do 1 nahoře. Mezi nimi nic. Komplementem a je b i c. 9. Definujte monotónní zobrazení a homomorfismus svazů. Nechť f : A B je zobrazení a (A, ) a (B, ) jsou svazy. Řekneme, že f je homomorfismus, jde-li o homomorfismus algeber A(, ) a B(, ). f je monotónní zobrazení, platí-li implikace a 1 a 2 f(a 1 ) f(a 2 ). 10. Charakterizujte izomorfismy svazů pomocí monotonie. Bijekce svazů f je izomorfismus právě tehdy, když jsou f i f 1 monotónní zobrazení. 11. Je každé monotónní zobrazení svazů homomorfismus? Stručně zdůvodněte. Ne. 12. Je každá monotónní bijekce mezi svazy izomorfismus? Stručně zdůvodněte. Ne. 13. Je každý homomorfismus svazů monotónní zobrazení? Stručně zdůvodněte. Ano. 14. Uveďte příklad uspořádání na dvou prvcích, které není svazem. Identita. 15. Uveďte příklad tříprvkového svazu. ({1, 2, 3}, } 16. Uveďte lineárně uspořádanou množinu (tj. a, b buď a b nebo b a), která není úplným svazem. N nebo R. 17. Tvoří konečné podmnožiny N svaz vzhledem k uspořádání? Stručně zdůvodněte. Ano, potenční množina s inkluzí tvoří vždy svaz. 18. Tvoří konečné podmnožiny N úplný svaz vzhledem k uspořádání? Stručně zdůvodněte. Ne, protože N nemá supremum (sjednocení konečných podmnožin nemusí být konečné.) 19. Tvoří podmnožiny N svaz vzhledem k uspořádání? Stručně zdůvodněte. Ano. 20. Je každá lineárně uspořádaná množina svaz? Stručně zdůvodněte. Ano, protože každé dva prvky jsou porovnatelné a supremum je max z těch dvou, infimum je min z těch dvou. 21. Je každá lineárně uspořádaná množina úplný svaz? Stručně zdůvodněte. Ne N či R (nemají supremum). 22. Uveďte příklad 8-prvkové Booleovy algebry. Potenční množina pro {0, 1, 2}. 23. Uveďte příklad 4-prvkové Booleovy algebry. Potenční množina pro {0, 1}. 24. Uveďte příklad 16-prvkové Booleovy algebry. Potenční množina pro {0, 1, 2, 3}. 11. Eulerova funkce a Eukleidův algoritmus (2 body) Výpočet Eulerovy funkce: Buď p r1 1 pr pr k k prvočíselný rozklad čísla n. Potom ϕ(n) = Π k i=1 (p i 1)p ri 1 i 1. Spočtěte hodnotu Eulerovy funkce ϕ(1200). Prvočíselný rozklad 1200: Výpočet: 1(2 3 ) 2(3 0 ) 4(5 1 ) = Spočtěte hodnotu Eulerovy funkce ϕ(1008). Prvočíselný rozklad 1008: Výpočet: 1(2 3 ) 6(7 0 ) 2(3 1 ) = 288 9

10 3. Spočtěte hodnotu Eulerovy funkce ϕ(2250). Prvočíselný rozklad 2250: Výpočet: 1(2 0 ) 2(3 1 ) 4(5 2 ) = Spočtěte hodnotu Eulerovy funkce ϕ(2310). Prvočíselný rozklad 2310: Výpočet: = Spočtěte 11 1 v monoidu Z 24 ( ). Použijeme Eulerovu větu přenásobenou inverzem (11 a 24 nejsou soudělná). 11 je hledaný inverz. 6. Spočtěte 13 1 v monoidu Z 19 ( ). 3 je hledaný inverz. 7. Spočtěte 5 1 v monoidu Z 22 ( ). 9 je hledaný inverz. 8. Spočtěte 7 1 v monoidu Z 23 ( ). 10 je hledaný inverz. 9. Spočítejte, kolik invertibilních prvků obsahuje monoid Z 888 ( ). Rovná se to ϕ(888) = Spočítejte, kolik invertibilních prvků obsahuje monoid Z 999 ( ). Rovná se to ϕ(999) = Spočítejte, kolik invertibilních prvků obsahuje monoid Z 777 ( ). Rovná se to ϕ(777) = Spočítejte, kolik generátorů obsahuje cyklická grupa řádu 870. Rovná se to ϕ(870) = Spočítejte, kolik generátorů obsahuje cyklická grupa řádu 880. Rovná se to ϕ(880) = Spočítejte, kolik generátorů obsahuje cyklická grupa řádu Rovná se to ϕ(1300) = Svazy podgrup, homomorfismy cyklických grup (2 body) 1. Uveďte všechny podgrupy grupy Z 12 (+). Triviální (celá, {0}), podgrupy generované dělitelama (2, 3, 4, 6). 2. Uveďte všechny podgrupy grupy Z 18 (+). Triviální (celá, {0}), podgrupy generované dělitelama (2, 3, 6, 9). 3. Uveďte všechny podgrupy grupy Z 16 (+). Triviální (celá, {0}), podgrupy generované dělitelama (2, 4, 8). 4. Uveďte všechny podgrupy grupy Z 50 (+). Triviální (celá, {0}), podgrupy generované dělitelama (2, 5, 10, 25). 5. Uveďte všechny podalgebry algebry Z 40 (+, 0). Podmnožina a uzavřené, takže jako u grup. Triviální, generované dělitelama 2, 4, 5, 8, 10, 20), ale každá musí obsahovat 0 (což už obsahuje). 6. Uveďte všechny podalgebry algebry Z 999 (+, 1). Každá musí obsahovat 1, takže každá obsahuje generátor. Tudíž je pouze jedna celá algebra. 7. Kolik kongruencí existuje na algebře Z 24 (+). Kongruence určuje jednu podgrupu, takže je to stejné, jako kolik existuje podgrup Z 24 (+). 8 (triviální, dělitelé 2, 3, 4, 6, 8, 12) 8. Kolik kongruencí existuje na algebře Z 20 (+). 6 (triviální, dělitelé 2, 4, 5, 10) 9. Kolik kongruencí existuje na algebře Z 30 (+, ). Opět dělitelé 30 určují, násobení nemá vliv. Bude jich 8. 10

11 10. Kolik kongruencí existuje na algebře Z 90 (+, 0, 1. 8 (triviální, dělitelé 2, 3, 9, 10, 30, Kolik existuje homomorfismů grupy Z 30 (+) do grupy Z 50 (+)? GCD(30, 50) = Kolik existuje homomorfismů grupy Z 50 (+) do grupy Z 70 (+)? GCD(50, 70) = Kolik existuje homomorfismů grupy Z 12 (+) do grupy Z 24 (+)? GCD(12, 24) = Kolik existuje prostých homomorfismů grupy Z 30 (+) do grupy Z 90 (+)? ϕ(gcd(30, 90)) = 8, GCD(30, 90) = 30, ϕ(30) = = Kolik existuje prostých homomorfismů grupy Z 2 (+) do grupy S 4 ( )? 9 0 na identitu, 1 na libovolnou transpozici (jsou 6) či dvojtranspozici (3). 16. Kolik existuje prostých homomorfismů grupy Z 3 (+) do grupy S 4 ( )? 8 0 na identitu, 1 a 2 mají řád 3 a to mají pouze trojcykly. Trojcyklů je 8, takže máme 8 způsobů jak zobrazit jeden prvek, druhý je určen. 17. Kolik existuje prostých homomorfismů grupy Z 4 (+) do grupy S 4 ( )? 6. S 4 ( ) obsahuje 6 čtyřcyklů, každý nageneruje jednu podgrupu řádu 4 izomorfní Z Nakreslete svaz kongruencí grupy Z 30 (+). Kongruence určuje jednu podgrupu Z 30 (+). Podgrupy jsou určené dělitelama. TODO obrázek. 13. Lagrangeova věta, podgrupy a kongruence cyklických grup (2 body) Nějaká permutace má takový řád (vygeneruje tolik prvků), kolik je nejmenší společný násobek délek cyklů. 1. Kolik podgrup a kolik kongruencí má grupa Z 80 (+)? Odůvodněte. 10 a 10 (1, 2, 4, 5, 8, 10, 16, 20, 40, 80) Stejně obojího, protože jde o komutující grupu, tj. kongruence přesně určuje podgrupu. 2. Kolik podgrup a kolik kongruencí má grupa Z 121 (+)? Odůvodněte. 3 a 3 3. Kolik podgrup a kolik kongruencí má grupa Z 100 (+)? Odůvodněte. 9 a 9 4. Kolik podgrup a kolik kongruencí má grupa Z 333 (+)? Odůvodněte. 6 a 6 5. Kolik normálních podgrup má grupa S 3 ( )? Odůvodněte. S 3 = {id, (123), (132), (12)(3), (13)(2), (23)(1)} Z Lagrangeovy věty musí index podgrupy dělit řád grupy, tj. můžeme hledat grupy řádu 2 a 3. Budou cyklické, takže hledáme prvky těchto řádů. Oba trojcykly jsou řádu 3 a generují stejnou množinu, ostatní prvky jsou řádu dva (kromě identity). Ověříme definici normálnosti vezmeme nějaký prvek z S 3, který není v dané množině (o které zjišťujeme, jestli je normální podgrupou). (13) (12) (31) = (1)(23) / H (12) (13) (21) = (1)(23) / H (13) (23) (31) = (12)(3) / H Má 3 normální podgrupy sebe, identitu a A Kolik podgrup řádu 4 má grupa S 4 ( )? Odůvodněte. Našla sem 3 podgrupy řádu 4 (s různýma prvkama), ale tabulka operace na prvcích je stejná. Podgrupy si jsou izomorfní. Jsou to konečné cyklické grupy se 4 prvkama, takže jsou izomorfní Z 4. Ještě je třeba Kleinova podgrupa (izomorfní Z 2 Z 2 ). Víc jich není, protože jsou jen 2 na 4 prvcích. 7. Kolik podgrup řádu 5 má grupa S 4 ( )? Odůvodněte. Žádnou. Z Lagrangeovy věty vyplývá, že řád podgrupy musí dělit řád grupy a 24 není dělitelné Kolik podgrup řádu 3 má grupa S 5 ( )? Odůvodněte. Je tam 20 trojcyklů (( 5 3) 2 ), ty mají řád 3. Trojcykly jsou v párech, takže podgrup je

12 9. Kolik podgrup řádu 4, 5 a 6 má grupa Z 8660 (+)? Odůvodněte. Řádu 4 podgrupa musí být cyklická, takže izomorfní Z 4. A ta tam je jedna, generovaná 2165 (8660/4). Řádu 5 podgrupa cyklická, takže izom. Z 5, takže 8660/5. Víc ne, protože cyklické jsou všechny izom. Řádu 6 žádnou, protože 6 nedělí Kolik podgrup řádu 4, 5, 6 a 7 má grupa Z 1200 (+)? Odůvodněte. Zbylých od každé 1. Řádu 7 žádnou, protože 7 nedělí Kolik podgrup řádu 4, 5 a 6 má grupa Z 333 (+)? Odůvodněte. Nemá žádnou podgrupu daných řádů, protože ani jeden nedělí Kolik podgrup řádu 13 má grupa Q ( )? Odůvodněte. Grupa je nekonečná, každý prvek má nekonečný řád (kromě 1 řádu 1, -1 řádu 2), takže neexistuje nic, co by nagenerovalo grupu řádu Kolik podgrup řádu 2 má grupa Q ( )? Odůvodněte. Grupa je nekonečná, každý prvek má nekonečný řád (kromě 1 řádu 1, -1 řádu 2), takže pouze jednu { 1, 1}. 14. Kolik podgrup řádu 3 má grupa C ( )? Odůvodněte. Je to všechno až na nulu. Podgrupou budou třetí odmocniny z čísla (trojúhelník kolem počátku). Bude jedna s prvky (1, i, i) 15. Rozhodněte, zda grupa S 6 ( ) obsahuje podgrupu řádu a) 5, b) 8. Pokud ano, uveďte příklad. Pokud ne, vysvětlete. Pěticyklus nageneruje podgrupu izomorfní Z 5. Řádu osm, generátory jsou (12), (34), (56). 16. Rozhodněte, zda grupa S 5 ( ) obsahuje podgrupu řádu a) 5, b) 6. Pokud ano, uveďte příklad. Pokud ne, vysvětlete. Pěticyklus nageneruje podgrupu izomorfní Z 5. Řádu 6, generátory jsou (12)(345). 17. Rozhodněte, zda grupa S 5 ( ) obsahuje podgrupu řádu a) 4, b) 7. Pokud ano, uveďte příklad. Pokud ne, vysvětlete. Čtyřcyklus nageneruje podgrupu izomorfní Z 4. Řádu 7 žádnou, protože 7 nedělí Rozhodněte, zda grupa A 4 ( ) obsahuje podgrupu řádu a) 4, b) 5. Pokud ano, uveďte příklad. Pokud ne, vysvětlete. Řádu 4 je Kleinova, generovaná dvěma nezávislýma dvojtranspozicema. Řádu 5 žádnou, protože 5 nedělí Rozhodněte, zda grupa A 5 ( ) obsahuje podgrupu řádu a) 4, b) 5. Pokud ano, uveďte příklad. Pokud ne, vysvětlete. Řádu 4 je Kleinova, generovaná dvěma nezávislýma dvojtranspozicema. Řádu 5 pěticyklus. 14. Generátory cyklických grup, příklady grup (2 body) 1. Je grupa S 3 ( ) cyklická? Zdůvodněte. Není, protože cyklická grupa řádu k musí obsahovat prvek řádu k. S n mají řád n!, ale prvek tohoto řádu tam není (platí od S 3 a A 4 dál). Když S n bude cyklická, musí být cyklická i každá její podgrupa, takže i S 3. Ta není (ukážeme bruteforcem). 2. Je grupa S 4 ( ) cyklická? Zdůvodněte. Není, protože cyklická grupa řádu k musí obsahovat prvek řádu k. S n mají řád n!, ale prvek tohoto řádu tam není (platí od S 3 a A 4 dál). Když S n bude cyklická, musí být cyklická i každá její podgrupa, takže i S 3. Ta není (ukážeme bruteforcem). 3. Je grupa A 4 ( ) cyklická? Zdůvodněte. Není, protože cyklická grupa řádu k musí obsahovat prvek řádu k. S n mají řád n!, ale prvek tohoto řádu tam není (platí od S 3 a A 4 dál). Tady to půjde bruteforcem. 4. Je grupa Q(+) cyklická? Zdůvodněte. Ne, protože není 1-generovaná. 5. Je grupa Q ( ) cyklická? Zdůvodněte. Ne, protože není 1-generovaná (potřebuje alespoň všechna prvočísla). 6. Je grupa Z 9 Z 3 (+) cyklická? Zdůvodněte. Ne, není prvek řádu 27 (každý má řád 9). 7. Je grupa Z 9 Z 12 (+) cyklická? Zdůvodněte. Ne, není prvek řádu 9*12 (každý má řád nejvýš 36 = lcm(9, 12)). 12

13 8. Je grupa Z 9 Z 14 (+) cyklická? Zdůvodněte. Ano, z čínské věty je izomorfní Z Je grupa Z10( ) cyklická? Zdůvodněte. Ano. Generuje ji třeba Je grupa Z Z(+) cyklická? Zdůvodněte. Ne, nenagenerujeme nic, co by mělo jinak odlišné souřadnice než na začátku. 11. Je grupa Z ( ) cyklická? Zdůvodněte. Ano, je izomorfní Z Je podgrupa 3Z grupy Z(+) cyklická? Zdůvodněte. Ano, 3 je generátor. 13. Určete řád podgrupy generované prvkem 66 v grupě Z 147 (+). 147 vydělím GCD(66, 147) = 3, tj. řád bude Určete řád podgrupy generované prvkem 27 v grupě Z 300 (+). 300/3 = Generuje prvek 2 grupu Z9 ( )? Zdůvodněte. Ano. 16. Generuje prvek 4 grupu Z15( )? Zdůvodněte. Ne. Není cyklická. 17. Generuje prvek 7 grupu Z50( )? Zdůvodněte. Ne. 18. Generuje prvek 27 grupu Z152( )? Zdůvodněte. Ne, není cyklická. 19. Generuje prvek 27 grupu Z153( )? Zdůvodněte. Ne, není cyklická. 20. Generuje prvek 16 grupu Z 170 (+)? Zdůvodněte. Musí platit, že generátor Z n je nesoudělný s n, ale GCD(16, 170) = 2.) 21. Generuje prvek 16 grupu Z 171 (+)? Zdůvodněte. Ano, protože 16 je nesoudělné se Generuje prvek 16 grupu Z170( )? Zdůvodněte. Ne, není cyklická. 23. Generuje prvek 16 grupu Z171( )? Zdůvodněte. Ne, není cyklická. 24. Generuje prvek 16 grupu Z256( )? Zdůvodněte. Je cyklická (izom. Z 128 ), ale 16 je soudělná, takže není generátorem. 25. Existuje nekomutativní 6-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. S Existuje nekomutativní 7-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Protože 7 je prvočíslo a každá grupa prvočíselné velikosti je cyklická, takže ekvivalentní nějakému Z n, takže komutativní. 27. Existuje nekomutativní 8-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano. Dihedrální grupa pro čtverec (grupa symetrií čtverce) 4 osové souměrnosti, 4 rotace (resp. 3 a identita). 28. Existuje nekomutativní 12-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. A 4 nebo dihedrální pro šestiúhelník 29. Existuje nekomutativní nekonečná grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Grupa regulárních matic stupně n nad reálnýma číslama. 30. Existuje nekomutativní necyklická 8-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano. Dihedrální grupa pro čtverec (grupa symetrií čtverce) 4 osové souměrnosti, 4 rotace (resp. 3 a identita). 13

14 31. Existuje nekomutativní necyklická 11-prvková grupa? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Protože 11 je prvočíslo a každá grupa prvočíselné velikosti je cyklická, takže ekvivalentní nějakému Z n, takže komutativní. 32. Existuje 100-prvková grupa obsahující podgrupu řádu 12? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ne, 12 nedělí Existuje 99-prvková grupa obsahující podgrupu řádu 8? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ne, 8 nedělí Existuje 99-prvková grupa obsahující podgrupu řádu 9? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano, vezmu Z 99 a z ní 11Z Existuje 74-prvková grupa obsahující podgrupu řádu 10? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ne, 10 nedělí Existuje 64-prvková grupa, která má 16-prvkovou podgrupu? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano, vezmu Z 64 a z ní 4Z Existuje 70-prvková grupa, která má 15-prvkovou podgrupu? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ne, 15 nedělí Existuje 60-prvková grupa, která má 15-prvkovou podgrupu? Pokud ano, uveďte příklad. Pokud ne, zdůvodněte. Ano, vezmu Z 60 a z ní 4Z Dokazovací příklady (7 bodů) 1. Je-li G( ) konečná cyklická grupa a A, B její podgrupy, dokažte, že A B = GCD( A, B ). Můžete k tou použít všechna tvrzení z přednášky (nezapomeňte je správně ocitovat). 2. Dokažte, že aspoň dvouprvkový okruh je (obecně nekomutativní) tělese právě tehdy, když obsahuje právě dva levé ideály. 14

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde

Více

Úlohy k procvičování textu o svazech

Úlohy k procvičování textu o svazech Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání

Více

2. Test 07/08 zimní semestr

2. Test 07/08 zimní semestr 2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále.

Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále. Algebra I Cvičení Podle následující sbírky probíhalo cvičení na PřF v semestru Jaro 2003. Příklady jsou rozděleny na ty, které jsme dělali na cvičení (označeno C), úlohy na kterých lze procvičovat probranou

Více

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor

Více

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu. 1.teorie(1bod) Formulujte princip matematické indukce. Napište základní větu aritmetiky. Napište Bézoutovu rovnost v oboru celých čísel. Definujte,coznamenázápis a b(mod n),auveďtezákladnívlastnosti. Napište

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná

Více

GRUPY SBÍRKA PŘÍKLADŮ

GRUPY SBÍRKA PŘÍKLADŮ Masarykova Univerzita v Brně Přírodovědecká fakulta GRUPY SBÍRKA PŘÍKLADŮ bakalářská práce Brno 2005 Vít Musil i Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně s použitím uvedené literatury.

Více

Charakteristika tělesa

Charakteristika tělesa 16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Cyklické grupy a grupy permutací

Cyklické grupy a grupy permutací Cyklické grupy a grupy permutací Jiří Velebil: A7B01MCS 5. prosince 2011: Cyklické grupy, permutace 1/26 Z minula: grupa je důležitý ADT Dnešní přednáška: hlubší pohled na strukturu konečných grup. Aplikace:

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

Střípky z LA Letem světem algebry

Střípky z LA Letem světem algebry Střípky z LA Letem světem algebry Jaroslav Horáček Pojem Algebra Laicky řečeno algebra je struktura na nějaké množině, společně s nějakými operacemi, které splňují určité vlastnosti. Případy algebry lineární

Více

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

ZÁKLADY ARITMETIKY A ALGEBRY I

ZÁKLADY ARITMETIKY A ALGEBRY I 1 ZÁKLADY ARITMETIKY A ALGEBRY I (Cvičení) 1. Úvod, jazyk matematiky V učebnici Lineární algebra pročítejte definice a věty, uvědomujte si jejich strukturu, i když prozatím neznáte a nechápete (aaniprozatímchápatnemůžete)jejichmatematický

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x 1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y. Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje

Více

Matematika pro informatiku 2

Matematika pro informatiku 2 Matematika pro informatiku 2 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 21. února 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j

(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j 1. cvičení (1) Necht A je komutativní grupa. Dokažte, že End(A) společně s operacemi sčítání a skládání zobrazení je okruh. (2) Dokažte přímo z definice, že na každé komutativní grupě existuje právě jedna

Více

Algebra II pro distanční studium

Algebra II pro distanční studium Algebra II pro distanční studium (1) Předmluva................... 3 I. Struktury s jednou binární operací........ 5 1. Základní vlastnosti grup.......... 5 2. Podgrupy................ 22 3. Grupy permutací.............

Více

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +

Více

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b) C Ať C je [n, k] q kód takový, že pro každé u 1,..., u n ) C je také u 2,..., u n, u 1 ) C. Jinými slovy, kódová slova jsou uzavřena na cyklické posuny. Je přirozené takový kód nazvat cyklický. Strukturu

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení

ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení ALGEBRA I. Mgr. Jan Žemlička, Ph.D. cvičení 6.10. Euklidův algoritmus a ekvivalence Nechť a 0 > a 1 jsou dvě přirozená čísla. Připomeňme Euklidův algoritmus hledání největšího společného dělitele (NSD)

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

PŘÍKLADY Z ALGEBRY.

PŘÍKLADY Z ALGEBRY. PŘÍKLADY Z ALGEBRY DAVID STANOVSKÝ stanovsk@karlin.mff.cuni.cz Motto: Není jiné rozumné výchovy než příkladem; když to nejde jinak, tak aspoň odstrašujícím. Albert Einstein Toto je pracovní verze sbírky

Více

Matematika IV - 2. přednáška Základy teorie grup

Matematika IV - 2. přednáška Základy teorie grup Matematika IV - 2. přednáška Základy teorie grup Michal Bulant Masarykova univerzita Fakulta informatiky 25. 2. 2008 oooooooooooo Obsah přednášky Q Grupy - homomorfismy a součiny Martin Panák, Jan Slovák,

Více

ALGEBRA I PRO INFORMATIKY. Obsah

ALGEBRA I PRO INFORMATIKY. Obsah ALGEBRA I PRO INFORMATIKY Obsah 1. Předmět(y) zkoumání 1 2. Základy elementární teorie čísel 4 3. Asociativní binární operace 8 4. Grupy, podgrupy a homomorfismy 10 5. Klasifikace cyklických grup 14 6.

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ BAKALÁŘSKÁ PRÁCE KONEČNÉ GRUPY MALÝCH ŘÁDŮ Ivana Čechová Vedoucí práce: doc. RNDr. Jaroslav Hora, CSc. Plzeň 2012 Prohlašuji, že jsem bakalářskou práci

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30 Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

1. Pologrupy, monoidy a grupy

1. Pologrupy, monoidy a grupy Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 1. Pologrupy, monoidy a grupy Algebra dvacátého století je nauka o algebraických strukturách.

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Booleovy algebry. Irina Perfilieva. logo

Booleovy algebry. Irina Perfilieva. logo Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Grupy Mgr. Růžena Holubová 2010

Grupy Mgr. Růžena Holubová 2010 Grupy Mgr. Růžena Holubová 2010 1. Úvod Cílem této práce je přehledně zpracovat elementární teorii algebraických struktur s jednou operací se zaměřením na teorii grup a sestavit sbírku řešených úloh, proto

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Základy aritmetiky a algebry I

Základy aritmetiky a algebry I Základy aritmetiky a algebry I Základní literatura k předmětu: [BeDla] Bečvář J., Dlab V.: Od aritmetiky k abstraktní algebře. Serifa, Praha, 2016. Další literatura k předmětu: [Be] Bečvář J.: Lineární

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b = ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Matematika pro informatiku 1

Matematika pro informatiku 1 Matematika pro informatiku 1 Alena Šolcová katedra teoretické informatiky Fakulta informačních technologií ČVUT Evropský sociální fond Investujeme do vaší budoucnosti Přednášející Ing. Karel Klouda, Ph.

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Algebra 1: řešené příklady ke cvičením

Algebra 1: řešené příklady ke cvičením Katedra informatiky Přírodovědecká fakulta Univerzita Palackého v Olomouci Algebra 1: řešené příklady ke cvičením doc. RNDr. Miroslav Kolařík, Ph.D. Olomouc 2017 Toto skriptum 1 je určeno zejména studentům

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické

Více

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera 1. Operace a Ω-algebry Úvod. V průběhu přednášky z algebry jsme studovali řadu algebraických struktur: grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

MPI - 5. přednáška. 1.1 Eliptické křivky

MPI - 5. přednáška. 1.1 Eliptické křivky MPI - 5. přednáška vytvořeno: 3. října 2016, 10:06 Doteď jsem se zabývali strukturami, které vzniknou přidáním jedné binární operace k neprázdné množině. Jako grupu jsme definovali takovou strukturu, kde

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde

Více

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

18. První rozklad lineární transformace

18. První rozklad lineární transformace Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více