VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOCE PŘESNÉ METODY OBRÁBĚNÍ"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství, Vysoké učeí techické v Brě, Techická 2896/2, Bro ABSTRAKT Příspěvek se zabývá aalýzou přesosti a kvalitou obrobeých ploch ve výrobím procesu, statistickou iterpretací parametrů přesosti obrobeých ploch, požadavky a přístrojové vybaveí pro kotrolu přesosti a jakosti těchto ploch, dosažitelou přesostí a ekoomickou retabilitou vysoce přesých metod obráběí. Dále popisuje vliv řezých podmíek a časovou a ceovou áročost produkce, staovuje požadavky a obráběcí stroje pro vysoce přesé metody obráběí a avrhuje optimalizací techologických procesů vysoce přesého obráběí. Zvláští pozorost je věováa statistickým hodoceím stability velmi přesých výrobích procesů a doporučeím pro zaváděí a využíváí vysoce přesých metod obráběí ve výrobě. Klíčová slova: přesé metody obráběí, optimalizace, hodoceí stability ÚVOD Předmětem této části projektu je aalýza a kokretizace řešeé problematiky v oblasti reálé aplikace v provozích podmíkách. Jedotlivé oblasti jsou zaměřey a techologickou charakteristiky a požadavky a příslušé techologické systémy. V mezích možostí jsou zpracovaé části doplěy kokrétími příklady pro sazší orietaci poteciálích uživatelů. Cosultig poit pro rozvoj spolupráce v oblasti řízeí iovací a trasferu techologií

2 1. PŘESNOST A KVALITA OBROBENÝCH PLOCH Přesost a kvalita obrobeé plochy představuje itegrovaý výstup daého obráběcího procesu. Parametry přesosti a kvality posuzovaé obrobeé plochy se kokretizují jako parametry přesosti, k imž patří zejméa: úchylka rozměru úchylka tvaru úchylka polohy struktura povrchu - úchylka od jmeovité hodoty - úchylka přímosti, úchylka kruhovitosti, úchylka válcovitosti - úchylka rovoběžosti, úchylka kolmosti, úchylka souososti - průměrá aritmetická úchylka Ra, ejvětší výška profilu Rz V ěkterých speciálích případech se mohou kvatifikovat další parametry jako druh a velikost apětí v povrchové vrstvě obrobeé plochy, mikrotvrdost povrchové vrstvy Specifikovaé parametry přesosti a kvality obrobeé plochy závisí a moha techologických faktorech, které lze z hlediska jejich charakteru čleit a: systematicky kostatí - chyba v seřízeí obráběcího stroje, úchylka rozměru a tvaru ástroje systematicky proměé - opotřebeí ástroje, tepelé deformace obráběcího systému áhodé - rozptýleí přídavků a obráběí, rozptýleí vlastostí materiálu Parametry přesosti a kvality obrobeé plochy se kvatifikují pro idetifikovaý obráběcí proces, kdy se idetifikuje zejméa obrobek, obráběcí metoda, obráběcí stroj, ástroj a řezé podmíky. Přesost obrobeé plochy je obecě fukcí přesosti a techologických vlastostí obráběcího stroje, ástroje, obrobku, upíače a řezých podmíek. Obráběcí stroj má z hlediska přesosti obrobeé plochy obvykle priorití postaveí a jeho vlastosti zpravidla rozhodujícím způsobem ovlivňují realizovaé parametry přesosti obrobeé plochy. 2. KONTROLA PŘESNOSTI A KVALITY OBROBENÉHO POVRCHU VE VÝROBNÍM PROCESU Kotrola a měřeí. Měřeí rozměrů. Měřeí tvarů. Měřeí úchylek polohy. Měřeí parametrů struktury povrchu (rozpracováo). 3. STATISTICKÁ INTERPRETACE PARAMETRŮ PŘESNOSTI OBROBENÉ PLOCHY Přesost obrobeé plochy se v závislosti a techologických aspektech idetifikovaého obráběcího procesu kvatifikuje a základě obrobeí určitého počtu vhodě zvoleých zkušebích obrobků. Pro zobecěí výsledků prováděé aalýzy je důležitá idetifikace podmíek, za kterých byly kvatifikovaé parametry přesosti obrobeé plochy vyšetřey. Z praktického hlediska se idetifikuje zejméa obráběcí metodu, obráběcí stroj, zkušebí obrobek, ástroj a

3 řezé podmíky. Pro idetifikovaý obráběcí proces a pro hodoceé plochy zkušebího obrobku se specifikují parametry přesosti a avrhe se metodický postup jejich měřeí. Součástí měřících postupů jsou rověž základí charakteristiky použitých měřících přístrojů. Úchylky obrobeé plochy mají vesměs charakter spojitých áhodých proměých a při kvatifikaci přesosti obrobeé plochy se jejich hodoty vyšetří a základě obrobeí určitého počtu zkušebích obrobků. Počet zkušebích obrobků se obecě ozačí a volí se s ohledem a očekávaý průběh a tredy posuzovaé úchylky a charakter obráběcího procesu. Pro ustáleé obráběcí procesy, kdy techologické vlivy a přesost jsou převážě áhodého charakteru, je možé doporučit 5. Pro případ, kdy je zřejmý tred změy parametrů přesosti a kdy převažují systematicky proměé vlivy, bude třeba volit větší počet zkušebích obrobků. Statistická iterpretace parametrů přesosti daé obrobeé plochy se provede a základě předpokladu o průběhu a tredech hodoceých veliči. Formulace těchto předpokladů případě hypotéz vychází ze zalosti podobých či aalogických obráběcích procesů. Metodické postupy a výstupí závěry celé aalýzy se použijí v závislosti a vstupích předpokladech a hypotézách. Z hlediska řešeé problematiky se rozliší obráběcí procesy, které korespodují s určitým statistickým rozděleím hodoceých veliči a obráběcí procesy, u ichž je rozděleí posuzovaých veliči ezámé. Při aalýze obráběcích procesů se z hlediska parametrů jejich přesosti často pracuje s ormálím rozděleím, přičemž hypotéza ormálího rozděleí uvažovaé áhodé veličiy může být ověřea vhodým testem ormality. 3.1 Normálí rozděleí parametru přesosti obrobeé plochy Normálí rozděleí parametrů přesosti obrobeé plochy se uplatí zejméa v těch případech, kdy převažuje áhodý charakter techologických vlivů a kdy systematicky proměé vlivy jsou během obráběcího procesu korigováy ebo elimiováy. Uvedeé podmíky jsou splěy apř. pro obráběcí proces realizovaý a CNC obráběcím stroji s diagostikou stavu ástroje a tepelých deformací stroje ebo pro obráběcí proces realizovaý a uiverzálím obráběcím stroji s kvalifikovaou obsluhou v malosériové výrobě. Výchozí údaje pro statistickou iterpretaci jsou parametry přesosti obrobeé plochy realizovaé a zkušebích obrobcích, které se obecě ozačí x 1, x 2... x i... x. Tyto veličiy se z hlediska dalšího statistického zpracováí považují za áhodý výběr z ormálě rozděleého základího souboru, který charakterizuje středí hodota m a směrodatá odchylka. Metodický postup se rozliší v závislosti a tom, zda jsou ebo ejsou zámé parametry ormálího rozděleí posuzovaých parametrů přesosti obrobeé plochy. Obvykle však ai středí hodota m a ai směrodatá odchylka ejsou zámé a proto se pracuje s příslušými odhady. Pro zvoleé parametry přesosti obrobeé plochy se v řešeém případu kvatifikuje odhad středí hodoty, kofidečí iterval středí hodoty a statistický toleračí iterval.

4 Odhad středí hodoty parametru přesosti obrobeé plochy Odhad středí hodoty parametru přesosti obrobeé plochy se ozačí x a vyjádří se jako výběrový průměr defiovaý vztahem: 1 x x (3.1) i i Kofidečí iterval středí hodoty parametru přesosti obrobeé plochy Odhad středí hodoty parametru přesosti obrobeé plochy x je však sám o sobě také áhodou veličiou. V souvislosti s touto skutečostí se určí dvoustraý ebo jedostraý kofidečí iterval pro středí hodotu parametru přesosti obrobeé plochy. Meze kofidečího itervalu limitují skutečou velikost středí hodoty parametru přesosti obrobeé plochy s určitou předem zvoleou pravděpodobostí. Dvoustraý kofidečí iterval středí hodoty parametru přesosti obrobeé plochy je ohraiče mezemi, pro které platí: P ( m D2 m m H2 ) = 1 - (3.2) m D 2 -dolí mez dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy m H 2 - horí mez dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy m - středí hodota parametru přesosti obrobeé plochy kofidečí úroveň Jedostraé kofidečí itervaly středí hodoty parametru přesosti obrobeé plochy jsou ohraičey mezemi, pro které platí: m D 1 m H 1 P ( m D1 m ) = 1 - (3.3) P ( m m H1 ) = 1 - (3.4) - dolí mez jedostraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy - horí mez jedostraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy Meze kofidečích itervalů středí hodoty parametru přesosti obrobeé plochy se vyčíslí a základě odhadu středí hodoty x a odhadu směrodaté odchylky s dle vztahů: s x t 1 α/2; (3.5) m D2 1 s x t1 α/2; (3.6) m H2 1

5 t 1- /2;-1 t 1- ;-1 s m m x t1 ; s (3.7) x t1 ; s (3.8) D1 1 H /2 -kvatil Studetova t rozděleí s (-1) stupi volosti kvatil Studetova t rozděleí s (-1) stupi volosti - odhad směrodaté odchylky parametru přesosti obrobeé plochy Hodoty kvatilů Studetova rozděleí jsou apř. v [2], [3], [5]. V rámci řešeé problematiky jsou vybraé hodoty q - kvatilů Studetova t rozděleí pro stupňů volosti uvedey v příloze 3.1. Odhad směrodaté odchylky parametru přesosti obrobeé plochy se vyčíslí dle vztahu: 1 2 s (x i x) (3.9) 1 i Velikost dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy se ozačí I m2 a vyjádří se jako rozdíl příslušých mezí: s m H2 m D2 2t 1 α/2; (3.10) I m Statistický toleračí iterval parametru přesosti obrobeé plochy Statistický toleračí iterval parametru přesosti obrobeé plochy je iterval, pro který existuje pevá pravděpodobost vyjádřeá kofidečí úroví 1-, že pokryje alespoň podíl p souboru, z ěhož pochází áhodý výběr. Statistický toleračí iterval se staoví jako dvoustraý ebo jedostraý, jehož meze se vyčíslí a základě závislostí: L i2 = x - k 2. s (3.11) L s2 = x + k 2. s (3.12) L i1 = x - k 1. s (3.13) L s1 = x + k 1. s (3.14) L i 2 - dolí mez dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy L s 2 - horí mez dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy L i 1 - dolí mez jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy L s1 - horí mez jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy k 2 - součiitel pro meze dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy

6 k 1 - součiitel pro meze jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy Hodoty součiitelů k 2, k 1 závisí a počtu posuzovaých zkušebích obrobků, a zvoleém podílu základího souboru p, který staoveé meze mají pokrýt a a zvoleé kofidečí úrovi 1 -. Hodoty součiitelů k 2 (, p, 1- ) a k 1 (, p, 1- ) jsou apř. v [2], [4]. Vybraé hodoty součiitelů k 2 a k 1 pro ormálí rozděleí posuzovaé veličiy při ezámých hodotách m a jsou uvedey v přílohách 3.2 a 3.3. Velikost dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy I 2 se vyjádří jako rozdíl mezi příslušou horí a dolí mezí: I 2 = L s2 - L i2 = 2 k 2. s (3.15) 3.2. Nezámé rozděleí parametru přesosti obrobeé plochy V případě ezámého, avšak spojitého rozděleí hodoceých veliči je možé pro statistickou iterpretaci přesosti hodoceé obrobeé plochy využít ěkteré eparametrické metody. V rámci dále uvedeého postupu se statistická iterpretace vztahuje k extrémím hodotám vyšetřeých veliči specifikovaých parametrů přesosti. Na základě zjištěých parametrů přesosti obrobeé plochy a zkušebích obrobcích x 1, x 2... x i... x se staoví odhad středí hodoty parametru přesosti x a odhad směrodaté odchylky parametru přesosti s. Veličiy x a s se vyčíslí podle dříve uvedeých vztahů (3.1) a (3.9) Tyto odhady mají z hlediska dalšího postupu iformativí charakter. Statistická iterpretace parametrů přesosti se provede ve vztahu k miimálí a maximálí hodotě vyšetřeých parametrů přesosti x mi, x max, pro které formálě platí x mi = mi {x 1, x 2... x i... x } x max = max {x 1, x 2... x i... x } Z hlediska metodického postupu se rozliší jedostraě ebo dvoustraě omezeé rozptýleí hodoceých veliči, které souvisí s jedostraým a dvoustraým statistickým toleračím itervalem Jedostraě omezeé rozptýleí parametru přesosti Při jedostraě omezeém rozptýleí hodoceého parametru přesosti se vychází z předpokladu, že mezi počtem zkušebích obrobků, kofidečí úroví 1- a podílem p souboru ad x mi respektive pod x max platí vztah : p α (3.16) Řešeí se provede a základě aalýzy uvedeého vztahu, kdy se vychází z předem daých, ebo zvoleých dvou veliči a třetí se specifikuje. Obecě mohou astat tři základí, dále charakterizovaé případy. a) Pravděpodobost (1 α), že podíl souboru p je ad x mi (ebo pod x max )

7 1 α 1 p (3.17) b) Podíl souboru p, který se s pravděpodobostí (1 α) achází ad x mi (ebo pod x max ) p α (3.18) c) Počet zkušebích obrobků, při kterých podíl souboru p se s pravděpodobostí (1 α) achází v itervalu log 1 1 α log p (3.19) Vybraé případy těchto relací jsou pro orietaci uvedey v příloze Dvoustraě omezeé rozptýleí parametru přesosti Při dvoustraě omezeém rozptýleí hodoceých parametrů přesosti se vychází z předpokladu, že mezi počtem zkušebích obrobků, kofidečí úroví (1- ) a podílem p souboru, který se achází mezi x mi a x max platí vztah :. p 1 1. p α Obecě se řešeí daého problému provádí pro ásledující případy: a) Pravděpodobost (1 α), že podíl souboru p leží v itervalu < x mi, x max > 1 1 α 1. p 1. p Podíl souboru p, který se s pravděpodobostí (1- ) achází v itervalu < x mi, x max > (3.20) (3.21) b) Velikost podílu souboru p se staoví postupým řešeím rovice (3.22) s využitím relací uvedeých v příloze α 1. p 1. p (3.22) c) Počet zkušebích obrobků, při kterých podíl souboru p se s pravděpodobostí (1- ) achází v itervalu < x mi, x max > Hodota se určí postupým řešeím rovice (3.22) s využitím relací uvedeých v příloze 3.5.

8 Příloha 3.1 Vybraé hodoty q- kvatilů Studetova t rozděleí pro stupňů volosti t q; q 0,90 0,95 0,975 0,99 0, ,533 2,132 2,776 3,747 4, ,476 2,015 2,571 3,365 4, ,440 1,943 2,447 3,143 3, ,415 1,895 2,365 2,998 3, ,397 1,860 2,306 2,896 3, ,383 1,833 2,262 2,821 3, ,372 1,812 2,228 2,764 3, ,363 1,796 2,201 2,718 3, ,356 1,782 2,179 2,681 3, ,350 1,771 2,160 2,650 3, ,345 1,761 2,145 2,624 2, ,341 1,753 2,131 2,602 2, ,337 1,746 2,120 2,583 2, ,333 1,740 2,110 2,567 2, ,330 1,734 2,101 2,552 2, ,328 1,729 2,093 2,539 2, ,325 1,725 2,086 2,528 2, ,323 1,721 2,080 2,518 2, ,321 1,717 2,074 2,508 2, ,319 1,714 2,069 2,500 2, ,318 1,711 2,064 2,492 2, ,316 1,708 2,060 2,485 2, ,315 1,706 2,056 2,479 2, ,314 1,703 2,052 2,473 2, ,313 1,701 2,048 2,467 2, ,311 1,699 2,045 2,462 2, ,310 1,697 2,042 2,457 2,750

9 Příloha 3.2 Vybraé hodoty součiitelů k 2 (,p,1- ) pro staoveí dvoustraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 1- = 0,95 1- = 0,99 p = 0,90 p = 0,95 p = 0,99 p = 0,90 p = 0,95 p = 0,99 5 4,28 5,08 6,63 6,61 7,86 10,26 6 3,71 4,41 5,78 5,34 6,35 8,30 7 3,37 4,01 5,25 4,61 5,49 7,19 8 3,14 3,73 4,89 4,15 4,94 6,47 9 2,97 3,53 4,63 3,82 4,55 5, ,84 3,38 4,43 3,58 4,27 5, ,74 3,26 4,28 3,40 4,05 5, ,66 3,16 4,15 3,25 3,87 5, ,59 3,08 4,04 3,13 3,13 4, ,53 3,01 3,96 3,03 3,61 4, ,48 2,95 3,88 2,95 3,51 4, ,44 2,90 3,81 2,87 3,41 4, ,40 2,86 3,75 2,81 3,35 4, ,37 2,82 3,70 2,72 3,28 4, ,34 2,78 3,66 2,70 3,22 4, ,31 2,75 3,62 2,66 3,17 4, ,29 2,72 3,58 2,62 3,12 4, ,26 2,70 3,54 2,58 3,08 4, ,24 2,67 3,51 2,56 3,04 3, ,23 2,65 3,48 2,52 3,00 3, ,21 2,63 3,46 2,49 2,97 3, ,19 2,61 3,43 2,47 2,94 3, ,18 2,59 3,41 2,45 2,91 3, ,16 2,58 3,39 2,43 2,89 3, ,15 2,56 3,37 2,40 2,86 3, ,14 2,55 3,35 2,39 2,84 3,73

10 Příloha 3.3 Vybraé hodoty součiitelů k 1 (,p,1- ) pro staoveí jedostraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 1- = 0,95 1- = 0,99 p = 0,90 p = 0,95 p = 0,99 p = 0,90 p = 0,95 p = 0,99 5 3,41 4,21 5,75 6 3,01 3,71 5,07 4,41 5,41 7,33 7 2,76 3,40 4,64 3,86 4,73 6,41 8 2,58 3,19 4,36 3,50 4,29 5,81 9 2,45 3,03 4,14 3,24 3,97 5, ,36 2,91 3,98 3,05 3,74 5, ,28 2,82 3,85 2,90 3,56 4, ,21 2,74 3,75 2,77 3,41 4, ,16 2,67 3,66 2,68 3,29 4, ,11 2,61 3,59 2,59 3,19 4, ,07 2,57 3,52 2,52 3,10 4, ,03 2,52 3,46 2,46 3,03 4, ,00 2,49 3,41 2,41 2,96 4, ,97 2,45 3,37 2,36 2,91 3, ,95 2,42 3,33 2,32 2,86 3, ,93 2,40 3,30 2,28 2,81 3, ,91 2,37 3,26 2,24 2,77 3, ,89 2,35 3,23 2,21 2,73 3, ,87 2,33 3,21 2,18 2,69 3, ,85 2,31 3,18 2,15 2,66 3, ,84 2,29 3,16 2,13 2,63 3, ,82 2,27 3,13 2,11 2,60 3, ,81 2,26 3,12 2,09 2,58 3, ,80 2,24 3,09 2,07 2,56 3, ,79 2,23 3,08 2,05 2,54 3, ,78 2,22 3,06 2,03 2,52 3,45

11 Příloha 3.4 Vybraé případy relací p = pro jedostraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 1- p 0,50 0,75 0,90 0,95 0,99 0,999 0, , , , , , Příloha 3.5 Vybraé případy relací p -1 - (-1) p = pro dvoustraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 1- p 0,50 0,75 0,90 0,95 0,99 0,999 0, , , , , , PŘÍLOHY 3.1 Vybraé hodoty q- kvatilů Studetova t rozděleí pro stupňů volosti t q; 3.2 Vybraé hodoty součiitelů k 2 (,p,1- ) pro staoveí dvoustraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 3.3 Vybraé hodoty součiitelů k 1 (,p,1- ) pro staoveí jedostraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 3.4 Vybraé případy relací p = pro jedostraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 3.5 Vybraé případy relací p -1 - (-1) p = pro dvoustraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň

12 LITERATURA [1] KOCMAN, K. a PROKOP, J. Techická diagostika přesosti obráběí. I: Sborík předášek Meziárodí koferece TD DIAGON 96, s , Zlí. [2] LIKEŠ,J. a LAGA,J.(1978). Základí statistické tabulky. SNTL Praha. [3] ČSN ISO 2602 (1993). Statistická iterpretace výsledků zkoušek. Odhad průměru. Kofidečí iterval. [4] ČSN ISO 3207 (1993). Statistická iterpretace údajů. Staoveí statistického toleračího itervalu. [5] ČSN (1985). Aplikovaá statistika. Pravidla staoveí odhadů a kofidečích mezí pro parametry ormálího rozděleí.

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Expertní Systémy. Tvorba aplikace

Expertní Systémy. Tvorba aplikace Tvorba aplikace Typ systému malý velký velmi velký Počet pravidel 50-350 500-3000 10000 Počet člověkoroků 0.3-0.5 1-2 3-5 Cea projektu (v tis.$) 40-60 500-1000 2000-5000 Harmo, Kig (1985) Vytvořeí expertího

Více

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 28 Číslo 5, 2009 ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ L. Papírík

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE

INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES CZ ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE NORD DRIVESYSTEMS Itelliget Drivesystems, Worldwide Services SERVO-APLIKACE DYNAMICKÉ POLOHOVÁNÍ Regálový sklad v logistickém

Více

Disertační práce AKUMULACE TEPLA VE VÝPOČTU TEPELNÉ ZÁTĚŽE KLIMATIZOVANÝCH PROSTORŮ

Disertační práce AKUMULACE TEPLA VE VÝPOČTU TEPELNÉ ZÁTĚŽE KLIMATIZOVANÝCH PROSTORŮ České vysoké učeí techické v Praze Fakulta stroí Ústav techiky prostředí Disertačí práce AKUMULACE TEPLA VE VÝPOČTU TEPELNÉ ZÁTĚŽE KLIMATIZOVANÝCH PROSTORŮ Ig. Michal Duška Studií obor: Techika prostředí

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013 KMB systems, s.r.o. Dr. M. Horákové 559, 460 06 Liberec 7, Czech Republic tel. +420 485 30 34, fax +420 482 736 896 email : kmb@kmb.cz, iteret : www.kmb.cz SML33 / SMM33 / SMN3 Multifukčí měřící přístroje

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

pro systémy POCT analytických dat a tedy jejich vzájemn jemné kompatibility rodním Osnova sdělení Zásadní důvody provádění EHK

pro systémy POCT analytických dat a tedy jejich vzájemn jemné kompatibility rodním Osnova sdělení Zásadní důvody provádění EHK Exterí hodoceí kvality pro systémy POCT (apř. staoveí CRP, HbA 1c...) Josef Kratochvíla, Marek Budia SEKK Pardubice Iteret: http://www.sekk.cz e-mail: sekk@sekk.cz Telefo: 466 530 230 Fax: 466 530 824

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Transfer inovácií 14/2009 2009

Transfer inovácií 14/2009 2009 Trasfer iovácií 14/2009 2009 OSOUZENÍ VNITŘNĚ-ROCESOVÝCH JEVŮ V OTIMALIZACI KLASICKÝCH KOVOOBRÁBĚCÍCH ROCESŮ ASSESSMENT O IN-ROCESS HENOMENA IN OTIMISING CLASSICAL METAL MACHINING ROCESSES Ig. Jaroslav

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky,

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky, Výročí zpráva 2O13 z z z Úvodí slovo geerálího ředitele Vážeí parteři České exportí baky, jistě jste již zazameali, že ai miulý rok ebyl pro baku lehký. Věřím však, že většia z vás pochopila pravou podstatu

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

DOPRAVNÍ STAVBY A KONSTRUKCE

DOPRAVNÍ STAVBY A KONSTRUKCE 0o Dopraví stavb a kostrukce 0o DOPRVNÍ STVBY KONSTRUKCE Rozsah výuk: 7 týdů * hod/týde 4 hodi cvičeí hodia obsah cvičeí Úvod; podmík pro uděleí zápočtu Používaé orm Přehled průřezů používaých ve stavebích

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Mezinárodní konferen. 19. - 21. října 2011. Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov.

Mezinárodní konferen. 19. - 21. října 2011. Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov. ce Meziádí kofere h suvi ýc st e jů zd í vá Využí 19. - 21. říja 2011 Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov.cz ORGANIZÁTOŘI Horí Nová Ves 108 507 81 Lázě Bělohrad

Více

Model péče o duševně nemocné

Model péče o duševně nemocné Model péče o duševě emocé v regiou hlavího města Prahy Zázam jedáí závěrečé koferece projektu Vzděláváí odboríků, státí správy a samosprávy v oblasti trasformace istitucioálí péče o duševě emocé Praha,

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. říjen 2008. číslo 8. ročník 8. Přehled terapie revmatických onemocnění u dětí

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. říjen 2008. číslo 8. ročník 8. Přehled terapie revmatických onemocnění u dětí VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost říje 2008 číslo 8 ročík 8 Přehled terapie revmatických oemocěí u dětí Primárí systémové vaskulitidy u dětí Nadměrá kloubí volost u dětí A Té

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

V bûr svodiãû pro informaãnû-technické sítû

V bûr svodiãû pro informaãnû-technické sítû V bûr svodiãû pro iformaãû-techické sítû Zkušebí apěťové a proudové impulsy podle ČSN EN 663- kategorie způsob zkoušky impulsí apětí impulsí proud C strmé impulsy 0,5 kv ebo kv (,/50 μs) C strmé impulsy

Více

4 Získejte to nejlepší. Všestranně využitelný prostor se stylovým exteriérem. 6 Poznejte své druhé já. Připravte se na zážitek z dynamické jízdy.

4 Získejte to nejlepší. Všestranně využitelný prostor se stylovým exteriérem. 6 Poznejte své druhé já. Připravte se na zážitek z dynamické jízdy. Mazda2 Mazda2 4 Získejte to ejlepší Všestraě využitelý prostor se stylovým exteriérem. 6 Pozejte své druhé já Připravte se a zážitek z dyamické jízdy. 8 Prostor a všestraá využitelost Flexibilí ložý prostor

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost březe 2011 číslo 3 ročík 11 Vrozeé vývojové vady uropoetického traktu Základí vyšetřeí fukcí uropoetického traktu Nejčastější kýly v dětském

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Zpracování a prezentace výsledků měření (KFY/ZPM)

Zpracování a prezentace výsledků měření (KFY/ZPM) Jihočká uivrzita Pdagogická fakulta katdra fyziky Zpracováí a prztac výldků měří (KFY/ZPM) tručý učbí tt Pavl Kříž Čké Budějovic 005 Úvod Přdmět Zpracováí a prztac výldků měří (ZPM) volě avazuj a přdmět

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

POZN AMKA K V YPO CTU BAYESOVSKEHO RIZIKA Ales LINKA TU Liberec, KPDM Abstrakt. V teto praci porovame dva bayesovske odhady fukce spolehlivosti v expoecialm rozdele z pohledu bayesovskeho rizika vypo-

Více

Sockelschienen-Montage. Tepelně izolační systémy Capatect. Návod k montáži 2013

Sockelschienen-Montage. Tepelně izolační systémy Capatect. Návod k montáži 2013 Sockelschiee-Motage Tepelě izolačí systémy Capatect Návod k motáži 2013 1 Předmluva Capatect je jedou z čelích začek a trhu tepelě izolačích systémů (ETICS). V tomto motážím postupu jsou popsáy jedotlivé

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu Attila GAÁL Fakulta matematiky fyziky a iformatiky UK Bratislava Igác BUGÁR Duša VELIČ Medziárodé laserové cetrum Bratislava Fratišek UHEREK Medziárodé laserové cetrum a Katedra mikroelektroiky FEI STU

Více

Vlastní hodnocení školy

Vlastní hodnocení školy Vlastí hodoceí školy dle vyhlášky 15/2005 Sb., v platém zěí, kterou se staoví áležitosti dlouhodobých záměrů, výročích zpráv a vlastí hodoceí školy. Škola: Základí umělecká škola Plzeň, Sokolovská 30,

Více