VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOCE PŘESNÉ METODY OBRÁBĚNÍ"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství, Vysoké učeí techické v Brě, Techická 2896/2, Bro ABSTRAKT Příspěvek se zabývá aalýzou přesosti a kvalitou obrobeých ploch ve výrobím procesu, statistickou iterpretací parametrů přesosti obrobeých ploch, požadavky a přístrojové vybaveí pro kotrolu přesosti a jakosti těchto ploch, dosažitelou přesostí a ekoomickou retabilitou vysoce přesých metod obráběí. Dále popisuje vliv řezých podmíek a časovou a ceovou áročost produkce, staovuje požadavky a obráběcí stroje pro vysoce přesé metody obráběí a avrhuje optimalizací techologických procesů vysoce přesého obráběí. Zvláští pozorost je věováa statistickým hodoceím stability velmi přesých výrobích procesů a doporučeím pro zaváděí a využíváí vysoce přesých metod obráběí ve výrobě. Klíčová slova: přesé metody obráběí, optimalizace, hodoceí stability ÚVOD Předmětem této části projektu je aalýza a kokretizace řešeé problematiky v oblasti reálé aplikace v provozích podmíkách. Jedotlivé oblasti jsou zaměřey a techologickou charakteristiky a požadavky a příslušé techologické systémy. V mezích možostí jsou zpracovaé části doplěy kokrétími příklady pro sazší orietaci poteciálích uživatelů. Cosultig poit pro rozvoj spolupráce v oblasti řízeí iovací a trasferu techologií

2 1. PŘESNOST A KVALITA OBROBENÝCH PLOCH Přesost a kvalita obrobeé plochy představuje itegrovaý výstup daého obráběcího procesu. Parametry přesosti a kvality posuzovaé obrobeé plochy se kokretizují jako parametry přesosti, k imž patří zejméa: úchylka rozměru úchylka tvaru úchylka polohy struktura povrchu - úchylka od jmeovité hodoty - úchylka přímosti, úchylka kruhovitosti, úchylka válcovitosti - úchylka rovoběžosti, úchylka kolmosti, úchylka souososti - průměrá aritmetická úchylka Ra, ejvětší výška profilu Rz V ěkterých speciálích případech se mohou kvatifikovat další parametry jako druh a velikost apětí v povrchové vrstvě obrobeé plochy, mikrotvrdost povrchové vrstvy Specifikovaé parametry přesosti a kvality obrobeé plochy závisí a moha techologických faktorech, které lze z hlediska jejich charakteru čleit a: systematicky kostatí - chyba v seřízeí obráběcího stroje, úchylka rozměru a tvaru ástroje systematicky proměé - opotřebeí ástroje, tepelé deformace obráběcího systému áhodé - rozptýleí přídavků a obráběí, rozptýleí vlastostí materiálu Parametry přesosti a kvality obrobeé plochy se kvatifikují pro idetifikovaý obráběcí proces, kdy se idetifikuje zejméa obrobek, obráběcí metoda, obráběcí stroj, ástroj a řezé podmíky. Přesost obrobeé plochy je obecě fukcí přesosti a techologických vlastostí obráběcího stroje, ástroje, obrobku, upíače a řezých podmíek. Obráběcí stroj má z hlediska přesosti obrobeé plochy obvykle priorití postaveí a jeho vlastosti zpravidla rozhodujícím způsobem ovlivňují realizovaé parametry přesosti obrobeé plochy. 2. KONTROLA PŘESNOSTI A KVALITY OBROBENÉHO POVRCHU VE VÝROBNÍM PROCESU Kotrola a měřeí. Měřeí rozměrů. Měřeí tvarů. Měřeí úchylek polohy. Měřeí parametrů struktury povrchu (rozpracováo). 3. STATISTICKÁ INTERPRETACE PARAMETRŮ PŘESNOSTI OBROBENÉ PLOCHY Přesost obrobeé plochy se v závislosti a techologických aspektech idetifikovaého obráběcího procesu kvatifikuje a základě obrobeí určitého počtu vhodě zvoleých zkušebích obrobků. Pro zobecěí výsledků prováděé aalýzy je důležitá idetifikace podmíek, za kterých byly kvatifikovaé parametry přesosti obrobeé plochy vyšetřey. Z praktického hlediska se idetifikuje zejméa obráběcí metodu, obráběcí stroj, zkušebí obrobek, ástroj a

3 řezé podmíky. Pro idetifikovaý obráběcí proces a pro hodoceé plochy zkušebího obrobku se specifikují parametry přesosti a avrhe se metodický postup jejich měřeí. Součástí měřících postupů jsou rověž základí charakteristiky použitých měřících přístrojů. Úchylky obrobeé plochy mají vesměs charakter spojitých áhodých proměých a při kvatifikaci přesosti obrobeé plochy se jejich hodoty vyšetří a základě obrobeí určitého počtu zkušebích obrobků. Počet zkušebích obrobků se obecě ozačí a volí se s ohledem a očekávaý průběh a tredy posuzovaé úchylky a charakter obráběcího procesu. Pro ustáleé obráběcí procesy, kdy techologické vlivy a přesost jsou převážě áhodého charakteru, je možé doporučit 5. Pro případ, kdy je zřejmý tred změy parametrů přesosti a kdy převažují systematicky proměé vlivy, bude třeba volit větší počet zkušebích obrobků. Statistická iterpretace parametrů přesosti daé obrobeé plochy se provede a základě předpokladu o průběhu a tredech hodoceých veliči. Formulace těchto předpokladů případě hypotéz vychází ze zalosti podobých či aalogických obráběcích procesů. Metodické postupy a výstupí závěry celé aalýzy se použijí v závislosti a vstupích předpokladech a hypotézách. Z hlediska řešeé problematiky se rozliší obráběcí procesy, které korespodují s určitým statistickým rozděleím hodoceých veliči a obráběcí procesy, u ichž je rozděleí posuzovaých veliči ezámé. Při aalýze obráběcích procesů se z hlediska parametrů jejich přesosti často pracuje s ormálím rozděleím, přičemž hypotéza ormálího rozděleí uvažovaé áhodé veličiy může být ověřea vhodým testem ormality. 3.1 Normálí rozděleí parametru přesosti obrobeé plochy Normálí rozděleí parametrů přesosti obrobeé plochy se uplatí zejméa v těch případech, kdy převažuje áhodý charakter techologických vlivů a kdy systematicky proměé vlivy jsou během obráběcího procesu korigováy ebo elimiováy. Uvedeé podmíky jsou splěy apř. pro obráběcí proces realizovaý a CNC obráběcím stroji s diagostikou stavu ástroje a tepelých deformací stroje ebo pro obráběcí proces realizovaý a uiverzálím obráběcím stroji s kvalifikovaou obsluhou v malosériové výrobě. Výchozí údaje pro statistickou iterpretaci jsou parametry přesosti obrobeé plochy realizovaé a zkušebích obrobcích, které se obecě ozačí x 1, x 2... x i... x. Tyto veličiy se z hlediska dalšího statistického zpracováí považují za áhodý výběr z ormálě rozděleého základího souboru, který charakterizuje středí hodota m a směrodatá odchylka. Metodický postup se rozliší v závislosti a tom, zda jsou ebo ejsou zámé parametry ormálího rozděleí posuzovaých parametrů přesosti obrobeé plochy. Obvykle však ai středí hodota m a ai směrodatá odchylka ejsou zámé a proto se pracuje s příslušými odhady. Pro zvoleé parametry přesosti obrobeé plochy se v řešeém případu kvatifikuje odhad středí hodoty, kofidečí iterval středí hodoty a statistický toleračí iterval.

4 Odhad středí hodoty parametru přesosti obrobeé plochy Odhad středí hodoty parametru přesosti obrobeé plochy se ozačí x a vyjádří se jako výběrový průměr defiovaý vztahem: 1 x x (3.1) i i Kofidečí iterval středí hodoty parametru přesosti obrobeé plochy Odhad středí hodoty parametru přesosti obrobeé plochy x je však sám o sobě také áhodou veličiou. V souvislosti s touto skutečostí se určí dvoustraý ebo jedostraý kofidečí iterval pro středí hodotu parametru přesosti obrobeé plochy. Meze kofidečího itervalu limitují skutečou velikost středí hodoty parametru přesosti obrobeé plochy s určitou předem zvoleou pravděpodobostí. Dvoustraý kofidečí iterval středí hodoty parametru přesosti obrobeé plochy je ohraiče mezemi, pro které platí: P ( m D2 m m H2 ) = 1 - (3.2) m D 2 -dolí mez dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy m H 2 - horí mez dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy m - středí hodota parametru přesosti obrobeé plochy kofidečí úroveň Jedostraé kofidečí itervaly středí hodoty parametru přesosti obrobeé plochy jsou ohraičey mezemi, pro které platí: m D 1 m H 1 P ( m D1 m ) = 1 - (3.3) P ( m m H1 ) = 1 - (3.4) - dolí mez jedostraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy - horí mez jedostraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy Meze kofidečích itervalů středí hodoty parametru přesosti obrobeé plochy se vyčíslí a základě odhadu středí hodoty x a odhadu směrodaté odchylky s dle vztahů: s x t 1 α/2; (3.5) m D2 1 s x t1 α/2; (3.6) m H2 1

5 t 1- /2;-1 t 1- ;-1 s m m x t1 ; s (3.7) x t1 ; s (3.8) D1 1 H /2 -kvatil Studetova t rozděleí s (-1) stupi volosti kvatil Studetova t rozděleí s (-1) stupi volosti - odhad směrodaté odchylky parametru přesosti obrobeé plochy Hodoty kvatilů Studetova rozděleí jsou apř. v [2], [3], [5]. V rámci řešeé problematiky jsou vybraé hodoty q - kvatilů Studetova t rozděleí pro stupňů volosti uvedey v příloze 3.1. Odhad směrodaté odchylky parametru přesosti obrobeé plochy se vyčíslí dle vztahu: 1 2 s (x i x) (3.9) 1 i Velikost dvoustraého kofidečího itervalu středí hodoty parametru přesosti obrobeé plochy se ozačí I m2 a vyjádří se jako rozdíl příslušých mezí: s m H2 m D2 2t 1 α/2; (3.10) I m Statistický toleračí iterval parametru přesosti obrobeé plochy Statistický toleračí iterval parametru přesosti obrobeé plochy je iterval, pro který existuje pevá pravděpodobost vyjádřeá kofidečí úroví 1-, že pokryje alespoň podíl p souboru, z ěhož pochází áhodý výběr. Statistický toleračí iterval se staoví jako dvoustraý ebo jedostraý, jehož meze se vyčíslí a základě závislostí: L i2 = x - k 2. s (3.11) L s2 = x + k 2. s (3.12) L i1 = x - k 1. s (3.13) L s1 = x + k 1. s (3.14) L i 2 - dolí mez dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy L s 2 - horí mez dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy L i 1 - dolí mez jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy L s1 - horí mez jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy k 2 - součiitel pro meze dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy

6 k 1 - součiitel pro meze jedostraého statistického toleračího itervalu parametru přesosti obrobeé plochy Hodoty součiitelů k 2, k 1 závisí a počtu posuzovaých zkušebích obrobků, a zvoleém podílu základího souboru p, který staoveé meze mají pokrýt a a zvoleé kofidečí úrovi 1 -. Hodoty součiitelů k 2 (, p, 1- ) a k 1 (, p, 1- ) jsou apř. v [2], [4]. Vybraé hodoty součiitelů k 2 a k 1 pro ormálí rozděleí posuzovaé veličiy při ezámých hodotách m a jsou uvedey v přílohách 3.2 a 3.3. Velikost dvoustraého statistického toleračího itervalu parametru přesosti obrobeé plochy I 2 se vyjádří jako rozdíl mezi příslušou horí a dolí mezí: I 2 = L s2 - L i2 = 2 k 2. s (3.15) 3.2. Nezámé rozděleí parametru přesosti obrobeé plochy V případě ezámého, avšak spojitého rozděleí hodoceých veliči je možé pro statistickou iterpretaci přesosti hodoceé obrobeé plochy využít ěkteré eparametrické metody. V rámci dále uvedeého postupu se statistická iterpretace vztahuje k extrémím hodotám vyšetřeých veliči specifikovaých parametrů přesosti. Na základě zjištěých parametrů přesosti obrobeé plochy a zkušebích obrobcích x 1, x 2... x i... x se staoví odhad středí hodoty parametru přesosti x a odhad směrodaté odchylky parametru přesosti s. Veličiy x a s se vyčíslí podle dříve uvedeých vztahů (3.1) a (3.9) Tyto odhady mají z hlediska dalšího postupu iformativí charakter. Statistická iterpretace parametrů přesosti se provede ve vztahu k miimálí a maximálí hodotě vyšetřeých parametrů přesosti x mi, x max, pro které formálě platí x mi = mi {x 1, x 2... x i... x } x max = max {x 1, x 2... x i... x } Z hlediska metodického postupu se rozliší jedostraě ebo dvoustraě omezeé rozptýleí hodoceých veliči, které souvisí s jedostraým a dvoustraým statistickým toleračím itervalem Jedostraě omezeé rozptýleí parametru přesosti Při jedostraě omezeém rozptýleí hodoceého parametru přesosti se vychází z předpokladu, že mezi počtem zkušebích obrobků, kofidečí úroví 1- a podílem p souboru ad x mi respektive pod x max platí vztah : p α (3.16) Řešeí se provede a základě aalýzy uvedeého vztahu, kdy se vychází z předem daých, ebo zvoleých dvou veliči a třetí se specifikuje. Obecě mohou astat tři základí, dále charakterizovaé případy. a) Pravděpodobost (1 α), že podíl souboru p je ad x mi (ebo pod x max )

7 1 α 1 p (3.17) b) Podíl souboru p, který se s pravděpodobostí (1 α) achází ad x mi (ebo pod x max ) p α (3.18) c) Počet zkušebích obrobků, při kterých podíl souboru p se s pravděpodobostí (1 α) achází v itervalu log 1 1 α log p (3.19) Vybraé případy těchto relací jsou pro orietaci uvedey v příloze Dvoustraě omezeé rozptýleí parametru přesosti Při dvoustraě omezeém rozptýleí hodoceých parametrů přesosti se vychází z předpokladu, že mezi počtem zkušebích obrobků, kofidečí úroví (1- ) a podílem p souboru, který se achází mezi x mi a x max platí vztah :. p 1 1. p α Obecě se řešeí daého problému provádí pro ásledující případy: a) Pravděpodobost (1 α), že podíl souboru p leží v itervalu < x mi, x max > 1 1 α 1. p 1. p Podíl souboru p, který se s pravděpodobostí (1- ) achází v itervalu < x mi, x max > (3.20) (3.21) b) Velikost podílu souboru p se staoví postupým řešeím rovice (3.22) s využitím relací uvedeých v příloze α 1. p 1. p (3.22) c) Počet zkušebích obrobků, při kterých podíl souboru p se s pravděpodobostí (1- ) achází v itervalu < x mi, x max > Hodota se určí postupým řešeím rovice (3.22) s využitím relací uvedeých v příloze 3.5.

8 Příloha 3.1 Vybraé hodoty q- kvatilů Studetova t rozděleí pro stupňů volosti t q; q 0,90 0,95 0,975 0,99 0, ,533 2,132 2,776 3,747 4, ,476 2,015 2,571 3,365 4, ,440 1,943 2,447 3,143 3, ,415 1,895 2,365 2,998 3, ,397 1,860 2,306 2,896 3, ,383 1,833 2,262 2,821 3, ,372 1,812 2,228 2,764 3, ,363 1,796 2,201 2,718 3, ,356 1,782 2,179 2,681 3, ,350 1,771 2,160 2,650 3, ,345 1,761 2,145 2,624 2, ,341 1,753 2,131 2,602 2, ,337 1,746 2,120 2,583 2, ,333 1,740 2,110 2,567 2, ,330 1,734 2,101 2,552 2, ,328 1,729 2,093 2,539 2, ,325 1,725 2,086 2,528 2, ,323 1,721 2,080 2,518 2, ,321 1,717 2,074 2,508 2, ,319 1,714 2,069 2,500 2, ,318 1,711 2,064 2,492 2, ,316 1,708 2,060 2,485 2, ,315 1,706 2,056 2,479 2, ,314 1,703 2,052 2,473 2, ,313 1,701 2,048 2,467 2, ,311 1,699 2,045 2,462 2, ,310 1,697 2,042 2,457 2,750

9 Příloha 3.2 Vybraé hodoty součiitelů k 2 (,p,1- ) pro staoveí dvoustraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 1- = 0,95 1- = 0,99 p = 0,90 p = 0,95 p = 0,99 p = 0,90 p = 0,95 p = 0,99 5 4,28 5,08 6,63 6,61 7,86 10,26 6 3,71 4,41 5,78 5,34 6,35 8,30 7 3,37 4,01 5,25 4,61 5,49 7,19 8 3,14 3,73 4,89 4,15 4,94 6,47 9 2,97 3,53 4,63 3,82 4,55 5, ,84 3,38 4,43 3,58 4,27 5, ,74 3,26 4,28 3,40 4,05 5, ,66 3,16 4,15 3,25 3,87 5, ,59 3,08 4,04 3,13 3,13 4, ,53 3,01 3,96 3,03 3,61 4, ,48 2,95 3,88 2,95 3,51 4, ,44 2,90 3,81 2,87 3,41 4, ,40 2,86 3,75 2,81 3,35 4, ,37 2,82 3,70 2,72 3,28 4, ,34 2,78 3,66 2,70 3,22 4, ,31 2,75 3,62 2,66 3,17 4, ,29 2,72 3,58 2,62 3,12 4, ,26 2,70 3,54 2,58 3,08 4, ,24 2,67 3,51 2,56 3,04 3, ,23 2,65 3,48 2,52 3,00 3, ,21 2,63 3,46 2,49 2,97 3, ,19 2,61 3,43 2,47 2,94 3, ,18 2,59 3,41 2,45 2,91 3, ,16 2,58 3,39 2,43 2,89 3, ,15 2,56 3,37 2,40 2,86 3, ,14 2,55 3,35 2,39 2,84 3,73

10 Příloha 3.3 Vybraé hodoty součiitelů k 1 (,p,1- ) pro staoveí jedostraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 1- = 0,95 1- = 0,99 p = 0,90 p = 0,95 p = 0,99 p = 0,90 p = 0,95 p = 0,99 5 3,41 4,21 5,75 6 3,01 3,71 5,07 4,41 5,41 7,33 7 2,76 3,40 4,64 3,86 4,73 6,41 8 2,58 3,19 4,36 3,50 4,29 5,81 9 2,45 3,03 4,14 3,24 3,97 5, ,36 2,91 3,98 3,05 3,74 5, ,28 2,82 3,85 2,90 3,56 4, ,21 2,74 3,75 2,77 3,41 4, ,16 2,67 3,66 2,68 3,29 4, ,11 2,61 3,59 2,59 3,19 4, ,07 2,57 3,52 2,52 3,10 4, ,03 2,52 3,46 2,46 3,03 4, ,00 2,49 3,41 2,41 2,96 4, ,97 2,45 3,37 2,36 2,91 3, ,95 2,42 3,33 2,32 2,86 3, ,93 2,40 3,30 2,28 2,81 3, ,91 2,37 3,26 2,24 2,77 3, ,89 2,35 3,23 2,21 2,73 3, ,87 2,33 3,21 2,18 2,69 3, ,85 2,31 3,18 2,15 2,66 3, ,84 2,29 3,16 2,13 2,63 3, ,82 2,27 3,13 2,11 2,60 3, ,81 2,26 3,12 2,09 2,58 3, ,80 2,24 3,09 2,07 2,56 3, ,79 2,23 3,08 2,05 2,54 3, ,78 2,22 3,06 2,03 2,52 3,45

11 Příloha 3.4 Vybraé případy relací p = pro jedostraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 1- p 0,50 0,75 0,90 0,95 0,99 0,999 0, , , , , , Příloha 3.5 Vybraé případy relací p -1 - (-1) p = pro dvoustraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 1- p 0,50 0,75 0,90 0,95 0,99 0,999 0, , , , , , PŘÍLOHY 3.1 Vybraé hodoty q- kvatilů Studetova t rozděleí pro stupňů volosti t q; 3.2 Vybraé hodoty součiitelů k 2 (,p,1- ) pro staoveí dvoustraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 3.3 Vybraé hodoty součiitelů k 1 (,p,1- ) pro staoveí jedostraého statistického toleračího itervalu - ormálí rozděleí - m a ezámé 3.4 Vybraé případy relací p = pro jedostraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň 3.5 Vybraé případy relací p -1 - (-1) p = pro dvoustraě omezeé rozptýleí parametrů přesosti - počet zkušebích obrobků, p - podíl souboru, 1- - kofidečí úroveň

12 LITERATURA [1] KOCMAN, K. a PROKOP, J. Techická diagostika přesosti obráběí. I: Sborík předášek Meziárodí koferece TD DIAGON 96, s , Zlí. [2] LIKEŠ,J. a LAGA,J.(1978). Základí statistické tabulky. SNTL Praha. [3] ČSN ISO 2602 (1993). Statistická iterpretace výsledků zkoušek. Odhad průměru. Kofidečí iterval. [4] ČSN ISO 3207 (1993). Statistická iterpretace údajů. Staoveí statistického toleračího itervalu. [5] ČSN (1985). Aplikovaá statistika. Pravidla staoveí odhadů a kofidečích mezí pro parametry ormálího rozděleí.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny.

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny. 3689/101/13-1 - o ceě : Bytu č. 2654/16 v č. p. 2654 v bloku č. 10 složeém z domů č.p. 2651, 2652, 2653, 2654 a 2655 a pozemcích p. č. 2450, 2449, 2448, 2447 a 2446. včetě příslušeství v katastrálím území

Více

Přehled trhu snímačů teploty do průmyslového prostředí

Přehled trhu snímačů teploty do průmyslového prostředí símače teploty Přehled trhu símačů teploty do průmyslového prostředí Přehled trhu símačů teploty a str. 36 a 37 představuje v přehledé tabulce abídku símačů teploty do průmyslového prostředí, které jsou

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č. Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík stavebí obzor 9 10/2014 125 Vliv tvářeí za studea a pevostí charakteristiky korozivzdorých ocelí Ig. Ja Mařík Ig. Michal Jadera, Ph.D. ČVUT v Praze Fakulta stavebí Čláek uvádí výsledky tahových zkoušek

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

K UTAHOVÁNÍ ŠROUBŮ TŘECÍCH SPOJŮ

K UTAHOVÁNÍ ŠROUBŮ TŘECÍCH SPOJŮ K UTAHOVÁNÍ ŠROUBŮ TŘECÍCH SPOJŮ F. Wald 1, Z. Sokol 1, V. Vrzba 2 a D. Gregor 1 ČVUT, Fakulta stavebí, Katedra ocelových kostrukcí, Thákurova 7, 166 29 Praha, ČR Wald@fsv.cvut.cz Sokol@fsv.cvut.cz Dalibor.Gregor@fsv.cvut.cz

Více

Modul Strategie. 2006... MTJ Service

Modul Strategie. 2006... MTJ Service Představeí obsahuje dvě základí součásti, a to maažerskou (pláováí cash-flow, rozšířeé statistiky) a pracoví (řešeí work-flow). Základem maažerské oblasti je pláováí cash-flow (pláováí fiačího toku firmou).

Více

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M Multifukčíměřícípřístroje NA-45P / NA-45L VLL VLN A W var PF/cos THD Hz/ C k M Přístroje jsou určey pro měřeí a sledováí sdružeých a fázových apětí, proudů, čiých a jalových výkoů, účiíků, THD apětí a

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Expertní Systémy. Tvorba aplikace

Expertní Systémy. Tvorba aplikace Tvorba aplikace Typ systému malý velký velmi velký Počet pravidel 50-350 500-3000 10000 Počet člověkoroků 0.3-0.5 1-2 3-5 Cea projektu (v tis.$) 40-60 500-1000 2000-5000 Harmo, Kig (1985) Vytvořeí expertího

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

ANALÝZA SRÁŽKOVÝCH MAXIM

ANALÝZA SRÁŽKOVÝCH MAXIM Rožovský, J., Litschma, T. (ed): Semiář Extrémy počasí a podebí, Bro,. březa 4, ISBN 8-8669-2- Marie Budíková, Ladislav Budík Summary Aalysis of precipitatio maxima ANALÝZA SRÁŽKOVÝCH MAXIM Database of

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

Technologie výpočtu vybraných parametrů tíhového pole Země

Technologie výpočtu vybraných parametrů tíhového pole Země Techologie výpočtu vybraých parametrů tíhového pole Země ÚVOD Cílem bylo vytvořit a ověřit techologii pro výpočet parametrů tíhového pole Země pomocí webové aplikace. Techologie umožňuje výpočet parametrů

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

v kat. situaci pozemek je projektu vyznačeno uváděn ve

v kat. situaci pozemek je projektu vyznačeno uváděn ve Pomocá tbulk pro kotrolu formálí správosti úplosti projektu OPŽP pro příprvu věcého hodoceí verze pro směr podpory 6.4. Odvozeo dle podmíek 6. výzvy v r. 2008. Jedá se o ezávzou epoviou pomůcku pro práci

Více

Aplikace a vývoj systému NORMAL v oblasti ocenění radiační zátěže populace při normálním provozu jaderných zařízení

Aplikace a vývoj systému NORMAL v oblasti ocenění radiační zátěže populace při normálním provozu jaderných zařízení ÚJV Řež a.s. divize ENERGOPROJEKT PRAHA Husiec-Řež, čp. 130, PSČ 250 68 Stavba - akce Hodoceí SW pro SÚJB dle VDS 030 Řídící útvar 2500 Objekt-provozí soubor - Zpracovatelský útvar 2501 Skartačí zak V15

Více

ZÁVĚREČNÉ BAKALÁŘSKÉ PRÁCE

ZÁVĚREČNÉ BAKALÁŘSKÉ PRÁCE ZÁVĚREČNÉ BAKALÁŘSKÉ PRÁCE Úspěšě zakočeé studium předpokládá kromě absolvováí všech předmětů teoretického základu také zpracováí bakalářské práce. Je to vaše vizitka, vaše osobí a origiálí dílo, věujte

Více

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT VLIV ENVIRONMENTÁLNÍ LEGISLATIVY NA HODNOTU TECHNICKÝCH ZAŘÍZENÍ PODNIKU Paseka P., Mareček J. Departmet of

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

METODIKA OPTIMALIZACE KONSTRUKCÍ S POŽADOVANOU ÚNAVOVOU ŽIVOTNOSTÍ

METODIKA OPTIMALIZACE KONSTRUKCÍ S POŽADOVANOU ÚNAVOVOU ŽIVOTNOSTÍ METODIKA OPTIMALIZACE KONSTRUKCÍ S POŽADOVANOU ÚNAVOVOU ŽIVOTNOSTÍ Miroslav Balda 1 1 Úvod S kocem roku 1997 skočilo i řešeí stejojmeého tříletého gratového projektu GAČR 11/95/87 Na rozdíl od dosavadích

Více