Regulace translace REGULACE TRANSLACE PROTEINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. 1. Translační aparát. 2. Translace

Rozměr: px
Začít zobrazení ze stránky:

Download "Regulace translace REGULACE TRANSLACE PROTEINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. 1. Translační aparát. 2. Translace"

Transkript

1 Regulace translace 1. Translační aparát 2. Translace 3. Proteiny a jejich posttranslační modifikace 4. Lokalizace bílkovin v buňce a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE PROTEINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE Aminokyseliny Aminokyseliny Aminokyseliny = velmi malé biomolekuly, mw. 135 daltonů Ø Jsou stavebními kameny proteinů Ø Kostra aminokyselin určuje primární sekvenci proteinů Ø Vedlejší řetězce určují biochemické vlastnosti proteinů Ø Polární řetězce směřují na povrch proteinu a mohou reagovat s vodným prostředím buňky Základní složení všech aminokyselin 1

2 Proteiny, vytváření polymerních řetězcú Primární struktura proteinů peptidové vazby mezi aminokyselinami Proteiny primární struktura Peptidové vazby: mezi 2 aminokyselinami aminokyselin = peptid vetší počty aminokyselin uspořádaných do vyšších struktur = polypeptid N- a C- terminílní konce jsou ve fyziologickém ph ionizovány R=reaktivní místa = navazování vedlejších řetězců 3. Proteiny - primární struktura Peptidové, pevné kovalentní vazby = řetězení aminokyselin určené geneticky 2

3 3. Proteiny- sekundární struktura Bílkoviny, typy vazeb v polymérech Sekvence aminokyselin samouspořádávání nascentní bílkoviny Vazby mezi aminokyselinami na základě fyzikálně chemických interakcí Voda je polárním roztokem Proteiny - aminokyseliny Proteiny, typy aminokyselin hydrofobní 3

4 Proteiny, typy aminokyselin hydrofilní a ostatní Aminokyseliny Alanin druhá nejjednoduší, nejčastěji zastoupenou (hydrofobní) Arginin často v aktivních místech bílkoviny (basická, hydrofilní) Glutamová kyselina negativně nabitá, na povrchu bílkoviny (kyselá, hydrofilní) Glutation podíl na likvidaci volných radikálů Glycin nejdnodušší aminokyselina Prolin hromadí se za stresu Hydroxyprolin součást stěny buněk Leucin tvoří kostru proteinu (hydrofobní) Methionin iniciace proteosyntézy, nejméně zastoupenou aminokyselinou Fenylalanin nejčastější aromatickou aminokyselinou (velmi hydrofobní) Serin v aktivních místech pro fosforylace Tryptofan velmi málo zastoupena Tyrosin součást stěnových bílkovin Valin drží bílkoviny pohromadě Proteiny, typy vazeb v polymérech Proteiny, typy vazeb v polymérech kovalentní vazba: jednotlivé aminokyseliny mezi sebou do primární struktury bílkovín nekovalentní vazba sekundární uspořádávání bílkovin, vazba reversibilní Reversibilita reakcí: závisí na rychlostních konstantách reakcí poměr konstant=relativní míra produktů, směr reakce Vytváření disulfidických vazeb mezi 2 cysteiny 4

5 Proteiny Bílkoviny aminokyselin = peptid vetší počty aminokyselin uspořádaných do vyšších struktur = polypeptid Bílkoviny = proteiny (z řeckého slova proto = primární důležitost) První popis bílkovin: Berzelius 1838 První důkaz bílkoviny ve funkci enzymu: urea Sumner 1926 První bílkovinná sekvenace: insulin Sanger 1958 První strukturní studie bílkovin: hemoglobin, myoglobin Perutz a Kendrew 1958 Bílkoviny, jejich velikost Bílkoviny jejich lokalizace: Zviditelnění GFP 5

6 Cytochrom - bílkovina není statickou strukturou Bílkoviny, sekundární uspořádávání Alfa + beta šroubovice, beta list sekundární uspořádání dáno sekvencí aminokyselin, tvorba vodíkových můstků Beta list Bílkoviny, sekundární uspořádávání Bílkoviny, sekundární uspořádávání 6

7 Bílkoviny, terciární a quarterní uspořádávání Bílkoviny, terciární a quarterní uspořádávání 2 dvoušroubovice spojené smyčkou Motiv typický pro vápník a DNA vazebné bílkoviny 1 alfa helix spojen s beta šroubovicí Motiv typický pro DNA vazebné bílkoviny 2 alfa šroubovice ovinuté kolem sebe Motiv typický pro transkripční faktory Bílkoviny, terciální a quarterní struktura Bílkoviny, funkční uspořádání Molekula hemaaglutininu Bílkovina složena ze 3 domén, jako membránová bílkovina N- glykosylována kyselinou sialavou a) Myosin je dimer, tvořený 2 identickými těžkými řetězy (bílé) a 4 lehkými řetězy (zelené a modré) b) trojrozměrný model hlavové domény 7

8 Bílkoviny, jejich pohyb Bílkoviny, funkční proměnlivost Calmodulin je bílkovina se 4 šroubovicemi (EF1 EF4) a v každé z nich je Ca 2+ -vazebné místo Při zvýšení koncentrace Ca 2+ nad 5 x 10-7 M, se navazuje Ca 2+ na Calmodulin, mění jeho konformaci a Calmodulin se stává funkční bílkovinou ve fosforylaci Model spojující hydrolýzu ATP s pohybem myosinu podél aktinového vlákna Bílkoviny, funkční proměnlivost Různé podoby struktury Ras, guanin nukleotid-vazebné bílkoviny (bílkovina v inanktivní podobe, s navázaním GDP ( modrá) a)uhlíková kostra bílkoviny b) Lokalizace všech atomů c) Beta listy (azurová) alfa šroubovive (červená) d) Povrch bílkoviny ve vodném prostředí, pozitivně nabité částice (šedá), negativně nabité (červená) Bílkoviny, funkční proměnlivost Model katalytické podjednotky kinázy A v uzavřené funkční konformaci glycin rich sekvence uloví ATP ve štěrbině mezi doménami (b) Schéma otevřené a zavřené konformace v nepřítomnosti substrátu je otevřená, po vazbě substrátu se uzavírá, konformační změny bílkoviny vyvolané vazbou na substrát 8

9 3. Bílkoviny a jejich posttranslační modifikace Uspořádávání nascentních bílkovin Cesta od nascentní podoby k správně modifikované, lokalizované a plně funkční bílkovině Nascentní protein endoplasmatické retikulum Ø prostorové uspořádávání Ø postranslační modifikace Ø oligomerizace Ø třídění translokace lokalizace nezbytný podíl chaperonů buněčné kompartmenty májí své chaperony Nestávají se součástí bílkovinné molekuly Nenesou sterickou informaci Konformují bílkoviny tím, že zabraňují nežádoucím interakcím Uspořádání nascentních bílkovin Proteiny endoplasmatického retikula obsahují chaperony: Ø Ø Ø Ø zvyšují rychlost s jakou proteiny získávají konečnou podobu udržují protein v kompetentním stavu zabraňují nežádoucím interakcím stabilizují proteiny Chaperony = stresové bílkoviny Ø část konstitutivního spektra bílkovin buňky Ø krátkodobě vyšší hladina exprese v určitých fázích ontogenese Ø rychlá a intezivní exprese za stresu (za 1h stresu až 5% podíl stresových bílkovin) Buňka pozná a monitoruje nepořádek (neuspořádané nebo špatně uspořádané bílkoviny) chaperony Chaperony: nomenklatura chaperonů (HSP) podle molekulové hmotnosti na SDS PAGE (Drosophila) : Eukaryota 10-35kDa=sHSP 60kDa 70, 90, 110 kda skupina I HsP70 kda blokování nežádoucích interakcí mezi aminokyselinami bílkovinného řetězce Skupina II HsP60 kda nezbytná doprovodná součást putování a translokace bílkoviny na místo místo určení Chaperoniny pro Prokaryonta = GroEL + GroES: 60 kda GroEL uspořádávání bílkoviny odstraňování špatně uspořádané bílkoviny 9

10 Chaperony a chaperoniny GroEL: komplex 14 identických 60kDa podjednotek GroES: komplex 7 identických 10 kda podjednotek tight = -ATP+ADP = uzavřená struktura s navázanou bílkovinou relax = +ATP=uvolnění bílkoviny GroES/GroEL systém chaperony HSP70 = regulátor množství a aktivity chaperonů v buňce snížená hladina HSP70 = aktivace HSF (heat shock transkription factor) nestresovaná buňka = HSF inaktivován interakcí s HSP Ø GroEL+GroES = funkční interakce = stabilní komplex Ø Sílá a stabilita vazby ovlivněna vazbou substrátu- ADP xx ATP Ø GroES nasedá smyčkou tvořenou 20 aminokyselinami Ø nasednutí mění konformaci GroEL a podpoří tak naskládání bílkoviny do cylindru Ø komplex nasedá jen na nesložené bílkoviny Ø HSP70- stálá ATPázová aktivita (konzervativní oblast molekuly) ovlivnitelná inhibitory enzymů, Ca ionty a je nezbytná pro uvolnění doprovázené molekuly Ø jedna bílkovinná molekula se správnou nativní konfiguraci = až 100 ATP 10

11 Nascentní bílkovina Ko-translační modifikace bílkovin Získání translokační kompetence kompetence udělena: Ø ko-translační N-glykosylací Ø skládáním polypeptidu Ø tvorbou disulfidických vazeb Ø vytvářením oligomerů Ø odstraněním signální sekvence Získání funkčnosti po translokaci 3. Bílkoviny a jejich posttranslační modifikace modifikace bílkovin ko-translační nebo post-translační adice nebo delece Ø stabilizují strukturu Ø regulují enzymatické aktivity Ø modifikují strukturu a tím i schopnost translokace Ø slouží pro transport a lokalizaci proteinu v buňce Ø Ø ( pozor na možnost nežádoucích modifikací rekombinantních proteinů v heterologní buňce) nelze je odvodit z DNA sekvence modifikace typu deaminace, acetylace, fosforylace, glykosylace a oxidace mění molekulovou hmotnost proteinu a jsou detekovatelné na elektroforéze (možnost srovnání s nascentním nebo de-modifikovaným proteinem) 3. Bílkoviny a jejich posttranslační modifikace 3. Bílkoviny a jejich posttranslační modifikace N- a C- terminální modifikace = acylace, methylace, amidace Acylace (acetyl-, formyl-, pyroglutamyl-, myristyl-) ochrana proti aminopeptidázám Ø Acetylace: Ser, Ala, Met na N-konci charakterizuje většinu rozpustných proteinů Ø Formylace: Met, typická pro prokaryota Ø Myristylace: modifikace N-terminálního Gly nezbytnou součástí funkčnosti většiny signálních proteinů + membránových proteinů Nejčastější příčinou zablokování N-konce při charakterizaci proteinů N-terminální mikrosekvenací (postupným odbouráváním jednotlivých AMI z N- konce degradací podle Edmana, kdy je třeba volit metodu hmotnostní spektrometrie) 11

12 3. Bílkoviny a jejich posttranslační modifikace 3. Bílkoviny a jejich posttranslační modifikace N- a C- terminální modifikace = methylace, amidace Methylace Ø charakteristické pro histony, DNA-vazebné a ribosomální bílkoviny Ø metylovány jsou alfa-amino skupiny Ala, Met, Lys Ø často metylace omezeny jen na část proteinové molekuly Ø specifické metyltransferázy pro jednotlivé bílkoviny Amidace Ø modifikace AMI na C-terminálním konci 3. Bílkoviny a jejich posttranslační modifikace 3. Bílkoviny a jejich posttranslační modifikace modifikace jednotlivých AMI v celém řetězci prenylace, adenylace, hydroxylace, oxidace, fosforylace, glykosylace Hydroxylace významná u stěnových proteinů hydroxyproliny (hydroxylace až v stěně) Fosforylace a glykosylace mají největší podíl na funkčnosti proteinu Ø Fosforylace Ø nejvíce zastoupeny O-fosforylace serinu, threoninu, tyrosinu Ø až 1/3 cytosolických bílkovin fosforylována Ø řada klíčových enzymů je funkčních ve formě fosforylované a neaktivní po obsazení téhož tripletu AMI O-glykosylací 12

13 3. Bílkoviny a jejich posttranslační modifikace Glykosylace glykoprotein = polypeptid + glykan N- a O-glykosylace, obě rozhodují o funkčnosti proteinů N-glykosylace glykan připojen na amid kyseliny asparagové: Asn X Ser/Thr Ø ko-translačně = začíná na nascentním proteinu v ER přesně regulovaným procesem Ø významnou regulační funkci u rostlin, jejich exprese se podílí na nástupu jednotlivých etap ontogenese Ø N-glykoproteiny nedílnou součástí strukturálních bílkovin stěny buňky 0-glykosylace glykan připojen na hydroxyl serinu / treoninu Ø post-translační glykosylace až v Golgi a je reversibilní, cukerným zbytkem glukosaminem N-glykosylace Polyglykanový komplex = glykosid dolicholdifosfátu dolicholy: polyisoprenoly s řetězcem (n=14-24), tvořené nasycenými jednotkami alfa isoprenolu po navázání dolicholu do membrány je fosfátovým můstkem navázán první glykan tato makroergická vazba umožní vazby s asparaginem nascentní bílkoviny Ø C-glykosylace, S-glykosylace velice řídké 3. Posttranslační modifikace - N-glykosylace I dolichol je dlouhý řetězec isoprenů = polyisoprenoid, výrazně hydrofobní a víc jak jednou smyčkou je zanořen do membrány UDP-aktivované cukry přiváděny do membránového systému pomocí lipidového nosiče dolicholu 3. Posttranslační modifikace bílkovin N-glykosylace N-glykosylace mnohostupňový proces: Ø probíhá ko-translačně a UDP-aktivované cukry přiváděny do membránového systému pomocí lipidového nosiče dolicholu Ø dolichol je dlouhý řetězec isoprenů = polyisoprenoid, výrazně hydrofobní a víc jak jednou smyčkou je zanořen do membrány Ø po navázání dolicholu do membrány je fosfátovým můstkem navázán první glykan Ø tato makroergická vazba umožní vazby s asparaginem nascentní bílkoviny Syntéza oligosacharidu začíná na cytosolické straně a pokračuje na straně hrubého ER 13

14 3. Postranslační modifikace- N-glykosylace II N-glykosylace úloha dolicholu Asn X Ser/Thr N-glykosylace proměnlivost glykanové struktury 14

15 3. Postranslační modifikace - N-glykosylace 3. Postranslační modifikace - N-glykosylace manozové typy glykoproteinů: man5-9(glcnac)2 také u živočišnýcu buněk a u kvasinek komplexní typy glykoproteinů odlišné u rostlin: Ø neobsahují kyselinu sialovou Ø vazba xylozy a fukozy na manozovou kostru jen u rostlin a bezobratlých Ø vazba fukozy je poslední úpravou a neexistuje bez xylozy Ø vazba xylozy může být jedinou konečnou úpravou Asn X Ser/Thr: napojení oligosacharidového řetězce na nascentní bílkovinu Ø 1. stupeň glykosylace na ER, 2. stupeň v Golgi Ø 2. stupeň = konečná podoba: manozové nebo komplexní typy Ø Komplexní typy: fukozy, xylozy, (ne kyselinu sialovou) Konečná podoba = anténové glykany 3. Postranslační modifikace - N-glykosylace 3. Postranslační modifikace - N-glykosylace výskyt a funkce napojení glykanu má: nepřímý účinek Ø stabilita proteinu Ø přesnost prostorové orientace Ø ochrana před agregací Ø ochrana před proteolyzou Ø transport buňkou přímý účinek Ø syntéza biologicky aktivní molekuly = syntéza biologicky Ø aktivních glykanových anten Výskyt: glykoproteiny buněčné stěny sekreční proteiny Funkce: rozpoznávací, receptorová, signální? stěnové bílkoviny exprese regulována vývojově, kódovány mnohočetnými genovými rodinami Ø jejich relativní množství tkáňově a druhově specifické Ø jsou kotranslačně N-glykosylovány, mají signální peptid Ø 4 hlavní typy: glykoproteiny bohaté na hydroxyprolin (HRPG) glykoproteiny bohaté na prolin (PRPG) 15

16 3. Postranslační modifikace typy n-glykoproteinů 3. Postranslační modifikace typy n-glykoproteinů stěnové bílkoviny - arabinogalaktany (AGP) molekuly obsahují až 95% glykanových zbytků druhově specifická vysoká rozdílnost v relativním obsahu i složení repetice Pro(Hyp), Ala, Ser(Tyr) funkce nejasná, jeví se jako nespecifická, prostředník mnoha vzájemných vazeb polymerů Lektiny glykoprotyeiny bez glykanu Ø Lokalizovány ve vakuole v lipidových raftech na Golgi Ø Mají schopnost se vázat na glykany jiných glykoproteinů Ø Komplex glykoprotein-lektin- glykolipid = důležitá složka v procesu cell-cell-recognition 3. Postranslační modifikace - N-glykosylace 3. Postranslační modifikace - N-glykosylace Účinek inhibitoru tunicamycinu = postupná deglykosylace castasnosperminu = přeglykosylováno inhibitory syntézy N-glykoproteinů: inhibice napojení primárního oligosacgaridu TUNICAMYCIN (antibiotikum) DEOXYJIRIMYCIN (alkaloid) inhibice glukozidázy I a II CASTANOSPERMIN (alkaloid) inhibice manozidáz SWAINSONIN (alkaloid) 16

17 3. Posttranslační modifikace reversilní: O-glykosylace - fosforylace O-glykosylace a fosforylace: Ø Ser/Tre/Tyr Ø Vratné, rychlé, funkční modifikace 3. Posttranslační modifikace O-glykosylace - fosforylace 1. nejčastěji zjištěny 2 molekuly GLcNAc navázány na Ser/Thr 2. polypeptid mnohem stabilnější než glykan 3. O- glykosylace je dynamickým procesem 4. O a N glykosylace probíhají zřejmě na stejném místě v cis-golgi 5. nejznámější příklady: arabinogalaktany proteiny bohaté hydroxyprolinem RNA-polymeráza II (O-glykosylovaná --- fosforylovaná) extensiny: obsahují repetice Ser-(HYP)4 a Tyr-Lys-Tyr lektiny Glykanové řetězce určují krevní skupiny 17

Regulace translace REGULACE TRANSLACE BÍLKOVINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. Bílkoviny - aminokyseliny. 1. Translační aparát. 2.

Regulace translace REGULACE TRANSLACE BÍLKOVINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. Bílkoviny - aminokyseliny. 1. Translační aparát. 2. Regulace translace Bílkoviny - aminokyseliny 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace 4. Lokalizace bílkovin v buňce a jejich degradace 5. Translace v mitochondriích

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

TRANSLACE - SYNTÉZA BÍLKOVIN

TRANSLACE - SYNTÉZA BÍLKOVIN TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy

Více

Bílkoviny - proteiny

Bílkoviny - proteiny Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

PROTEINY. Biochemický ústav LF MU (H.P.)

PROTEINY. Biochemický ústav LF MU (H.P.) PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2.

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2. Regulace translace 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE LOKALIZACE BÍLKOVIN

Více

Přírodní polymery proteiny

Přírodní polymery proteiny Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů

Více

Biosyntéza a degradace proteinů. Bruno Sopko

Biosyntéza a degradace proteinů. Bruno Sopko Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina

Více

Aminokyseliny, peptidy a bílkoviny

Aminokyseliny, peptidy a bílkoviny Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v

Více

Translace (druhý krok genové exprese)

Translace (druhý krok genové exprese) Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_413 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho

Více

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

REGULACE TRANSLACE DEGRADACE BÍLKOVIN. 4. Degradace bílkovin. 4. Degradace bílkovin. 4. Degradace bílkovin

REGULACE TRANSLACE DEGRADACE BÍLKOVIN. 4. Degradace bílkovin. 4. Degradace bílkovin. 4. Degradace bílkovin 4. Degradace bílkovin Degradace - několik proteolytických cest, specifických pro určitý buněčný kompartment REGULACE TRANSLACE DEGRADACE BÍLKOVIN 4. Degradace bílkovin 4. Degradace bílkovin Degradace bílkovin

Více

Aminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie

Aminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní, stavebními

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu. Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové

Více

Biochemie I 2016/2017. Makromolekuly buňky. František Škanta

Biochemie I 2016/2017. Makromolekuly buňky. František Škanta Biochemie I 2016/2017 Makromolekuly buňky František Škanta Makromolekuly buňky ukry Tuky Bílkoviny ukry Jsou sladké Přehled strukturních forem sacharidů Monosacharidy Disacharidy Polysacharidy Ketotriosa

Více

Bílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny

Bílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních

Více

Názvosloví cukrů, tuků, bílkovin

Názvosloví cukrů, tuků, bílkovin Názvosloví cukrů, tuků, bílkovin SACARIDY CUKRY MNSACARIDY LIGSACARIDY PLYSACARIDY (z mnoha molekul monosacharidů) ALDSY KETSY -DISACARIDY - TRISACARIDY - TETRASACARIDY atd. -aldotriosy -aldotetrosy -aldopentosy

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIKYSELIY PEPTIDY AMIKYSELIY = substituční/funkční deriváty karboxylových kyselin = základní jednotky proteinů (α-aminokyseliny) becný vzorec 2-aminokyselin (α-aminokyselin):

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

Obecná struktura a-aminokyselin

Obecná struktura a-aminokyselin AMINOKYSELINY Obsah Obecná struktura Názvosloví, třídění a charakterizace Nestandardní aminokyseliny Reaktivita - peptidová vazba Biogenní aminy Funkce aminokyselin Acidobazické vlastnosti Optická aktivita

Více

BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...

BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,... BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární

Více

Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití

Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin

Více

Biopolymery. struktura syntéza

Biopolymery. struktura syntéza Biopolymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. Homopolymery Kopolymery (stat, alt, block, graft) Lineární Větvené Síťované kombinace proteiny Funkční úloha

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

Chemická reaktivita NK.

Chemická reaktivita NK. Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově

Více

První testový úkol aminokyseliny a jejich vlastnosti

První testový úkol aminokyseliny a jejich vlastnosti První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny

Více

Regulace enzymové aktivity

Regulace enzymové aktivity Regulace enzymové aktivity MUDR. MARTIN VEJRAŽKA, PHD. Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha = smrt Život: homeostáza, ustálený stav Katalýza v uzavřené soustavě bez

Více

molekula obsahující jeden nebo více navázaných na bílkovinu (glykoproteiny)

molekula obsahující jeden nebo více navázaných na bílkovinu (glykoproteiny) Glykoproteiny y Vytášek 2008 Glykokonjugát (komplexní sacharid) molekula obsahující jeden nebo více sacharidových řetězců kovalentně navázaných na bílkovinu (glykoproteiny) nebo lipid (glykolipidy) Glykoproteiny

Více

aminokyseliny a proteiny

aminokyseliny a proteiny aminokyseliny a proteiny funkce proteinů : proteiny zastávají téměř všechny biologické funkce, s výjimkou přenosu informace stavební funkce buněk a tkání biokatalyzátory-urychlují biochemické reakce -

Více

Testové úlohy aminokyseliny, proteiny. post test

Testové úlohy aminokyseliny, proteiny. post test Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném

Více

Vazebné interakce protein s DNA

Vazebné interakce protein s DNA Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.

Více

Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein

Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein Chemické složení Jednoduché Složené - polypeptidová + neproteinová část Složené: metaloproteiny fosfoproteiny glykoproteiny

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

REGULACE ENZYMOVÉ AKTIVITY

REGULACE ENZYMOVÉ AKTIVITY REGULACE ENZYMOVÉ AKTIVITY Proč je nutno regulovat enzymovou aktivitu? (homeostasa) Řada úrovní: regulace množství přítomného enzymu (exprese = proteosynthesa, odbourávání) synthesa vhodného enzymu (isoenzymy)

Více

Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

Molekulární biofyzika

Molekulární biofyzika Molekulární biofyzika Molekuly v živých systémech - polymery Lipidy (mastné kyseliny, fosfolipidy, isoprenoidy, sfingolipidy ) proteiny (aminokyseliny) nukleové kyseliny (nukleotidy) polysacharidy (monosacharidy)

Více

Intracelulární Ca 2+ signalizace

Intracelulární Ca 2+ signalizace Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární

Více

Aminokyseliny. Peptidy. Proteiny.

Aminokyseliny. Peptidy. Proteiny. Aminokyseliny. Peptidy. Proteiny. Struktura a vlastnosti aminokyselin 1. Zakreslete obecný vzorec -aminokyseliny. Která z kodovaných aminokyselin se z tohoto vzorce vymyká? 2. Které aminokyseliny mají

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

Metody práce s proteinovými komplexy

Metody práce s proteinovými komplexy Metody práce s proteinovými komplexy Zora Nováková, Zdeněk Hodný Proteinové komplexy tvořeny dvěma a více proteiny spojenými nekovalentními vazbami Van der Waalsovy síly vodíkové můstky hydrofobní interakce

Více

1) Vznik vyšších proteinových struktur 2) Nekovalentní vazby v polypeptidovém řetězci 3) Sbalování proteinů pomocí chaperonů 4) Vlastnosti a funkce

1) Vznik vyšších proteinových struktur 2) Nekovalentní vazby v polypeptidovém řetězci 3) Sbalování proteinů pomocí chaperonů 4) Vlastnosti a funkce 1) Vznik vyšších proteinových struktur 2) Nekovalentní vazby v polypeptidovém řetězci 3) Sbalování proteinů pomocí chaperonů 4) Vlastnosti a funkce vybraných chaperonů 5) Co je to proteostáza a jaká je

Více

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v

Více

CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY. Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy, oligosacharidy, hexosaminy, nukleotidy, voda

CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY. Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy, oligosacharidy, hexosaminy, nukleotidy, voda CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY Prvky : Makrobiogenní C, H, O, N, S, P, K, Na, Mg Mikrobiogenní - Fe, Cu, Mn, Co, F, Br, Si, Sr, Va, Zn, Ba Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy,

Více

strukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)

strukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů) 1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi

Více

ÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny

ÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny BIOCHEMIE 1 ÚVOD DO BIOCHEMIE BCH zabývá se chemickými procesy v organismu a chemickým složením živých organismů Biologie: bios = život + logos = nauka Biochemie: bios = život + chemie Dělení : Chemie

Více

Aminokyseliny, Peptidy, Proteiny

Aminokyseliny, Peptidy, Proteiny Aminokyseliny, Peptidy, Proteiny Proteiny jsou nejrozšířenější biologické makromolekuly Proteiny jsou tvořeny kombinací 20 α-aminokyselin Aminokyseliny sdílejí společné základní strukturní vlastnosti α-uhlík

Více

Obecná biologie - přednášky

Obecná biologie - přednášky Obecná biologie - přednášky 1) Biogenní prvky H, C, N, O, P, S jsou základem látek nezbytných pro život H, C, O (N) jsou obsaženy v sacharidech H, C, O, (P) jsou obsaženy v lipidech H, C, N, O, S vytvářejí

Více

Molekulární mechanismy řídící expresi proteinů

Molekulární mechanismy řídící expresi proteinů Molekulární mechanismy řídící expresi proteinů Aleš ampl Proteiny Proteios - první místo (řecky) = Bílkoviny u většiny buněčných typů tvoří nejméně 50% jejich suché hmoty hrají klíčovou úlohu ve většině

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů

Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů Aminokyseliny CH COOH obsahují karboxylovou skupinu a aminovou skupinu nebarevné sloučeniny (Trp, Tyr, Phe absorbce v UV) základní

Více

Metabolismus aminokyselin. Vladimíra Kvasnicová

Metabolismus aminokyselin. Vladimíra Kvasnicová Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších

Více

Glykobiologie Glykoproteomika Funkční glykomika

Glykobiologie Glykoproteomika Funkční glykomika Glykobiologie Glykoproteomika Funkční glykomika Glycobiology how sweet it is! Monosacharidy (glukosa, fruktosa, galaktosa ) Oligosacharidy (maltosa, isomaltosa, sacharosa, laktosa.., oligosacharidové řetězce

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc. Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

Struktura nukleových kyselin Vlastnosti genetického materiálu

Struktura nukleových kyselin Vlastnosti genetického materiálu Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se

Více

PEPTIDY, BÍLKOVINY. Reg. č. projektu CZ.1.07/1.1.00/14.0143

PEPTIDY, BÍLKOVINY. Reg. č. projektu CZ.1.07/1.1.00/14.0143 PEPTIDY, BÍLKOVINY Definice: Bílkoviny (proteiny) jsou makromolekulární látky, které vznikají spojením sto a více molekul různých aminokyselin peptidickou vazbou. Obsahují atomy uhlíku (50 až 55%), vodíku

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

3) Membránový transport

3) Membránový transport MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

Nukleové kyseliny. obecný přehled

Nukleové kyseliny. obecný přehled Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace

Více

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Přírodní polymery. struktura syntéza

Přírodní polymery. struktura syntéza Přírodní polymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. průmyslové využití (tradiční, obnovitelný zdroj) Sruktura komplikovanější Homopolymery Kopolymery (stat?,

Více

REGULACE TRANSLACE. Regulace translace INICIACE TRANSLACE. 1. Translační aparát ribosomální podjednotky. 2. translace- iniciace

REGULACE TRANSLACE. Regulace translace INICIACE TRANSLACE. 1. Translační aparát ribosomální podjednotky. 2. translace- iniciace 1. Translační aparát ribosomální podjednotky Ribosom je tvořen dvěma nestejnými podjednotkami: SSU + LSU Jádro podjednotky tvořeno vysoce polymérní samouspořádanou rrna Každá ribosomální bílkovina má své

Více

7. Regulace genové exprese, diferenciace buněk a epigenetika

7. Regulace genové exprese, diferenciace buněk a epigenetika 7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom

Více

Bílkoviny a nukleové kyseliny

Bílkoviny a nukleové kyseliny Na www.studijni-svet.cz zaslal(a): Nemám - Samanta - BÍLKOVINY: Bílkoviny a nukleové kyseliny - Bílkoviny, odborně proteiny, patří mezi biopolymery. Jedná se o vysokomolekulární přírodní látky složené

Více

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných

Více

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny

Více

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:

Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru: Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -

Více