Martin Milata, Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Martin Milata, <256615@mail.muni.cz> 27.11.2007. Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od"

Transkript

1 IB000 Lámání čokolády Martin Milata, Čokoláda s alespoň jedním sudým rozměrem Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od začátku podle pravidel nedělitelná a proto vyhrává druhý hráč), má první hráč triviální vyhrávající strategii. Hráče, který láme jako první, budu označovat jako hráče A, druhého jako hráče B. Strategie hráče A je následující: 1. Hráč A rozlomí tabulku na dvě stejně velké poloviny. Jednu si označíme jako červenou, druhou jako modrou. 2. Pokud jsou všechny kousky dále nedělitelné hra končí a vyhrává hráč A, protože lámal jako poslední. Pokud hra pokračuje, zřejmě platí, že červená i modrá část čokolády jsou rozlámány identickým způsobem. 3. Hráč B rozlomí nějaký kousek čokolády. Protože existuje i identický kousek opačné barvy, rozlomí jej stejným způsobem hráč A. 4. Pokračujeme bodem 2. 2 Tabulka s lichými rozměry Pro jednotlivé tabulky o lichých rozměrech jsem problém řešil prochazením herního stromu 1. Uzly tohoto stromu jsou jednotlivé možné stavy hry, tj. jak je v daném okamžiku nalámána čokoláda, kořen je počáteční stav hry, tj. celý kousek čokolády o daných rozměrech a listy jsou konečné stavy hry, kdy nelze zlomit další kousek a jeden z hráčů tím pádem vyhrál. Pokud je vzdálenost od kořene k listu lichá, vyhrál hráč A, pokud je sudá, vyhrál hráč B. Skutečnost zjištěná ohledně čokolády s jedním sudým rozměrem se dá zobecnit na stav čokolády, kdy jeden její díl má aspoň jeden sudý rozměr a neexistují jiné díly, které by se podle pravidel hry daly zlomit. K procházení tohoto stromu jsem použil jednoduchý rekurzivní algoritmus: Pokud neexistuje kousek, který by se dal rozlomit, hráč, který je na tahu nemůže nic dělat, proto v takové situaci vždy prohrává a výherní (prázdnou) strategii má v tomto případě hráč, který zrovna není na tahu. Pokud existuje pouze jediný rozlomitelný kousek a alespoň jeden jeho rozměr je sudý, pak hráč, který je momentálně na tahu může použít strategii popsanou v prví části tohoto dokumentu a tak si pokaždé zajistit vítězství. Tuto část algoritmu lze vynechat, slouží pouze pro jeho zrychlení. 1 Spíše se jedná o orientovaný acyklický graf, protože ke stejnému vrcholu se dá dojít více cestami a pokud jsou dva vrcholy stejné, je stejný i podstrom jejich potomků. Z důvodu jednoduchosti jsem ale pracoval se stromem, čímž jsem pravděpodobně algorimus mi těžko odhadnutelnou měrou zpomalil. 1

2 Pokud není splněna ani jedna z ukončovacích podmínek, pak algoritmus rekurzivně zjistí zda-li má druhý hráč vyhrávající strategii pro všechny potomky aktuálního vrcholu herního stromu. Pokud ano, aktuální hráč nemůže hru svou volbou ovlivnit a prohrál. Pokud existuje potomek, pro který nemá druhý hráč vyhrávající strategii, pak jej aktuální hráč může zvolit a tím si zajistit výhru. Důkaz správnosti algoritmu strukturální indukcí na herním stromě v podstatě kopíruje jeho definici: Báze listy stromu. Pokud neexistuje rozlomitelný kousek, pak algoritmus určí prohru hráče, který je právě na tahu, což je podle pravidel hry správně. Algoritmus tedy vrací správný výsledek pro listy stromu. Indukční krok předpokládáme, že algoritmus je správný pro všechny potomky vrcholu V a chceme dokázat, že je tím pádem správný i pro něj. Pokud algoritmus oznámí existenci výherní strategie druhého hráče pro všechny potomky vrcholu V, pak pro vrchol V určí, že aktuální hráč nemá vyhrávající strategii, což je zřejmě správné. Případ neexistence výherní strategie druhého hráče pro alespoň jednoho potomka pak znamená, že aktuální hráč vyhrávající strategii má. Algoritmus je tedy korektní pro všechny vrcholy herního stromu, včetně kořene. 3 Vypočítané hodnoty Vzhledem k exponenciální složitosti algoritmu a jeho pravděpodobně nepříliš efektivní implementaci se mi podařilo určit hráče s výherní strategií pouze u velmi malých hodnot m a n. A znamená, že vždy vyhrávající strategii má hráč, který začíná lámat, B znamená, že ji má druhý hráč a,,- znamená, že jsem z časových důvodů nebyl schopen hráče určit. m/n B 3 B B 5 A B B 7 B B B B 9 A B B B B A B A A B B A A B Pro m=1 má hráč A dále vyhravající strategii pro tato n: 25, 29, 33, 35; hrac B pak pro 27, 31, Zdrojový kód Algoritmus je implementován ve funkcionálním jazyce Haskell. Následuje kompletní zdrojový kód. 2

3 module Main where import Data. List import System. Environment type Piece = ( Int, Int, Int ) mensi rozmer, v e t s i rozmer pocet, pocet type Cut = [ Piece ] n e k o l i k kousku cokolady herni s t a v h l a v n i funkce z k o n t r o l u j e argumenty predane na prikazovem radku, prevede j e na c i s l a, preda j e f u n k c i whowins, k t e r a e v e n t u a l n e v r a t i hrace s vyherni s t r a t e g i i, k t e r e h o funkce main v y p i s e main : : IO ( ) main = do args < getargs i f length args /= 2 then error Spatny p o c e t argumentu else do l e t m = head args n = head $ t a i l args putstr ( Rozmery ++ m ++ x ++ n ++ : ) i f whowins ( read m) ( read n ) then putstrln Prvni hrac ma viteznou s t r a t e g i i else putstrln Druhy hrac ma viteznou s t r a t e g i i wrapper o k o lo playerwins, argumenty j s o u rozmery cokolady, v r a c i t r u e pokud ma v i t e z n o u s t r a t e g i i prvni hrac, j i n a k f a l s e whowins : : Int > Int > Bool whowins m n = playerwins $ normalize [ (m, n, 1 ) ] v r a t i true, pokud ma hrac, k t e r y j e v t e t o p o z i c i na tahu pro danou herni p o z i c i vyherni s t r a t e g i i pokud se cokolada j i z neda rozlomit, hrac vzdy prohrava pokud ma cokolada j e d i n y podle p r a v i d e l r o z l o m i t e l n y d i l e k a ten ma alespon jeden sudy rozmer, hrac muze vzdy vyhrat v o s t a t n i c h pripadech j e r e k u r z i v n e zkontrolovano, j e s t l i alespon jedno z moznych rozlomeni ma pro t o h o t o hrace vyherni s t r a t e g i i ( t zn. zda l i vsechna rozlomeni nevyhrava druhy hrac ) playerwins : : Cut > Bool playerwins [ ] = False playerwins c s i n g l e E v e n S i d e c = True otherwise = not ( a l l playerwins ( cuts c ) ) 3

4 v r a t i true, pokud ma cokolada j e d i n y r o z l o m i t e l n y d i l e k a ten ma alespon jeden rozmer sudy s i n g l e E v e n S i d e : : Cut > Bool s i n g l e E v e n S i d e [ (m, n, c ) ] = c == 1 && ( even m even n ) s i n g l e E v e n S i d e c = False v r a t i seznam vsech moznych rozlomeni cokolady, k t e r e j e mozne p odle p r a v i d e l u d e l a t jednim zlomenim jednoho kousku cokolady predanych jako argument cuts : : Cut > [ Cut ] cuts c = nub $ sortby cmpcuts $ map normalize $ concat $ zipwith f [ 0.. ( length c ) 1] ( repeat c ) where f n px = map (\ x > x ++ take n px ++ drop ( n+1) px ) ( b r e a k p i e c e ( px!! n ) ) porovnavaci funkce, k t e r a urcuje v jakem poradi ma funkce c u t s v r a c e t mozna rozlomeni cmpcuts : : Cut > Cut > Ordering cmpcuts xs ys s i n g l e E v e n S i d e xs = LT s i n g l e E v e n S i d e ys = GT otherwise = compare ( area xs ) ( area ys ) where area = foldr ( \ (m, n, c ) a > a+m n c ) 0 funkce v r a c e j i c i vsechna mozna rozlomeni jednoho kousku cokolady j s o u vytvoreny vsechny mozne v e r t i k a l n i i h o r i z o n t a l n i rozlomeni, prevedeny do normalniho tvaru, odstraneny d u p l i c i t y a odstraneny rozlomeni s kouskem 1x1, p r o t o z e takove neni podle p r a v i d e l l e g a l n i b r e a k p i e c e : : Piece > [ Cut ] b r e a k p i e c e p = f i l t e r not1x1 $ nub $ map normalize $ ( breakph p ) ++ ( breakpv p ) where not1x1 ( (m, n, c ) : xs ) = not (m == n && n == 1) not1x1 [ ] = True funkce v r a c e j i c i vsechna mozna rozlomeni kousku h o r i z o n t a l n e breakph : : Piece > [ Cut ] breakph (m, n, c ) = zipwith f [ 1.. m div 2 ] ( repeat (m, n, c ) ) where f x (m, n, c ) = [ ( x, n, 1 ), (m x, n, 1 ) ] ++ i f c > 1 then [ (m, n, c 1)] else [ ] 4

5 funkce v r a c e j i c i vsechna mozna rozlomeni kousku v e r t i k a l n e breakpv : : Piece > [ Cut ] breakpv (m, n, c ) = zipwith f [ 1.. n div 2 ] ( repeat (m, n, c ) ) where f x (m, n, c ) = [ (m, x, 1 ), (m, n x, 1 ) ] ++ i f c > 1 then [ (m, n, c 1)] else [ ] funkce p r e v a d e j i c i rozlamanou cokoladu do normalniho tvaru, tzn. o t o c i vsechny kousky tak, aby j e j i c h prvni rozmer b y l mensi nebo roven druhemu, s e r a d i j e podle v e l i k o s t i, s l o u c i kousky s t e j n e v e l i k o s t i a o d s t r a n i kousky v e l i k o s t i 1x2 a 1x3, p r o t o z e t y uz se n e d a j i d a l e r o z l o m i t a tim padem j s o u pro nas nezajimave normalize : : Cut > Cut normalize = k i l l unpieces. s o r t P i e c e s. normpieces o t o c e n i kousku normpieces : : Cut > Cut normpieces [ ] = [ ] normpieces ( (m, n, c ) : ps ) = normal : ( normpieces ps ) where normal = i f m > n then (n,m, c ) else (m, n, c ) s e r a z e n i kousku s o r t P i e c e s : : Cut > Cut s o r t P i e c e s = sort s l o u c e n i kousku s t e j n e v e l i k o s t i unpieces : : Cut > Cut unpieces [ ] = [ ] unpieces ( p : [ ] ) = p : [ ] unpieces ( (m, n, c ) : (m, n, c ) : ps ) = i f m == m && n == n then unpieces ( (m, n, c+c ) : ps ) else (m, n, c ) : ( unpieces ( (m, n, c ) : ps ) ) o d s t r a n e n i kousku v e l i k o s t 1x2 a 1x3 k i l l : : Cut > Cut k i l l ( (m, n, c ) : xs ) m == 1 && n == 2 = k i l l xs m == 1 && n == 3 = xs k i l l xs = xs 5

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Rozklad problému na podproblémy

Rozklad problému na podproblémy Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Interpret jazyka IFJ2011

Interpret jazyka IFJ2011 Dokumentace projektu Interpret jazyka IFJ2011 Tým číslo 093, varianta b/3/i: 20 % bodů: Cupák Michal (xcupak04) vedoucí týmu 20 % bodů: Číž Miloslav (xcizmi00) 20 % bodů: Černá Tereza (xcerna01) 20 % bodů:

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615) IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

ř ý Š Ř ú ý Ž ř ú Š ň š ř ý Ž ř ř ř ř ř Ž ř ř š Ž ú ý š ý Í š ý š ů ň ý š Ž š ů ý ý ů ý ů Ú š ýš ř ř Ž ýš ý Ž Ž ř Í ů ř ř ý ýš Ž ž ý ř ř Ž ř ú ř ř š ý Ř Ú ň Ž ý ř š ř ů Ř ň ž Š Ř ž ř Ž ý ů ř ů ř Ž ř Ž

Více

59. ročník Matematické olympiády 2009/2010

59. ročník Matematické olympiády 2009/2010 59. ročník Matematické olympiády 2009/2010 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod. Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

HERNÍ PLÁN MULTIFRUITS APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN MULTIFRUITS APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN MULTIFRUITS APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 24. 1. 2011 1.0 První naplnění Karel Kyovský 2 OBSAH Historie revizí... 2 Obsah... 3 Úvod... 4 Rozsah

Více

Anotace. Středník II!! 7. 5. 2010 programování her.

Anotace. Středník II!! 7. 5. 2010 programování her. Anotace Středník II!! 7. 5. 2010 programování her. Teorie her Kombinatorická hra je hrou dvou hráčů. Stav hry je určen pozicí nějakých předmětů. Všechny zúčastněné předměty jsou viditelné. Jde o tzv. hru

Více

Vyplácení: a) Přes Hopper v mincích 10,-- Kč. b) pomocí klíčového spínače a tlačítka VÝPLATA (Handpay - funkce)

Vyplácení: a) Přes Hopper v mincích 10,-- Kč. b) pomocí klíčového spínače a tlačítka VÝPLATA (Handpay - funkce) Fruit Palace II 750 obsahuje 8 různých her (Průběh hry viz. popis hry) Sizzling Hot 750 Fruits n Royals 750 Ultra Hot 750 Supra Gems 750 Xtra Hot 750 Power Stars 750 American Poker II 750 Hi-Lo Hra 750

Více

Distribuovaná synchronizace. Paralelní a distribuované systémy. 11. Přednáška Vzájemné vyloučení. Centralizovaný algoritmus - fronta procesů

Distribuovaná synchronizace. Paralelní a distribuované systémy. 11. Přednáška Vzájemné vyloučení. Centralizovaný algoritmus - fronta procesů Distribuovaná synchronizace Využití kritické sekce při vzájemném vyloučení v distribuovaném systému Paralelní a distribuované systémy 11. Přednáška Vzájemné vyloučení Logicky distribuovaný systém s vlákny

Více

Ý ú š š š Ú ď ú ú ú š ý ú š ů ž ú ó ý ú š š šú ú ú ž š ů ý š š š ýš ú ž š ú ž ý ů ý ýš ý ý ý ů ý š ýš ů ú ú ý š ú ž ý ž š š ú š ž ž ž ž š š ý š ý ž š ú ů š ó ý ž ž ú š ů š ž ň ú š ú ů Ú š ů ů ú ú ž ž ú

Více

Varianty Monte Carlo Tree Search

Varianty Monte Carlo Tree Search Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření

Více

2. Řešení úloh hraní her Hraní her (Teorie a algoritmy hraní her)

2. Řešení úloh hraní her Hraní her (Teorie a algoritmy hraní her) Hraní her (Teorie a algoritmy hraní her) 4. 3. 2015 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení

Více

Algoritmus Minimax. Tomáš Kühr. Projektový seminář 1

Algoritmus Minimax. Tomáš Kühr. Projektový seminář 1 Projektový seminář 1 Základní pojmy Tah = přemístění figury hráče na tahu odpovídající pravidlům dané hry. Při tahu může být manipulováno i s figurami soupeře, pokud to odpovídá pravidlům hry (např. odstranění

Více

1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1

1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1 1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1 1. Prvocisla: Kratky ukazkovy priklad na demonstraci baliku WEB. Nasledujici program slouzi pouze jako ukazka nekterych moznosti a sluzeb,

Více

NÁVOD LOGIX mini Hra pro 2-4 hráče

NÁVOD LOGIX mini Hra pro 2-4 hráče NÁVOD LOGIX mini Hra pro 2-4 hráče Cíl hry: Každý hráč si na začátku vylosuje kartu s tajným kódem (vzorem rozložení kuliček). V průběhu partie hráči pokládají na desku nové kuličky nebo přemisťují stávající

Více

INTERACTIVE GAMES 750 CZK

INTERACTIVE GAMES 750 CZK POPIS HRY INTERACTIVE GAMES II 750 je mincový výherní hrací přístroj, jehož náhodný herní průběh je řízen mikroprocesorem. Hra je opticky znázorněna na obrazovce, která je umístěna na hlavní desce přístroje.

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013 2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky

Více

Jazyk C# (seminář 5)

Jazyk C# (seminář 5) Jazyk C# (seminář 5) Pavel Procházka KMI 23. října 2014 Přetěžování metod motivace Představme si, že máme metodu, která uvnitř dělá prakticky to samé, ale liší se pouze parametry V C# můžeme více metod

Více

Standardní algoritmy vyhledávací.

Standardní algoritmy vyhledávací. Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 16. 4. 2012 1.0 První naplnění Karel Kyovský OBSAH Historie revizí... 2 Obsah... 3 Úvod... 4 Rozsah

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Logické programování

Logické programování 30. října 2012 Osnova Principy logického programování 1 Principy logického programování 2 3 1 Principy logického programování 2 3 Paradigmata programování Strukturované programování Procedurální programování

Více

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace

Více

Paradigmata programování 1

Paradigmata programování 1 Paradigmata programování 1 Explicitní aplikace a vyhodnocování Vilém Vychodil Katedra informatiky, PřF, UP Olomouc Přednáška 6 V. Vychodil (KI, UP Olomouc) Explicitní aplikace a vyhodnocování Přednáška

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů: Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

Úvod do kombinatorické teorie her

Úvod do kombinatorické teorie her Úvod do kombinatorické teorie her Lucie Mohelníková Lucka.Mohelnikova@gmail.com Lucie Mohelníková Úvod do kombinatorické teorie her 1 / 21 P ehled 1 Úvod 2 Základní typy her 3 Teorie okolo pi²kvorek 4

Více

Složitost her. Herní algoritmy. Otakar Trunda

Složitost her. Herní algoritmy. Otakar Trunda Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost

Více

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

Programování v Pythonu

Programování v Pythonu ƒeské vysoké u ení technické v Praze FIT Programování v Pythonu Ji í Znamená ek P íprava studijního programu Informatika je podporována projektem nancovaným z Evropského sociálního fondu a rozpo tu hlavního

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

2 HRA V EXPLICITNÍM TVARU

2 HRA V EXPLICITNÍM TVARU 2 HRA V EXPLICITNÍM TVARU 59 Příklad 1 Hra Nim. Uvažujme jednoduchou hru, kdy dva hráči označme je čísly 1, 2 mají před sebou dvě hromádky, z nichž každá je tvořena dvěma fazolemi. Hráč 1 musí vzít z jedné

Více

Funkční objekty v C++.

Funkční objekty v C++. Funkční objekty v C++. Funkční objekt je instance třídy, která má jako svou veřejnou metodu operátor (), tedy operátor pro volání funkce. V dnešním článku si ukážeme jak zobecnit funkci, jak používat funkční

Více

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých

Více

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy

Více

PRG036 Technologie XML

PRG036 Technologie XML PRG036 Technologie XML Přednáší: Irena Mlýnková (mlynkova@ksi.mff.cuni.cz) Martin Nečaský (necasky@ksi.mff.cuni.cz) LS 2010 Stránka přednášky: http://www.ksi.mff.cuni.cz/~mlynkova/prg036/ 1 Osnova předmětu

Více

OOPR_05. Případové studie

OOPR_05. Případové studie OOPR_05 Případové studie 1 Přehled probírané látky příklad skládání objektů - čára příklad skládání objektů kompozice a agregace přetížené konstruktory pole jako datový atribut 2 Grafický objekt - čára

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Úloha ve stavovém prostoru SP je , kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Teorie her. (ii) pouze triomina typu L:? 1 Ořechynelzejístpočástech.Např.zbývá-li11ořechů,sníhráč1,2nebo3kusy.

Teorie her. (ii) pouze triomina typu L:? 1 Ořechynelzejístpočástech.Např.zbývá-li11ořechů,sníhráč1,2nebo3kusy. ½º Ö ÐÓ ½º ÐÓÚ Ö Teorie her ÐÓ ¾º ÐÓ º Ì ÖÑ ÒÓ Ð Ò ºÔÖÓ Ò ¾¼½¾ ( Ó ) ( Ó ) Vkošíkuje17ořechů.MíšasFilipemsepravidelněstřídajívtazích,začínáMíša.Vkaždém tahusníhráčminimálnějedenořechamaximálnětřetinu 1

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

[ ] 2.4.6 Sudé a liché funkce. Předpoklady: 2203, 2402

[ ] 2.4.6 Sudé a liché funkce. Předpoklady: 2203, 2402 6 Sudé a liché funkce Předpoklady: 03, 0 Pedagogická poznámka: Tato hodina patří mezi ty, ve kterých se toho moc nestihne Pokud si však studenti mají nakreslit obrázky sami, není jiná možnost Přesto by

Více

12. Aproximační algoritmy

12. Aproximační algoritmy 12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat

Více

š Á š š ů š ý š Č Š Č ň ý ž ů ý ž ů Č ý ž ú Ň Š Í š ý ú ý š š š ý š š š š ý š š š Ů š š š š ý ů ů š ý ň š š š ž ů ň š ž ž ň ý ž š ý ý š ý š ý ú ů ž ý š ž š ú ú š ý ň ň š ý š š š Ú ú š ý ů š š š š š š š

Více

POPIS HRY. American Hot Slot. Verze: CS 1.00 KAT 5. Play & Win s.r.o. Skuherského 67 370 01 České Budějovice

POPIS HRY. American Hot Slot. Verze: CS 1.00 KAT 5. Play & Win s.r.o. Skuherského 67 370 01 České Budějovice POPIS HRY American Hot Slot Verze: CS 1.00 KAT 5 Play & Win s.r.o. Skuherského 67 370 01 České Budějovice Tel.: (0042) 038/7424604 Fax: (0042) 038/7424604 1. POPIS HRY...3 1.1 ZÁKLADNÍ HRA...3 1.1.1 Výherní

Více

Ošetřování chyb v programech

Ošetřování chyb v programech Ošetřování chyb v programech Úvod chyba v programu = normální záležitost typy chyb: 1) programátorská chyba při návrhu každých 10 000 řádek 1 chyba lze jen omezeně ošetřit (před pádem aplikace nabídnout

Více

Karty Prší. Anotace: Abstract: Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek

Karty Prší. Anotace: Abstract: Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Karty Prší ročníkový projekt, Tomáš Krejča 1E květen 2014 Anotace: Mým cílem bylo vytvořit simulátor karetní hry prší. Hráč

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

DSL manuál. Ing. Jan Hranáč. 27. října 2010. V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v

DSL manuál. Ing. Jan Hranáč. 27. října 2010. V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v DSL manuál Ing. Jan Hranáč 27. října 2010 V této kapitole je stručný průvodce k tvorbě v systému DrdSim a (v současné době krátký) seznam vestavěných funkcí systému. 1 Vytvoření nového dobrodružství Nejprve

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.

Více

Emotion 750. 1. Technická charakteristika

Emotion 750. 1. Technická charakteristika 1. Technická charakteristika Výherní hrací přístroj je elektronicky řízené zařízení umožňující sázky do interaktivních her (dále jen VHP). VHP je přímo obsluhováno sázejícím. Okolnost, jež určuje výhru,

Více

Ú ť ť ť ó é ý ý ú é ý é ý é é Í é Š š š Í é ó é é Í š Ž ý Ž š é ý Ž ď é Ž é š é š Í é ď Ž é é ý Ž Í é é š ý é š š ů Í ý š ú ň ú š ý ý š ú Č ý ů ý ů š é ú Ž é ů é š ý é é é é ý š ú ó ý é ý é ýš ý Í ý é

Více

Hodnocení soutěžních úloh

Hodnocení soutěžních úloh Terč Koeficient 1 soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Napište program, který zobrazí střelecký terč dle vzorového obrázku. Jak má

Více

Ý Á Á Á Š É Ř ý ě ů Č ě ě ě ě ý ě ý ý š ě ě ě ý ě ů ž ě ě ě ů ě ů š ý ý ů ž ě ůž ž ý ů ú ě ž ú ě ě ú ě ůž ú ž ě ů ž ě ů š š ý ů ž ě ů ž ě ů ě ě ý ž ý ž ý ě ě ě ě ň ý ě ě ý ž ý š ů ž ý ý ý ž ý ů ž ě ý ů

Více

ě ý ě ě š ů ě ň ý ě ú ě ě ě ě š ě ě ý ů ť ě ú ů ě ě ě ě ě š ě ě ž ý ě ý ě ů ý ů ý ě ě ů ý ů ů ě ž ý ě ý ý ů ť ý ů ě ě ý ě ů ý ů ů ý ů ě ě ý ý ě ž ž ů ž ů ý ě ě ý ě ůž ý ž ě š ý š ý ý ý ý ž ý ó ů ý ě ý

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

ň ý ú ž ě ě Ž š ý ú š ý ě ě ě ý š ů ě ě ě š ů ě ě š ů ů ýš ý ě ž ú ě ě ě š ů ě ě š ů ě ě ý ž ů ů ó ě Č ú ě ě š ú ň ě ý ž ů ů ý ě ý ž ů ý ě ý ž ů ů ý ů š Ž ů É ď ť ý ž ú Ž Ž ý ů ů ů ú ý ů ě ý ů ě ě š ů

Více

Algoritmy pro hraní tahových her

Algoritmy pro hraní tahových her Algoritmy pro hraní tahových her Klasické deskové hry pro dva hráče: Šachy Dáma Go Piškvorky Reversi Oba hráči mají úplnou znalost pozice (na rozdíl např. od Pokeru). 1 Základní princip Hraní tahových

Více

Osadníci z Katanu. a Monte Carlo Tree Search. David Pěgřímek. http://davpe.net MFF UK (2013) 1 / 24

Osadníci z Katanu. a Monte Carlo Tree Search. David Pěgřímek. http://davpe.net MFF UK (2013) 1 / 24 .. Osadníci z Katanu a Monte Carlo Tree Search David Pěgřímek http://davpe.net MFF UK (2013) 1 / 24 Osadníci z Katanu autor hry Klaus Teuber (1995 Německo) strategická desková hra pro 3 až 4 hráče hra

Více

PARADIGMATA PROGRAMOVÁNÍ 2A INTERPRET S VEDLEJŠÍMI EFEKTY A MAKRY

PARADIGMATA PROGRAMOVÁNÍ 2A INTERPRET S VEDLEJŠÍMI EFEKTY A MAKRY KATEDRA INFORMATIKY, PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO, OLOMOUC PARADIGMATA PROGRAMOVÁNÍ 2A INTERPRET S VEDLEJŠÍMI EFEKTY A MAKRY VÝVOJ TOHOTO UČEBNÍHO MATERIÁLU JE SPOLUFINANCOVÁN EVROPSKÝM

Více

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více

Kolekce, cyklus foreach

Kolekce, cyklus foreach Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Programová realizace jednoduché strategické hry Květoslav Čáp Bakalářská práce 2010 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval

Více

Počítačové šachy. Otakar Trunda

Počítačové šachy. Otakar Trunda Počítačové šachy Otakar Trunda Hraní her obecně Hra je definovaná pomocí: Počáteční situace Funkce vracející množinu přípustných tahů v každé situaci Ohodnocení koncových stavů Našim cílem je najít strategii

Více

Úvod do simulace - 1

Úvod do simulace - 1 Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Úvod do simulace - 1 Technická univerzita v Liberci Simulace výrobních systémů 14.11.2012

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

Základy programování. Úloha: Eratosthenovo síto. Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP

Základy programování. Úloha: Eratosthenovo síto. Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP Základy programování Úloha: Eratosthenovo síto Autor: Josef Hrabal Číslo: HRA0031 Datum: 28.11.2009 Předmět: ZAP Obsah 1 Zadání úkolu: 3 1.1 Zadání:............................... 3 1.2 Neformální zápis:.........................

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

20. Projekt Domácí mediotéka

20. Projekt Domácí mediotéka Projekt Domácí mediotéka strana 211 20. Projekt Domácí mediotéka 20.1. Základní popis, zadání úkolu V projektu Domácí mediotéka (Dome) se jednoduchým způsobem evidují CD a videa. Projekt je velmi jednoduchý

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44 Algoritmizace a programování Ak. rok 2012/2013 vbp 1. ze 44 Vladimír Beneš Petrovický K101 katedra matematiky, statistiky a informačních technologií vedoucí katedry E-mail: vbenes@bivs.cz Telefon: 251

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Gymnázium, Praha 6, Arabská 14. předmět Programování, vyučující Tomáš Obdržálek. Počítačová hra Fotbalový Manažer. ročníkový projekt.

Gymnázium, Praha 6, Arabská 14. předmět Programování, vyučující Tomáš Obdržálek. Počítačová hra Fotbalový Manažer. ročníkový projekt. Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Počítačová hra Fotbalový Manažer ročníkový projekt Jan, 1E květen 2014 Anotace: Fotbalový Manažer je strategická hra pouze

Více

Herní plán DIRTY MONEY

Herní plán DIRTY MONEY Herní plán DIRTY MONEY Dirty Money 1. Úvod Dirty Money je hra s pěti válci a 9 výherními liniemi. Hra obsahuje 9 různých symbolů. 2. Pravidla hry a její průběh Ve hře Dirty Money může hráč nastavit sázky

Více

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste. Řešení 2. série Řešení J-I-2-1 1. krok: Číslici 2 ve třetím řádku můžeme dostat jedině násobením 5 4 = 20, 5 5 = 25. Tedy na posledním místě v prvním řádku může být číslice 4 nebo 5. Odtud máme i dvě možnosti

Více