Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Rozměr: px
Začít zobrazení ze stránky:

Download "Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková"

Transkript

1 Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy. Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

2 KAPITOLA : Funkce - úvod reálná funkce (jedné) reálné proměnné... f : A R zobrazení množiny A R do množiny reálných čísel R funkční hodnota... y = f (x) (x argument) definiční obor... D(f ) (= A); obor hodnot... H(f ) = { y R y = f (x) pro nějaké x A } D(g) = A 1 A = D(f ), f (x) = g(x) x D(g)... {... g zúžení funkce f ( (z A ) na A 1 ) f rozšíření funkce g ( (z A 1 ) na A )

3 Příklady: 1) D(f ) = N... posloupnost ) f (x) = a ( R)... D(f ) = R... konstantní funkce 3) f (x) = sin x... D(f ) = R; g(x) = sin x, x π, π... D(g) = π, π g zúžení funkce f, f rozšíření funkce g 4) f (x) = sgn x = 1 pro x < 0 0 pro x = 0 1 pro x > 0... signum ( znaménko )

4 graf funkce f... { (x, f (x)) x D(f )} Příklady: 1) f (x) = x (x 0 : f (x) = x; x 0 : f (x) = x) f (x) = x y = x y = x 1 ) f (x) = sgn x 1

5 3) f (x) = [x] f g na M... M D(f ) D(g) a f (x) g(x) x M (analogicky ostatní nerovnosti)

6 Operace s funkcemi h h(x) D(h) součet f + g f (x) + g(x) D(f ) D(g) rozdíl f g f (x) g(x) D(f ) D(g) součin f g f (x) g(x) D(f ) D(g) podíl f g f (x) g(x) (D(f ) D(g)) \{x g(x) = 0 } násobek a f a f (x) D(f ) ( a R )

7 složená funkce... h = g f... h(x) = g(f (x)) (musí platit H(f ) D(g)) f vnitřní funkce, g vnější funkce vliv skládání na změnu grafu funkce... viz skripta [JT-DIP] str. 8 (30), Věta 3.31

8 .1 Vlastnosti funkcí prostá funkce... f (x 1 ) f (x ) pro x 1 x ( tj. f (x 1 ) = f (x ) x 1 = x ) inverzní funkce... f 1 (x) = y f (y) = x D(f 1 ) = H(f ) ( f musí být prostá )

9 Definice: Řekneme, že funkce f je zdola omezená na množině A D(f ), jestliže existuje L R tak, že pro všechna x A platí: L f (x). Řekneme, že funkce f je shora omezená na množině A D(f ), jestliže existuje K R tak, že pro všechna x A platí: f (x) K.

10 Definice: Řekneme, že funkce f je omezená na množině A D(f ), jestliže existuje S R tak, že pro všechna x A platí: f (x) S. Funkce je omezená na A, právě když je na A omezená zdola i shora. Funkce je omezená právě tehdy, když je její obor hodnot omezená množina (analogicky funkce omezené z jedné strany). Poznámka: Je-li A = D(f ), vynecháváme v názvu: na množině A. (Podobně i u dalších pojmů.) Příklad.1: Funkce f (x) = 1 x + 1 je omezená.

11 Definice: Řekneme, že funkce f je na množině A D(f ) neklesající ( nerostoucí ), jestliže f (x 1 ) f (x ) ( f (x 1 ) f (x ) ) x 1, x A, x 1 < x, rostoucí ( klesající ), jestliže f (x 1 ) < f (x ) ( f (x 1 ) > f (x ) ) x 1, x A, x 1 < x, monotonní, je-li na A neklesající nebo nerostoucí, ryze monotonní, je-li na A rostoucí nebo klesající. rostoucí ( f (x 1 ) f (x ) ) (x 1 x ) > 0 x 1, x A, x 1 x klesající ( f (x 1 ) f (x ) ) (x 1 x ) < 0 x 1, x A, x 1 x (podobně pro nerostoucí a neklesající)

12 Platí: Je-li funkce f ryze monotonní na D(f ), pak je prostá a existuje f 1. Funkce f 1 má stejný typ monotonie jako f. Příklady: 1) f (x) = [x]... neklesající na D(f ) = R, rostoucí např. na Z nebo na { 1 + k k Z} ) f (x) = 1 ; x D(f ) = (, 0) (0, )... klesající na (, 0) a na (0, ) není ale klesající na celém D(f ) Poznámka: Budeme-li dále mluvit o intervalech, nebudeme brát v úvahu intervaly jednobodové ( tj. intervaly typu a, a ).

13 Definice: Řekneme, že funkce f je sudá, jestliže pro každé x D(f ) platí a) x D(f ), b) f ( x) = f (x). Řekneme, že funkce f je lichá, jestliže pro každé x D(f ) platí a) x D(f ), b) f ( x) = f (x). sudá sudá = lichá lichá = sudá sudá lichá = lichá sudá = lichá

14 Definice: Řekneme, že funkce f je periodická s periodou T > 0, jestliže pro každé x D(f ) platí a) x ± T D(f ), b) f (x + T ) = f (x) ( = f (x T ) ). T je perioda, k N k T je perioda základní perioda... nejmenší perioda (pokud existuje) - nemají ji např.: konstantní funkce Dirichletova funkce: f (x) = 1 f (x) = 0 pro x Q pro x Q

15 . Posloupnosti posloupnost reálných čísel zobrazení množiny přirozených čísel do mn. reálných čísel n -tý člen posloupnosti... hodnota zobrazení v bodě n N (Analogicky lze definovat i posloupnost komplexních čísel.) Značení: členy posloupnosti... a n, b n apod. posloupnost... (a n ) n=1, (a n) n N, (a 1, a, a 3,... ) ( často také : {a n } n=1 apod. )

16 Obecněji: Množinu N nahradíme množinou N 0 nebo { k, k + 1, k +,... }, k N ( k Z ) apod. Platí: Posloupnost (a n ) n=1 n N platí je rostoucí právě tehdy, když pro každé a n+1 > a n neboli a n+1 a n > 0. (Analogicky pro další typy monotonie.)

17 Definice : Řekneme, že posloupnost (a n ) n=1 je omezená ( shora omezená zdola omezená ), jestliže je množina jejích členů omezená ( shora omezená zdola omezená ), tj. jestliže existuje K R takové, že a n K ( a n K K a n ) pro všechna n N. Poznámka : Posloupnost je omezená právě tehdy, když je omezená shora i zdola. Poznámka : Na omezenost či neomezenost posloupnosti nemá vliv změna konečně mnoha jejích členů.

18 Definice : Řekneme, že posloupnost (a n ) n=1 jestliže je neklesající ( nerostoucí ), a n+1 a n ( a n+1 a n ) pro každé n N. Posloupnost nazveme monotonní, je-li neklesající nebo nerostoucí. Řekneme, že posloupnost (a n ) n=1 je rostoucí ( klesající ), jestliže a n+1 > a n ( a n+1 < a n ) pro každé n N. Posloupnost nazveme ryze monotonní, je-li rostoucí nebo klesající.

19 Poznámka: Pro posloupnost a n = 8(n 1)(n )(n 3) + 7n platí ( a n+1 a n = 4 n 3 ) + 1 > 0 n N, tedy je rostoucí. Pro funkci f (x) = 8(x 1)(x )(x 3) + 7x stejně platí ( f (x + 1) f (x) = 4 x 3 ) + 1 > 0 x D(f ) = R. Funkce f přesto není rostoucí. Máme totiž např > a zároveň f ( 11 5 ) = < 14 = f (). Při zkoumání monotonie funkce tedy nestačí porovnat její hodnoty v bodech x a x + 1.

20 Speciální případy posloupností konstantní posloupnost: a n = A R pro každé n N aritmetická posloupnost dáno a 1 R, d R ( d diference ) a n+1 = a n + d pro n N ( rekurentní zadání ), tj. a n = a 1 + (n 1) d pro n N ( zadání vzorcem pro n -tý člen ) Platí: a 1 + a a n = s n = (a 1 + a n ) n = (a 1 + (n 1) d) n

21 geometrická posloupnost dáno a 1 R, q R ( q kvocient ) a n+1 = a n q pro n N, tj. a n = a 1 q n 1 pro n N ( pokládáme tu q 0 = 1 pro každé q R ) Platí: a 1 + a a n = s n = a 1 1 qn 1 q pro q 1

22 geometrická posloupnost dáno a 1 R, q R ( q kvocient ) a n+1 = a n q pro n N, tj. a n = a 1 q n 1 pro n N ( pokládáme tu q 0 = 1 pro každé q R ) Platí: a 1 + a a n = s n = a 1 1 qn 1 q pro q 1 a 1 + a a n = s n = n a 1 pro q = 1

23 .3 Elementární funkce podrobně viz skripta [JT-DIP] strany (3-4) ( je potřeba znát dobře grafy! )

24 1. Mocnina. Funkce x α, a x, log a x A) OBECNÁ MOCNINA f (x) = x α... α R pevné pro α racionální: D(f ) a H(f ) závisí na α, vždy (0, ) D(f ), a pro α 0 také (0, ) H(f ) pro α iracionální: D(f ) = (0, ), H(f ) = (0, )

25 B) EXPONENCIÁLNÍ FUNKCE ( o základu a ) f (x) = a x... a > 0 pevné D(f ) = R, H(f ) = (0, ) pro a 1, H(f ) = {1} pro a = 1 speciálně pro a = e ( Eulerovo číslo ) značíme e x = exp(x)... exponenciální funkce ( e =., 718, definuje se předpisem e = lim n (1 + 1 n )n )

26 C) LOGARITMICKÁ FUNKCE ( o základu a ) ( inverzní funkce k exponenciální funkci ) log a x = y a y = x... a > 0, a 1 pevné D(f ) = (0, ), H(f ) = R speciálně pro a = e značíme log e x = ln x... přirozený logaritmus

27 y a > 1 1 x 0 < a < 1 graf funkce f (x) = log a x

28 Vlastnosti logaritmů ( a, b > 0, a, b 1 ; x, y > 0 ; r R ): ( ) 1 log a = log x a x log a ( x y ) = log a x + log a y ( ) x log a y = log a x log a y log a x r = r log a x log a x = log b x log b a, speciálně: log a x = ln x ln a Platí: a x = e x ln a pro a > 0, x R ( protože e x ln a = e ln ax a funkce ln x je inverzní funkce k e x )

29 . Goniometrické a cyklometrické funkce A) GONIOMETRICKÉ FUNKCE sin x... D(f ) = R, H(f ) = 1, 1, lichá, π-periodická cos x... D(f ) = R, H(f ) = 1, 1, sudá, π-periodická tg x = sin x cos x cotg x = cos x sin x... D(f ) = k Z( π + kπ, π + kπ), lichá, π-periodická... D(f ) = k Z(kπ, (k + 1)π), lichá, π-periodická

30 y 1 3π π π π π 3π 1 cos x sin x x grafy funkcí sin x a cos x

31 y tg x π π 0 π π cotg x x grafy funkcí tg x a cotg x

32 Vybrané vlastnosti funkcí sin x a cos x : sin x = cos (x π ) cos x = sin (x + π ) sin x + cos x = 1 sin x = sin x cos x cos x = cos x sin x sin x = 1 (1 cos x) cos x = 1 (1 + cos x)

33 sin(x ± y) = sin x cos y ± cos x sin y cos(x ± y) = cos x cos y sin x sin y sin x + sin y = sin x + y sin x sin y = cos x + y cos x + cos y = cos x + y cos x y sin x y cos x y cos x cos y = sin x + y sin x y

34 Základní hodnoty goniometrických funkcí 0 π 6 π 4 π 3 π 3π 4 π 5π 4 3π 7π 4 sin x cos x tg x cotg x

35 CYKLOMETRICKÉ FUNKCE ( inverzní ke goniometrickým zúženým na vhodný interval ) f D(f ) H(f ) f 1 D(f 1 ) H(f 1 ) sin x π, π 1, 1 arcsin x 1, 1 π, π cos x 0, π 1, 1 arccos x 1, 1 0, π tg x ( π, π ) R arctg x R ( π, π ) cotg x ( 0, π ) R arccotg x R ( 0, π )

36 Poznámka: Cyklometrické funkce nejsou inverzními funkcemi ke goniometrickým funkcím jako takovým, ale jen k jejich zúžením na určitý interval. Máme arcsin(sin 0) = arcsin 0 = 0, ale arcsin(sin(π)) = arcsin 0 = 0 π, ( ( 3 )) arcsin sin π = arcsin( 1) = π 3 π. Pro funkci arctg platí: x ( π + kπ, π + kπ), k Z = x = arctg (tg x) + kπ.

37 y π π arcsin x arccos x x 1 1 π grafy funkcí arcsin x a arccos x

38 y π π arctg x π 4 1 arccotg x x π grafy funkcí arctg x a arccotg x

39 HYPERBOLICKÉ FUNKCE f D(f ) H(f ) sinh x = ex e x R R cosh x = ex + e x R 1, ) tgh x = sinh x cosh x = ex e x e x + e x R ( 1, 1 ) cotgh x = cosh x sinh x = ex + e x e x e x R \ { 0 } (, 1 ) ( 1 )

40 y cosh x sinh x y cotgh x 1 x 1 tgh x 1 grafy hyperbolických funkcí

41 Vybrané vlastnosti funkcí sinh x a cosh x : sinh x < cosh x cosh x sinh x = 1 sinh x = sinh x cosh x cosh x = cosh x + sinh x

42 HYPERBOLOMETRICKÉ FUNKCE ( inverzní k hyperbolickým, případně zúženým na vhodný interval ) f D(f ) H(f ) f 1 D(f 1 ) H(f 1 ) sinh x R R argsinh x R R cosh x 0, ) 1, ) argcosh x 1, ) 0, ) tgh x R ( 1, 1 ) argtgh x ( 1, 1 ) R cotgh x R \ { 0 } R \ 1, 1 argcotgh x R \ 1, 1 R \ { 0 }

43 y cosh x sinh x y argtgh x 1 x 1 1 argcotgh x x grafy hyperbolometrických funkcí

44 Vyjádření hyperbolometrických funkcí pomocí logaritmů argsinh x = ln(x + x + 1 ), x R argcosh x = ln(x + x 1 ), x 1, ) argtgh x = 1 ( ) 1 + x ln, x ( 1, 1) 1 x ( viz Příklad. ) argcotgh x = 1 ( ) 1 + x ln, x (, 1) (1, ) x 1

45 Příklad.: Pro x < 1 vyjádřete argtgh x pomocí logaritmické funkce. Řešení: Označíme y = argtgh x. Pak x = tgh y = ey e y e y + e y. Po rozšíření zlomku výrazem e y postupně dostáváme x = ey 1 e y + 1

46 ( e y + 1)x = e y 1 (x 1) e y = 1 x e y = 1 x x 1 Tedy e y = 1 + x 1 x ( 1 + x ) y = ln. 1 x argtgh x = 1 ( 1 + x ) ln. 1 x

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Kapitola 1: Reálné funkce 1/20

Kapitola 1: Reálné funkce 1/20 Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.

8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!. 8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně

Více

P ˇ REDNÁŠKA 3 FUNKCE

P ˇ REDNÁŠKA 3 FUNKCE PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.

Více

2. FUNKCE JEDNÉ PROMĚNNÉ

2. FUNKCE JEDNÉ PROMĚNNÉ 2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;

1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R; 3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Proseminář z matematiky pro fyziky

Proseminář z matematiky pro fyziky Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina

6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125

Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Obsah 1 Množiny a číselné obory Množinové operace Reálná

Více

F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.

F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I. KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/21 Matematická analýza ve Vesmíru. proměnné - p. 2/21 Definice. Funkcí (přesněji:

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R. 5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí

Více

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R .4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..

Více

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce, . Určete vlastnosti funkcí: (i) f : y = x (ii) f : y = x 4 (iii) f : y = cotgx (iv) f 4 : y = arccosx (v) f 5 : y = 4 x (vi) f 6 : y = ( 4 )x (vii) f 7 : y = lnx (viii) f 8 : y = x. Uveďte příklad: (i)

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Kapitola1. Lineární lomená funkce Kvadratická funkce Mocninná funkce s obecným reálným exponentem Funkce n-tá odmocnina...

Kapitola1. Lineární lomená funkce Kvadratická funkce Mocninná funkce s obecným reálným exponentem Funkce n-tá odmocnina... Kapitola1 Základní soubor funkcí v R Lineární funkce.......................................................... 1-1 Kvadratická funkce...................................................... 1-2 Mocninná

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

7.1 Úvod. Definice: [MA1-18:P7.1a]

7.1 Úvod. Definice: [MA1-18:P7.1a] KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných

Více

1. Písemka skupina A1..

1. Písemka skupina A1.. 1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?

Více

Matematická analýza I

Matematická analýza I Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

Cyklometrické funkce

Cyklometrické funkce 4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy.

4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy. . Funkce.. Funkce Verze. prosince 6 S pojmem funkce jsme se setkali již v Kapitole F Zobrazení. Připomeňme základní pojm. Zobrazení z množin X do množin Y je formálně podmnožina F kartézského součinu X

Více

Kapitola 2: Spojitost a limita funkce 1/20

Kapitola 2: Spojitost a limita funkce 1/20 Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)

Více

Základní elementární funkce

Základní elementární funkce Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 80 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i

funkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i Přednáška č. 6 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 6 29. října 2007 1 / 64 Přehled elementárních funkcí Jde o pojem spíše historický než matematický. Vymezuje se několik (základních)

Více

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0 8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy

Více

Příklady k přednášce 3

Příklady k přednášce 3 Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Doporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV)

Doporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV) Přednáška Matematika I v prvním semestru 2013-2014 Spojení na přednášejícího a konzultace Petr Holický, Matematicko fyzikální fakulta Katedra matematické analýzy Sokolovská 83, 2. patro e-mail: holicky@karlin.mff.cuni.cz

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Funkce a základní pojmy popisující jejich chování

Funkce a základní pojmy popisující jejich chování Funkce a základní pojmy popisující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. Protože jen výjimečně budou v této části použity jiné

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Matematická analýza 1

Matematická analýza 1 VŠB TECHNICKÁ UNIVERZITA OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY Matematická analýza 1 Pracovní listy Martina Litschmannová 2015 / 2016 Definice, věty i mnohé příklady jsou převzaty z: KUBEN, Jaromír

Více

MATEMATIKA 1B ÚSTAV MATEMATIKY

MATEMATIKA 1B ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Integrální počet - II. část (další integrační postupy pro některé typy funkcí)

Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /

Více

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 POSLOUPNOSTI 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 n+1n, d) a n = n! n n 2. 2. Najděte předpis pro n-tý člen

Více

Goniometrické a hyperbolické funkce

Goniometrické a hyperbolické funkce Kapitola 5 Goniometrické a hyperbolické funkce V této kapitole budou uvedeny základní poznatky týkající se goniometrických funkcí - sinus, kosinus, tangens, kotangens a hyperbolických funkcí - sinus hyperbolický,

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA01 M04, GA01 M03 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA01 M04, GA01 M03 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA01 M04, GA01 M03 REÁLNÁ FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 1 0 Typeset by

Více

Přednáška 1: Reálná funkce jedné reálné proměnné

Přednáška 1: Reálná funkce jedné reálné proměnné Přednáška : Reálná unkce jedné reálné proměnné Pojem unkce Deinice Reálnou unkcí jedné reálné proměnné rozumíme předpis y ( ) na jehož základě je každému prvku množiny D (zvané deiniční obor) přiřazen

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212

Matematika I. Funkce jedné proměnné. Funkce jedné proměnné Matematika I 1 / 212 Matematika I Funkce jedné proměnné Funkce jedné proměnné Matematika I 1 / 212 1. Množiny a zobrazení Funkce jedné proměnné Matematika I 2 / 212 Množiny Definice 1.1.1: Množinou rozumíme soubor prvků se

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více