Ekonomické modelování pro podnikatelskou praxi

Rozměr: px
Začít zobrazení ze stránky:

Download "Ekonomické modelování pro podnikatelskou praxi"

Transkript

1 pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce

2 Sylabus 1. Východiska ekonomického modelování Typologie a rizika používání ekonomických modelů Definice, popis a kvantifikace rizika Simulace stochastických jevů Jednoduché aplikace 2. Aplikace modelů při řízení tržních rizik Citlivostní analýza Dynamické zajišťování Value at Risk 3. Aplikace modelů při posuzování investičních projektů Od analýz citlivosti ke statistickým simulacím Reálné opce

3 Význam ekonomického modelování se využívá pro analýzu ekonomických jevů v podmínkách rizika. Modely v ekonomii nahrazují experiment v exaktních vědeckých disciplínách. Modely umožňují pochopit chování ekonomických systémů a jejich složek. řeší především tyto úlohy: Citlivostní analýzu (význam při kvalitativní analýze rizik a při jejich zajišťování) Hodnotovou analýzu Tržní oceňování (rovnovážné tržní modely) Komparaci; optimalizaci (dynamická analýza systémů)

4 Charakteristika ekonomických modelů Typologie ekonomických modelů Strukturální (statické) modely vycházejí z předpokladu tržní rovnováhy (úroková parita, CAPM, Blackův-Scholesův model, Gordonův oceňovací model atd.) Statistické (dynamické) modely popisují chování systémů v závislosti na charakteristice rizikových faktorů. Riziko modelu Chybné vstupy; nesprávné odhady předpokladů; chybná implementace; nesprávné použití (nesprávný model). Řízení rizika modelu Nezávislá kontrola; úplná dokumentace; kvalitní správa dat; zpětné testování; validace. Vždy je třeba používat modely, kterým uživatel dobře rozumí a kontrolovat je zdravým úsudkem.

5 Co je riziko Riziko je míra odchylky možného budoucího stavu světa od stavu očekávaného. Ke kvantifikaci rizika se používají statistické míry odchylky (variability) náhodného jevu: Oboustranné (variační rozpětí, rozptyl, směrodatná odchylka) Jednostrané (semivariance, kvantilové rozpětí) Míra polohy (medián) a variability (sm. odchylka) úplně popisují normální (Gaussovo) rozdělení; jiná rozdělení mohou mít méně nebo více parametrů. Obecně nelze říci, jestli je riziko dobré nebo špatné (záleží na sklonu jednotlivce k riziku); na efektivním trhu (tzn. v chování firem) se však předpokládá riziková averze (vyšší riziko musí být odměněno vyšším očekávaným výnosem).

6 Princip diverzifikace Riziko lze za určitých předpokladů snížit bez snížení očekávaného výnosu pomocí diverzifikace. U nezávislých rizik (pojišťovnictví, spotřebitelské úvěry) se vychází ze Zákona velkých čísel (Bernoulli 1713, Poisson 1835) Chování závislých rizik (např. tržní rizika) popisuje Moderní portfoliová teorie (Markowitz 1952)

7 Příklad 1 (diverzifikace- ZVČ) Jak nejlépe investovat, existují-li možnosti bezrizikový vklad u spořitelny s úrokem 1%; směnečný úvěr s úrokem 12% a pravděpodobností nesplacení 5%? (srov. Vlachý s ) Spočítat očekávaný výnos a směrodatnou odchylku výnosů pro varianty: Vklad u spořitelny Jeden úvěr Dva úvěry Mnoho úvěrů

8 Vklad vs 1 úvěr Posuzujeme očekávaný výnos/vážený průměr scénářů E(r) a riziko/směrodatnou odchylku s(r). Spořitelna => Jeden scénář (splatí) B E(r) = 1%; B s(r) = 0% Směnka => Dva scénáře (splatí nesplatí) U E(r) = 95% 12%+5% (-100%) = 6,4%; U s(r)= 95% (12%-4,5%) 2 +5% (-100%- 4,5%) 2 = 24,48%

9 Dva úvěry Dvě směnky => Tři scénáře Oba dlužníci splatí: r ++ = 12%, P ++ = 95% 95% = 90,25% Oba nesplatí: r -- = 100%, P -- = 5% 5% = 0,25% Jeden splatí, druhý ne: r +- = 0,5 12% + 0,5 ( 100%) = 44%, P +- = 2 5% 95% = 9,5% 2U E(r) = 90,25% 12%+0,25% ( 100%)+ 9,5% ( 44%) = 6,4%; 2U s(r)= 90,25% (12% 4,5%) 2 +0,25% ( 100% 4,5%) 2 +9,5% ( 44% 4,5%) 2 = 17,26%

10 Zobecnění Specifické riziko způsobují (statisticky) nezávislé náhodné jevy. Specifickou složku rizika lze (teoreticky donekonečna) snižovat diverzifikací (zákon velkých čísel). N E(r) σ 1 6,4%24,41% 2 6,4%17,26% 4 6,4%12,20% 10 6,4% 7,72% 100 6,4% 2,45% ,4% 0,25% σ Specifické riziko Systematické riziko Systematické riziko je dáno rizikovostí ekonomiky (trhu, pojistné třídy apod.) Není (v rámci investic na daném trhu) diverzifikovatelné. N

11 Analytická vs numerická řešení modelů V řadě případů je analytické řešení určitého problému složité, případně vůbec neexistuje. Numerické metody nabývají na významu především s ohledem na dramatické zvyšování výkonu výpočetní techniky. Příklady: Bootstrap (interpolace výnosové křivky) (srov. Vlachý s ) Rekurze (Cox-Ross-Rubinsteinova metoda oceňování opcí) Iterace (výpočet výnosu do splatnosti nebo IRR) Simulace (analýza scénářů, Monte Carlo)

12 Příklad 2 (výnos do splatnosti, citlivost) Spočítejte výnos do splatnosti SD 3,8%/2015 při nákupní ceně 99,6. Odhadněte změnu jeho tržní hodnoty při růstu tržních úrokových sazeb o 1 procentní bod.

13 Příklad 3 (hazardní hra) Jaká je pravděpodobnost, že při hodu dvěma kostkami padne číslo menší než 8? Z tabulky kombinací P(<8) = n(<8)/n = 21/36 = 58,3%. x \ y

14 Experimentální řešení Je ale také možné skutečně mnohokrát hodit dvěma kostkami a spočítat relativní četnosti Statistická simulace = Metoda Monte Carlo (parametrický model) Bylo by rovněž možné vzít záznamy ze skutečných her v kostky a spočítat četnosti zkoumaného jevu Historická simulace (neparametrický model)

15 Realizace statistických simulací Mechanické metody (hody mincí, vrhy kostkou, speciální zařízení) Využití výpočetní techniky Speciální matematický či statistický software (např. MatLab) Simulační software (např. Crystal Běžný tabulkový procesor (např. Excel) Generátory náhodných čísel Tabulky náhodných čísel Mechanické, fyzikální, chemické generátory Aritmetické generátory (pseudonáhodná čísla splňující testy náhodnosti)

16 Statistické simulace v Excelu Funkce =rand() nebo v české verzi =náhčíslo() generuje rovnoměrné rozdělení v intervalu <0; 1> Transformace na diskrétní rovnoměrná rozdělení =round(rand(); 0)... nabývá hodnot {0; 1} =int(rand() 6)+1... nabývá hodnot {1; 2; 3; 4; 5; 6} Transformace na běžná spojitá rozdělení (pomocí inverzní kumulativní distribuční funkce) =norminv(rand(); m; s)... normální (Gaussovo) rozdělení dále např. =betainv(), =chiinv(), =gammainv(), =loginv(), případně analytická řešení Pozn.: do verze Excel 2002 se nedoporučuje použití vestavěného generátoru pro velké modely (lze pořídit generátory třetích stran nebo přímo simulační nástavby); Excel 2003 má chybu (použít opravný balíček).

17 Příklad 4 (Ludolfovo číslo) Jak zjistit hodnotu Ludolfova čísla (p)? Analyticky (geometricky)... Archimédes (200BC) => Ludolf van Ceulen (1600AD) (pomocí mnohoúhelníků opisujících obvod kružnice) Numericky (Monte Carlo)... de Buffon (1777- Buffonova jehla) Pro obsah kruhu platí S= p r 2 Obsah čtvrtkruhu o jednotkovém poloměru r= 1 je tedy S Q = p/4. Čtvrtkruh se vejde do čtverce o obsahu S ƀ = 1. Platí tedy, že poměr S ƀ / S Q = 4/p => p = 4 S Q. Poměr obsahů lze odhadnout náhodným generováním souřadnic {x; y} a zjištěním četností pokusů, při nichž x 2 + y 2 1.

18 Příklad 5 (investiční strategie) Podnik je portfoliem tří projektů, jejichž očekávanou hodnotu za rok lze vyjádřit diskrétními rovnoměrnými rozděleními {1; 2; 3; 4; 5; 6} (A a B), resp. {1; 6} (C). Provozní náklady na každý projekt činí 1; počáteční hodnota (velikost investice) každého projektu činí 2. Posuďte výnosnost kapitálu a rizikovost za předpokladu investice z vlastních zdrojů, resp. 50% (75%, 90%) financováním úvěrem. Porovnejte s analogickým investičním rozhodováním, není-li zohledněno riziko. Lišily by se nějak výsledky, pokud by podnik přijal pouze jeden z uvedených projektů?

Charakteristika rizika

Charakteristika rizika Charakteristika rizika Riziko je možnost, že se dosažené výsledky podnikání budou příznivě či nepříznivě odchylovat od předpokládaných výsledků. Odchylky od předpokladu jsou: a) příznivé b) nepříznivé

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni. Finanční trhy Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.cz Tento studijní materiál byl vytvořen jako výstup

Více

Základy teorie finančních investic

Základy teorie finančních investic Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR)

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) (Aktualizovaná verze 04/05) Úvodní charakteristika předmětu: Cílem jednosemestrálního předmětu Investiční a finanční

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D.

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D. HODNOCENÍ INVESTIC Manažerská ekonomika obor Marketingová komunikace 9. přednáška Ing. Jarmila Ircingová, Ph.D. Metody hodnocení efektivnosti investic Při posuzování investice se vychází ze strategických

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

FINANČNÍ A SPRÁVNÍ. Metodický list č. 1. Název tématického celku: Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví

FINANČNÍ A SPRÁVNÍ. Metodický list č. 1. Název tématického celku: Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví Metodický list č. 1 Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví Studenti by měli pochopit pojem oceňování podniku, jeho účel, kdo oceňování provádí, rozlišit pojmy cena a

Více

Ing. Ondřej Audolenský

Ing. Ondřej Audolenský České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Oceňování podniku. doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze

Oceňování podniku. doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze Oceňování podniku doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze Obsah přednášky Cena x hodnota Přístupy ke stanovení hodnoty

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Hodnocení pomocí metody EVA - základ

Hodnocení pomocí metody EVA - základ Hodnocení pomocí metody EVA - základ 13. Metoda EVA Základní koncept, vysvětlení pojmů, zkratky Řízení hodnoty pomocí EVA Úpravy účetních hodnot pro EVA Náklady kapitálu pro EVA jsou WACC Způsob výpočtu

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování - rizika systematická a nesystematická - podnikatelské

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

(Aktualizovaná verze 09/08)

(Aktualizovaná verze 09/08) Metodické listy pro kombinované studium předmětu Podnikové finance a finanční plánování (PFP_2) (Aktualizovaná verze 09/08) Přednášející: Ing. Jana Kotěšovcová Způsob zakončení předmětu: zápočet formou

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

KRRB M E T O D Y A T E C H N I K Y

KRRB M E T O D Y A T E C H N I K Y KRRB 2. P Ř E D N Á Š K A M E T O D Y A T E C H N I K Y Základní změna přístupu k řízení bankovních rizik Tradiční přístup: řízení rizik se soustřeďovalo na řízení aktiv a pasiv v bankovní bilanci (= banking

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Investiční činnost Pojem investování vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Druhy investic 1. Hmotné investice vytvářejí

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5 Obsah 1. ÚVOD 1 1.1 ÚVOD 1 1.2 PROČ JE ŘÍZENÍ RIZIK DŮLEŽITÉ 1 1.3 OBECNÁ DEFINICE ŘÍZENÍ RIZIK 2 1.4 PŮVOD VZNIKU A STRUKTURA 3 1.5 ZÁMĚR 3 1.6 ROZSAH KNIHY 4 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY

Více

Charakteristika rizika

Charakteristika rizika Charakteristika rizika Riziko je možnost, že se dosažené výsledky podnikání budou příznivě či nepříznivě odchylovat od předpokládaných výsledků. Odchylky od předpokladu jsou: a) příznivé b) nepříznivé

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Finanční deriváty ŘÍZENÍ RIZIK I

Finanční deriváty ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy na ně (=> obchody s rizikem ). Hodnota vzniká zprostředkovaně přes hodnotu podkladového aktiva nebo ukazatele. Existence

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Finanční rizika. podniku, způsoben rizikového faktoru. že e protistrana. hodnoty podniku, způsoben. ností ŘÍZENÍ RIZIK I

Finanční rizika. podniku, způsoben rizikového faktoru. že e protistrana. hodnoty podniku, způsoben. ností ŘÍZENÍ RIZIK I Finanční rizika Tržní riziko je pravděpodobnost podobnost změny hodnoty podniku, způsoben sobené změnou tržní hodnoty rizikového faktoru. Kreditní riziko je pravděpodobnost podobnost změny hodnoty podniku,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e Téma 8: Chování cen akcií a investiční management Struktura přednášky: 1. Chování cen akcií fundamentální a technická analýza a teorie efektivních trhů. Riziko a výnos Markowitzův model 3. Kapitálový trh

Více

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu Finanční anageent Příka kapitálového trhu, odel CAPM, systeatické a nesysteatické riziko Příka kapitálového trhu Čí vyšší e sklon křivky, tí vyšší e nechuť investora riskovat. očekávaný výnos Množina všech

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně Simulátor označujeme jako kredibilní v případě, že: byla úspěšně završena fáze verifikace simulátoru se podařilo přesvědčit zadavatele simulačního

Více

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní Náklady na kapitál I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní fond - statutární a ostatní fondy 4)

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Cvičení z optimalizace Markowitzův model

Cvičení z optimalizace Markowitzův model Cvičení z optimalizace Markowitzův model Vojtěch Franc, 29 1 Úvod V tomto cvičení se budeme zabývat aplikací kvadratického programování v ekonomii a sice v úloze, jejímž cílem bude optimalizovat portfolio

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Metodický list - Finanční deriváty

Metodický list - Finanční deriváty Metodický list - Finanční deriváty Základní odborná literatura vydaná VŠFS: [0] Záškodný,P., Pavlát,V., Budík,J.: Finanční deriváty a jejich oceňování.všfs,praha 2007 Tato literatura platí v plném rozsahu,

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

Návrh Investičního portfolia

Návrh Investičního portfolia Návrh Investičního portfolia Jan Bohatý vytvořeno: 18. březen Připravil: Ing.Petr Ondroušek PO Investment Dunajská 17 62500 Brno Kontakt: telefon: 603383742 email: petr.ondrousek@poinvestment.cz www.poinvestment.cz

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

INVESTIČNÍ ROZHODOVÁNÍ A DLOUHODOBÉ FINANCOVÁNÍ

INVESTIČNÍ ROZHODOVÁNÍ A DLOUHODOBÉ FINANCOVÁNÍ INVESTIČNÍ ROZHODOVÁNÍ A DLOUHODOBÉ FINANCOVÁNÍ Josef Valach a kolektiv Třetí, přepracované a rozšířené vydání Recenze: prof. Ing. Karol Vlachynský, PhD. Autorský kolektiv: prof. Ing. Josef Valach, CSc.

Více

Kup a drž nebo raději kup a pusť?

Kup a drž nebo raději kup a pusť? Kup a drž nebo raději kup a pusť? Je strategie kup a drž nejlepší možná? Nedá se poznat, kdy jsou trhy levné a kdy drahé a podle toho nakupovat? A jak na převažování a podvažování akcií? Kdy platí strategie

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

1 ÚVOD DO PODNIKOVÝCH FINANCÍ A FINANČNÍHO ŘÍZENÍ PODNIKU 1.1 Pojem a funkce podnikových financí a finančního řízení 1.2 Finanční cíle podnikání,

1 ÚVOD DO PODNIKOVÝCH FINANCÍ A FINANČNÍHO ŘÍZENÍ PODNIKU 1.1 Pojem a funkce podnikových financí a finančního řízení 1.2 Finanční cíle podnikání, 1 ÚVOD DO PODNIKOVÝCH FINANCÍ A FINANČNÍHO ŘÍZENÍ PODNIKU 1.1 Pojem a funkce podnikových financí a finančního řízení 1.2 Finanční cíle podnikání, finanční politika podniku 1.3 Zdroje financování podnikatelských

Více

Rozhodovací procesy 11

Rozhodovací procesy 11 Rozhodovací procesy 11 Management rizik Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 XI rozhodování 1 Management rizik Cíl přednášky 11: a přístup k řízení rizik : Ohrožení,

Více

Jan Vlachý vlachy@atlas.cz. Praha, 2006.

Jan Vlachý vlachy@atlas.cz. Praha, 2006. Řízení rizik II Jan Vlachý vlachy@atlas.cz Vlachý, J.: Řízení finančních rizik; Eupress, Praha, 2006. Řízení rizik II Analýza tržních rizik, zajištění nelineárních rizik, kvantifikace rizik. Kapitálové

Více

Rizika financování obcí, měst a krajů na kapitálovém trhu

Rizika financování obcí, měst a krajů na kapitálovém trhu Rizika financování na kapitálovém trhu Rizika financování obcí, měst a krajů na kapitálovém trhu Vladimír Tomšík viceguvernér ČNB Národní setkání starostů, primátorů a hejtmanůčr Kongresové centrum ČNB,

Více

3. Zajištěný fond. Odvaz s minimálním rizikem.

3. Zajištěný fond. Odvaz s minimálním rizikem. 3. Zajištěný fond Odvaz s minimálním rizikem. 1 4 DŮVODY PROČ INVESTOVAT do 3. Zajištěného fondu 1 Jistota návratnost 106 % vložené investice Podstupujete minimální riziko - fond způsobem svého investování

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více