Ekonomické modelování pro podnikatelskou praxi

Rozměr: px
Začít zobrazení ze stránky:

Download "Ekonomické modelování pro podnikatelskou praxi"

Transkript

1 pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce

2 Sylabus 1. Východiska ekonomického modelování Typologie a rizika používání ekonomických modelů Definice, popis a kvantifikace rizika Simulace stochastických jevů Jednoduché aplikace 2. Aplikace modelů při řízení tržních rizik Citlivostní analýza Dynamické zajišťování Value at Risk 3. Aplikace modelů při posuzování investičních projektů Od analýz citlivosti ke statistickým simulacím Reálné opce

3 Význam ekonomického modelování se využívá pro analýzu ekonomických jevů v podmínkách rizika. Modely v ekonomii nahrazují experiment v exaktních vědeckých disciplínách. Modely umožňují pochopit chování ekonomických systémů a jejich složek. řeší především tyto úlohy: Citlivostní analýzu (význam při kvalitativní analýze rizik a při jejich zajišťování) Hodnotovou analýzu Tržní oceňování (rovnovážné tržní modely) Komparaci; optimalizaci (dynamická analýza systémů)

4 Charakteristika ekonomických modelů Typologie ekonomických modelů Strukturální (statické) modely vycházejí z předpokladu tržní rovnováhy (úroková parita, CAPM, Blackův-Scholesův model, Gordonův oceňovací model atd.) Statistické (dynamické) modely popisují chování systémů v závislosti na charakteristice rizikových faktorů. Riziko modelu Chybné vstupy; nesprávné odhady předpokladů; chybná implementace; nesprávné použití (nesprávný model). Řízení rizika modelu Nezávislá kontrola; úplná dokumentace; kvalitní správa dat; zpětné testování; validace. Vždy je třeba používat modely, kterým uživatel dobře rozumí a kontrolovat je zdravým úsudkem.

5 Co je riziko Riziko je míra odchylky možného budoucího stavu světa od stavu očekávaného. Ke kvantifikaci rizika se používají statistické míry odchylky (variability) náhodného jevu: Oboustranné (variační rozpětí, rozptyl, směrodatná odchylka) Jednostrané (semivariance, kvantilové rozpětí) Míra polohy (medián) a variability (sm. odchylka) úplně popisují normální (Gaussovo) rozdělení; jiná rozdělení mohou mít méně nebo více parametrů. Obecně nelze říci, jestli je riziko dobré nebo špatné (záleží na sklonu jednotlivce k riziku); na efektivním trhu (tzn. v chování firem) se však předpokládá riziková averze (vyšší riziko musí být odměněno vyšším očekávaným výnosem).

6 Princip diverzifikace Riziko lze za určitých předpokladů snížit bez snížení očekávaného výnosu pomocí diverzifikace. U nezávislých rizik (pojišťovnictví, spotřebitelské úvěry) se vychází ze Zákona velkých čísel (Bernoulli 1713, Poisson 1835) Chování závislých rizik (např. tržní rizika) popisuje Moderní portfoliová teorie (Markowitz 1952)

7 Příklad 1 (diverzifikace- ZVČ) Jak nejlépe investovat, existují-li možnosti bezrizikový vklad u spořitelny s úrokem 1%; směnečný úvěr s úrokem 12% a pravděpodobností nesplacení 5%? (srov. Vlachý s ) Spočítat očekávaný výnos a směrodatnou odchylku výnosů pro varianty: Vklad u spořitelny Jeden úvěr Dva úvěry Mnoho úvěrů

8 Vklad vs 1 úvěr Posuzujeme očekávaný výnos/vážený průměr scénářů E(r) a riziko/směrodatnou odchylku s(r). Spořitelna => Jeden scénář (splatí) B E(r) = 1%; B s(r) = 0% Směnka => Dva scénáře (splatí nesplatí) U E(r) = 95% 12%+5% (-100%) = 6,4%; U s(r)= 95% (12%-4,5%) 2 +5% (-100%- 4,5%) 2 = 24,48%

9 Dva úvěry Dvě směnky => Tři scénáře Oba dlužníci splatí: r ++ = 12%, P ++ = 95% 95% = 90,25% Oba nesplatí: r -- = 100%, P -- = 5% 5% = 0,25% Jeden splatí, druhý ne: r +- = 0,5 12% + 0,5 ( 100%) = 44%, P +- = 2 5% 95% = 9,5% 2U E(r) = 90,25% 12%+0,25% ( 100%)+ 9,5% ( 44%) = 6,4%; 2U s(r)= 90,25% (12% 4,5%) 2 +0,25% ( 100% 4,5%) 2 +9,5% ( 44% 4,5%) 2 = 17,26%

10 Zobecnění Specifické riziko způsobují (statisticky) nezávislé náhodné jevy. Specifickou složku rizika lze (teoreticky donekonečna) snižovat diverzifikací (zákon velkých čísel). N E(r) σ 1 6,4%24,41% 2 6,4%17,26% 4 6,4%12,20% 10 6,4% 7,72% 100 6,4% 2,45% ,4% 0,25% σ Specifické riziko Systematické riziko Systematické riziko je dáno rizikovostí ekonomiky (trhu, pojistné třídy apod.) Není (v rámci investic na daném trhu) diverzifikovatelné. N

11 Analytická vs numerická řešení modelů V řadě případů je analytické řešení určitého problému složité, případně vůbec neexistuje. Numerické metody nabývají na významu především s ohledem na dramatické zvyšování výkonu výpočetní techniky. Příklady: Bootstrap (interpolace výnosové křivky) (srov. Vlachý s ) Rekurze (Cox-Ross-Rubinsteinova metoda oceňování opcí) Iterace (výpočet výnosu do splatnosti nebo IRR) Simulace (analýza scénářů, Monte Carlo)

12 Příklad 2 (výnos do splatnosti, citlivost) Spočítejte výnos do splatnosti SD 3,8%/2015 při nákupní ceně 99,6. Odhadněte změnu jeho tržní hodnoty při růstu tržních úrokových sazeb o 1 procentní bod.

13 Příklad 3 (hazardní hra) Jaká je pravděpodobnost, že při hodu dvěma kostkami padne číslo menší než 8? Z tabulky kombinací P(<8) = n(<8)/n = 21/36 = 58,3%. x \ y

14 Experimentální řešení Je ale také možné skutečně mnohokrát hodit dvěma kostkami a spočítat relativní četnosti Statistická simulace = Metoda Monte Carlo (parametrický model) Bylo by rovněž možné vzít záznamy ze skutečných her v kostky a spočítat četnosti zkoumaného jevu Historická simulace (neparametrický model)

15 Realizace statistických simulací Mechanické metody (hody mincí, vrhy kostkou, speciální zařízení) Využití výpočetní techniky Speciální matematický či statistický software (např. MatLab) Simulační software (např. Crystal Běžný tabulkový procesor (např. Excel) Generátory náhodných čísel Tabulky náhodných čísel Mechanické, fyzikální, chemické generátory Aritmetické generátory (pseudonáhodná čísla splňující testy náhodnosti)

16 Statistické simulace v Excelu Funkce =rand() nebo v české verzi =náhčíslo() generuje rovnoměrné rozdělení v intervalu <0; 1> Transformace na diskrétní rovnoměrná rozdělení =round(rand(); 0)... nabývá hodnot {0; 1} =int(rand() 6)+1... nabývá hodnot {1; 2; 3; 4; 5; 6} Transformace na běžná spojitá rozdělení (pomocí inverzní kumulativní distribuční funkce) =norminv(rand(); m; s)... normální (Gaussovo) rozdělení dále např. =betainv(), =chiinv(), =gammainv(), =loginv(), případně analytická řešení Pozn.: do verze Excel 2002 se nedoporučuje použití vestavěného generátoru pro velké modely (lze pořídit generátory třetích stran nebo přímo simulační nástavby); Excel 2003 má chybu (použít opravný balíček).

17 Příklad 4 (Ludolfovo číslo) Jak zjistit hodnotu Ludolfova čísla (p)? Analyticky (geometricky)... Archimédes (200BC) => Ludolf van Ceulen (1600AD) (pomocí mnohoúhelníků opisujících obvod kružnice) Numericky (Monte Carlo)... de Buffon (1777- Buffonova jehla) Pro obsah kruhu platí S= p r 2 Obsah čtvrtkruhu o jednotkovém poloměru r= 1 je tedy S Q = p/4. Čtvrtkruh se vejde do čtverce o obsahu S ƀ = 1. Platí tedy, že poměr S ƀ / S Q = 4/p => p = 4 S Q. Poměr obsahů lze odhadnout náhodným generováním souřadnic {x; y} a zjištěním četností pokusů, při nichž x 2 + y 2 1.

18 Příklad 5 (investiční strategie) Podnik je portfoliem tří projektů, jejichž očekávanou hodnotu za rok lze vyjádřit diskrétními rovnoměrnými rozděleními {1; 2; 3; 4; 5; 6} (A a B), resp. {1; 6} (C). Provozní náklady na každý projekt činí 1; počáteční hodnota (velikost investice) každého projektu činí 2. Posuďte výnosnost kapitálu a rizikovost za předpokladu investice z vlastních zdrojů, resp. 50% (75%, 90%) financováním úvěrem. Porovnejte s analogickým investičním rozhodováním, není-li zohledněno riziko. Lišily by se nějak výsledky, pokud by podnik přijal pouze jeden z uvedených projektů?

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

Aplikace při posuzování inv. projektů

Aplikace při posuzování inv. projektů Aplikace při posuzování inv. projektů Pokročilé metody investiční analýzy Výpočet bodu zvratu Citlivostní analýza Analýzy scénářů Statistické simulace Reálné opce Analýza stochastických procesů Příklad

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Charakteristika rizika

Charakteristika rizika Charakteristika rizika Riziko je možnost, že se dosažené výsledky podnikání budou příznivě či nepříznivě odchylovat od předpokládaných výsledků. Odchylky od předpokladu jsou: a) příznivé b) nepříznivé

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Simulační modely. Kdy použít simulaci?

Simulační modely. Kdy použít simulaci? Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni. Finanční trhy Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.cz Tento studijní materiál byl vytvořen jako výstup

Více

Základy teorie finančních investic

Základy teorie finančních investic Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR)

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) (Aktualizovaná verze 04/05) Úvodní charakteristika předmětu: Cílem jednosemestrálního předmětu Investiční a finanční

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Stochastické signály (opáčko)

Stochastické signály (opáčko) Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme

Více

Téma 3: Metoda Monte Carlo

Téma 3: Metoda Monte Carlo y Náhodná proměnná D Téma 3: Metoda Monte Carlo Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia 1,0 1,00 0,80 0,60 0,40 0,0 0,00 0,00 0,0 0,40 0,60 0,80 1,00

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

Finanční trhy. Finanční aktiva

Finanční trhy. Finanční aktiva Finanční trhy Finanční aktiva Magický trojúhelník investování (I) Riziko Výnos Likvidita Magický trojúhelník investování (II) Tři prvky magického trojúhelníku (výnos, riziko a likvidita) vytváří určitý

Více

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D.

HODNOCENÍ INVESTIC. Manažerská ekonomika obor Marketingová komunikace. 9. přednáška Ing. Jarmila Ircingová, Ph.D. HODNOCENÍ INVESTIC Manažerská ekonomika obor Marketingová komunikace 9. přednáška Ing. Jarmila Ircingová, Ph.D. Metody hodnocení efektivnosti investic Při posuzování investice se vychází ze strategických

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Téma 4: Stratifikované a pokročilé simulační metody

Téma 4: Stratifikované a pokročilé simulační metody 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Výpočet nejistot metodou Monte carlo

Výpočet nejistot metodou Monte carlo Výpočet nejistot metodou Monte carlo Mgr. Martin Šíra, Ph.D. (ČMI, Brno) červen 2012 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. p. 1 Výpočty nejistot

Více

Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.

Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

(Verze 04/05) Metodický list č. 1

(Verze 04/05) Metodický list č. 1 Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (Verze 04/05) Úvodní charakteristika předmětu: Cílem jednosemestrálního předmětu Investiční a finanční rozhodování (IFR)

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Metodický list č. 1 Název tématického celku: Dluhopisy a dluhopisové portfolio I. Cíl: Základním cílem tohoto tematického celku je popsat dluhopisy jako investiční instrumenty,

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování - rizika systematická a nesystematická - podnikatelské

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Ing. Ondřej Audolenský

Ing. Ondřej Audolenský České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních

Více

Okruhy ke státním závěrečným zkouškám Platnost: od leden 2017

Okruhy ke státním závěrečným zkouškám Platnost: od leden 2017 Okruh I: Řízení podniku a projektů: strategický management, inovační management a manažerské rozhodování 1. Základní struktura strategického managementu a popis jednotlivých fází, zhodnocení výstupů a

Více

FINANČNÍ A SPRÁVNÍ. Metodický list č. 1. Název tématického celku: Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví

FINANČNÍ A SPRÁVNÍ. Metodický list č. 1. Název tématického celku: Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví Metodický list č. 1 Vymezení problematiky oceňování podniku. Analýza makroprostředí a odvětví Studenti by měli pochopit pojem oceňování podniku, jeho účel, kdo oceňování provádí, rozlišit pojmy cena a

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Výpočet pravděpodobností

Výpočet pravděpodobností Výpočet pravděpodobností Pravděpodobnostní kalkulátor v programu STATISTICA Cvičení 5 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen 2016 Ambrožová Klára Trocha teorie Náhodné jevy mají

Více

Odborná směrnice č. 3

Odborná směrnice č. 3 Odborná směrnice č. 3 Test postačitelnosti technických rezerv životních pojištění Právní normy: Zákon č. 277/2009 Sb., o pojišťovnictví, ve znění pozdějších předpisů (dále jen zákon o pojišťovnictví )

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Úvod. Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry

Úvod. Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry TRH KAPITÁLU Úvod Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry Vznik díky odložené spotřebě Nutná kompenzace možnost

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Hodnocení pomocí metody EVA - základ

Hodnocení pomocí metody EVA - základ Hodnocení pomocí metody EVA - základ 13. Metoda EVA Základní koncept, vysvětlení pojmů, zkratky Řízení hodnoty pomocí EVA Úpravy účetních hodnot pro EVA Náklady kapitálu pro EVA jsou WACC Způsob výpočtu

Více

Finanční deriváty ŘÍZENÍ RIZIK I

Finanční deriváty ŘÍZENÍ RIZIK I Finanční deriváty Smlouvy, jimiž se neobchoduje s podkladovými aktivy, ale právy na ně (=> obchody s rizikem ). Hodnota vzniká zprostředkovaně přes hodnotu podkladového aktiva nebo ukazatele. Existence

Více

Oceňování podniku. doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze

Oceňování podniku. doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze Oceňování podniku doc. RNDr. Ing. Hana Scholleová, Ph.D. Katedra podnikové ekonomiky Fakulta podnikohospodářská Vysoká škola ekonomická v Praze Obsah přednášky Cena x hodnota Přístupy ke stanovení hodnoty

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5

Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5 Obsah 1. ÚVOD 1 1.1 ÚVOD 1 1.2 PROČ JE ŘÍZENÍ RIZIK DŮLEŽITÉ 1 1.3 OBECNÁ DEFINICE ŘÍZENÍ RIZIK 2 1.4 PŮVOD VZNIKU A STRUKTURA 3 1.5 ZÁMĚR 3 1.6 ROZSAH KNIHY 4 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

INFORMACE O RIZICÍCH

INFORMACE O RIZICÍCH INFORMACE O RIZICÍCH PPF banka a.s. se sídlem Praha 6, Evropská 2690/17, PSČ: 160 41, IČ: 47116129, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1834 (dále jen Obchodník)

Více

Téma 2 Simulační metody typu Monte Carlo

Téma 2 Simulační metody typu Monte Carlo Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 2 Simulační metody typu Monte Carlo Princip simulačních metod typu Monte Carlo Metoda Simulation Based Reliability Assessment (SBRA)

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

KRRB M E T O D Y A T E C H N I K Y

KRRB M E T O D Y A T E C H N I K Y KRRB 2. P Ř E D N Á Š K A M E T O D Y A T E C H N I K Y Základní změna přístupu k řízení bankovních rizik Tradiční přístup: řízení rizik se soustřeďovalo na řízení aktiv a pasiv v bankovní bilanci (= banking

Více

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně Simulátor označujeme jako kredibilní v případě, že: byla úspěšně završena fáze verifikace simulátoru se podařilo přesvědčit zadavatele simulačního

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Kreditní riziko. hodnoty podniku, způsoben. že e protistrana

Kreditní riziko. hodnoty podniku, způsoben. že e protistrana Kreditní riziko Kreditní riziko je pravděpodobnost podobnost změny hodnoty podniku, způsoben sobené tím, že e protistrana nesplní svůj j závazek. z Míra tržního rizika = pravděpodobnost neplnění (= 1-bonita)...

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

(Aktualizovaná verze 09/08)

(Aktualizovaná verze 09/08) Metodické listy pro kombinované studium předmětu Podnikové finance a finanční plánování (PFP_2) (Aktualizovaná verze 09/08) Přednášející: Ing. Jana Kotěšovcová Způsob zakončení předmětu: zápočet formou

Více