CITLIVOSTNÍ ANALÝZA JAKO NÁSTROJ PRO VERIFIKACI CFD MODELU A OPTIMALIZACI KONKRÉTNÍHO PRVKU

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "CITLIVOSTNÍ ANALÝZA JAKO NÁSTROJ PRO VERIFIKACI CFD MODELU A OPTIMALIZACI KONKRÉTNÍHO PRVKU"

Transkript

1 Simulace budov a techniky prostředí konference IBPSA-CZ Praha, 7. listopadu 2006 CITLIVOSTNÍ ANALÝZA JAKO NÁSTROJ PRO VERIFIKACI CFD MODELU A OPTIMALIZACI KONKRÉTNÍHO PRVKU Ondřej Hojer 1, Jiří Bašta 1, Jan Hensen 2 1 Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze 2 Building Physics & Systems, Technische Universiteit Eindhoven ABSTRAKT V článku je ukázáno využití citlivostní analýzy na příkladu nejprve jednoduchého modelu přenosu tepla radiací a následně složitějšího případu, tvořeného kombinací programů Gambit Fluent. K této analýze byl použit software Simlab, který plně vyhovuje všem požadavkům a je doporučován v celé řadě prací zabývajících se touto tématikou. Na obou příkladech je detailně popsáno nastavení Simlabu a jsou uvedena základní doporučení pro praktické použití. V závěru je také jeden odstavec věnovaný použití citlivostní analýzy jako nástroje k verifikaci konkrétního CFD modelu a jsou zde diskutovány další možnosti využití. ÚVOD Citlivostní analýza je nástroj, který určuje závislost výstupních parametrů na parametrech vstupních. Jedná se o velmi cennou pomůcku hlavně pro optimalizační postupy, neboť umožňuje mimo jiné určit pořadí důležitosti jednotlivých vstupních veličin a tedy dále se pak při optimalizaci soustředit pouze na ty nejdůležitější veličiny. Velmi často se může stát, že jsme při práci postaveni před problém optimalizace prvku, výpočetního postupu nebo metody. To si většinou žádá důkladnou analýzu celého systému, zjištění vzájemných vazeb a závislostí. V neposlední řadě i zhodnocení jak je výsledek citlivý na vstupy. A právě k tomuto účelu slouží citlivostní analýza. Citlivostní analýza je obecně určena ke zjišťování působení změn vstupních parametrů modelu na výsledné hodnoty (výsledky) tohoto modelu. Používá se ze tří základních důvodů: 1. porozumění spolehlivosti výsledků; 2. rozpoznání nejlepší regulovatelnosti systému; 3. detailnější zaměření budoucích experimentů. Citlivostní analýza má celou řadu velmi zajímavých a hlavně užitečných využití. Dále v článku se však budeme zabývat pouze její aplikací v oboru techniky prostředí, konkrétně jejím využitím jako pomůcky pro verifikaci a optimalizaci. SIMLAB Jedná se o program, který je navržený pro zjišťování nejistot a citlivostí modelu metodou Monte Carlo. Celý postup můžeme rozdělit na tři postupné kroky přípravná fáze (pre-processing), vlastní model systému a analýza získaných výsledků (post-processing) viz obr. 1. Obr. 1 Postup výpočtu v programu Simlab V přípravné fázi vkládáme do Simlabu vstupní parametry, jejich střední hodnoty a standardní odchylky. Zadáváme jejich statistická rozdělení (normální, exponenciální, gama nebo jiná další) a volíme tzv. vzorkovací metodu. Vzorkovací metodou je myšleno vytvoření matice MxN, kde pro každou z M vstupních proměnných vygeneruje Simlab N náhodných hodnot podle předchozího nastavení. Pak je zapíše do externího souboru. V druhé fázi je třeba zadat, zda je model interní (je-li ho možné popsat jednoduchou rovnicí pomocí dříve zadaných parametrů a konstant) a nebo externí, kdy navzorkovaná vstupní data budou vložena do nějakého jiného programu, který provede výpočty. Výhodou je, že tento externí program (model) může být naprosto libovolný (např. Matlab, Excel, IES, Energy+ nebo Fluent). Uvnitř zvoleného modelu tedy proběhne N potřebných výpočtů (cyklů) a výstupy musí být poté opět zpětně uloženy do souboru se specifickou strukturou, aby byl Simlab schopen tyto hodnoty znovu použít. Slovem cyklus budeme tedy dále označovat jeden výpočet modelu, kde jsou jako vstupní veličiny zadány hodnoty příslušného řádku matice vstupních veličin.

2 A konečně poslední, třetí fáze provádí vlastní vyhodnocení a to analýzu nejistoty (určující nejistotu v předpokladech, které model poskytuje) a analýzu citlivostní, hodnotící vztah mezi nejistotami nezávislých vstupních parametrů a nejistotami závislých výstupních parametrů. Obě obsahují celou řadu výstupů a to jak grafických tak i tabelovaných. PŘÍKLAD POUŽITÍ Použití výše uvedeného postupu bude ukázáno na jednoduchém příkladu - přestupu tepla sáláním mezi dvěma přesně definovanými povrchy. Situace je zobrazena na obr. 2. Destička na podlaze je umístěna 0,1 m od počátku jak ve směru x tak y. Další technický popis je následující: rozměry prostoru (1 x 1 x 1) m sálající ploška S 1 = 0,0138 m 2 ploška na podlaze t 1 = 350 C e 1 = 0,90 (0,1 x 0,1) m t 2 = 10 C e 2 = 0,85 Obr. 2 Situace pro příklad přenosu tepla radiací s využitím citlivostní analýzy v Simlabu Na popis tohoto problému bude stačit jednoduchá rovnice pro přestup tepla sáláním mezi dvěma povrchy Q 4 4 [ T ] = σ ε ε ϕ (1) S T2 Hodnotu všech veličin až na poměr osálání již známe, nicméně ten je možné snadno zjistit nebo vypočítat. V dalším kroku určíme nejistotu všech parametrů. Pro tento příklad bude zvolena pro všechny hodnoty relativní nejistota 5 %. Všechny parametry i s příslušnými standardními odchylkami jsou shrnuté v tabulce 1. Pro všechny tyto parametry byla zvolena vzorkovací metoda Random [3] a pro první přiblížení 100 cyklů. Manuál Simlabu udává, že počet cyklů by rozhodně neměl být menší než 1,5 násobek počtu proměnných (1,5 x M). Doporučuje hodnotu 10 x počet proměnných. Jak se však dále ukáže, ani tato hodnota není k dosažení správných hodnot dostačující. Statistické rozdělení bylo u všech hodnot zvoleno normální. Tab. 1. Hodnoty parametrů a jejich nejistot pro příklad přestupu tepla radiací Parametry Střední Standardní hodnota odchylka e 1 [-] 0,90 ± 0,05 e 2 [-] 0,85 ± 0,04 S 1 [m 2 ] 0,0138 ± 0,0007 T 1 [K] 623 ± 31 T 2 [K] 283 ± 14 f 12 [-] 0,0029 ± 0,0002 s [W.m -2.K -4 ] 5, Když je popis systému jednoduchý jako v tomto případě, je výhodné využít interního modelu Simlabu a rovnici (1) vytvořit pomocí kalkulačky uvnitř Simlabu. Neobjevují se žádné komplikace s výstupními ani vstupními soubory a celý výpočet je tak velmi zrychlený a snadno opakovatelný pro libovolný počet cyklů. Jak je patrné z tabulky 2, analýza byla současně provedena několika technikami a tedy hodnocena několika různými citlivostními indexy (PEAR, SPEA, PCC, PRCC, SRC, SRRC a Smirnov). Rozdíl mezi jednotlivými citlivostními indexy spočívá ve způsobu jejich vyhodnocení. PEAR a SPEA jsou založeny na vyhodnocení bodových diagramů (scatterplot) závislé na každé jednotlivé nezávislé proměnné, kde PEAR je pro hodnocení lineárních modelů, zatímco SPEA se používá pro hodnocení nelineárních. Další hodnotící index využívá k řešení regresní analýzu. Měřítkem citlivosti jsou standardizované regresní koeficienty SRC. Používá se metoda lineární regrese. PCC neboli částečné korelační koeficienty jsou založeny na základech korelace a částečné korelace. Udávají váhu jednotlivých vstupů na výstupu bez uvažování jakékoli vazby s jiným vstupem. Regresní analýza často nepracuje spolehlivě, pokud vztah mezi vstupními proměnnými není lineární. V tomto případě je vhodné použít transformované indexy PRCC nebo SRRC. Transformace spočívá v nahrazení vlastních dat jejich pořadím (nejnižší hodnotě přiřadit číslo 1, atd.). Regresní analýza je pak provedena na těchto transformovaných hodnotách. Podle různých indexů lze tedy dojít k různým závěrům a je hlavně na autorovi analýzy, aby byl schopen zvolit vhodnou techniku, podle které případ vyhodnotí. Na základě hodnocení výhod a nevýhod jednotlivých indexů, jak jsou rozepsány v manuálu Simlabu [3] bylo zvoleno pro tento případ hodnocení indexem SRC. Podle absolutní velikosti hodnot v jednotlivých řádcích vidíme, že výsledek Q12 je nejvíce citlivý na T1, to znamená teplotu sálající plošky 1. Takový výsledek se vzhledem k charakteru rovnice (1) dal předpokládat.

3 Tab. 2 Výsledky první analýzy přestupu tepla radiací pro 100 cyklů Tab. 3 Výsledky první analýzy přestupu tepla radiací pro cyklů Další pořadí ovšem na první pohled nemusí být tak jasné a zde nám právě mohou pomoci výsledky zpracovávané analýzy. Z výsledků vidíme, že následuje poměr osálání f 12, sálající plocha S 1, emisivita této plochy e 1, emisivita přijímající plochy e 2 a nakonec teplota přijímající plochy T 2. Rozdílná hodnota indexů SRC u T 1 a T 2 je způsobena jejich rozdílnou absolutní hodnotou a nejistotou. Záporná hodnota vyjadřuje, že při zvyšování hodnoty T 2, klesá výsledná hodnota Q 12. Co je na těchto výsledcích na první pohled zarážející, je nestejný citlivostní index u e 1 a e 2. V rovnici stojí na stejné úrovni, mají téměř stejnou střední hodnotu a standardní odchylku a přesto je zde relativně velký rozdíl. Další zvláštností bylo červené (tmavé) pozadí za všemi hodnotami u SRC, které vyjadřuje, že hodnoty neprošly tzv. Čebyševovým testem významnosti. Zelené (světlejší) pozadí znamená, že hodnoty testem prošly a bílé pozadí znamená, že test nebylo možné provést. Podle tohoto testu bychom vlastně neměli žádnou z hodnot u SRC indexu považovat za relevantní (statisticky významnou). U jiných hodnotících indexů byla situace obdobná a tak bylo třeba hledat jiné řešení. Nakonec se ukázalo, že výsledek se značně zlepší, pokud provedeme úpravu nastavení Simlabu ve smyslu navýšení počtu cyklů (výpočtů modelu). V tomto případě bylo zvoleno 65000, aby byl výsledný rozdíl co nejvýraznější. Pokud se nyní podíváme na výsledky (tab. 3), zjišťujeme, že SRC u e 2 se srovnal s e 1, S 1 a f 12 a i Čebyševův test dopadl mnohem lépe. T 2 sice stále nevyhovuje, ale pro nás to jen znamená, že tuto proměnnou nebudeme ze statistického hlediska považovat pro hodnotu Q 12 ani její nejistotu za významnou. Na základě tohoto příkladu můžeme shrnout, že je třeba: 1. vždy velmi uvážlivě vybírat, jaký citlivostní index zvolíme pro hodnocení; 2. dávat pozor na závislost výsledků na počtu cyklů; 3. zvážit, jak velká nepřesnost může vzniknout, pokud výsledek neprojde Čebyševovým testem. K dokreslení možností, které Simlab nabízí, je zajímavé se ještě v obou případech podívat na analýzu nejistoty, tedy v jakých mezích se pohybují výstupní hodnoty. Z obr. 3 a 4 je stejně jako u citlivostní analýzy na první pohled zřejmý vliv počtu cyklů na celkové rozložení výsledných hodnot. Výhodou zejména u složitějších systémů je, že výsledky analýzy mohou být také zobrazeny ve formě statistických hodnot charakterizujících rozdělení závislé veličiny jako jsou střední hodnota, rozptyl, standardní odchylka a další. Pro obr. 3 a 4 bude uvedena střední hodnota se standardní odchylkou pod každým z obrázků v popisu. Výsledky i přes rozdílnost obou obrázků vykazují překvapivě velmi dobrou shodu. Můžeme konstatovat, že tabelární výstupy analýzy nejistoty se na rozdíl od grafických s narůstajícím počtem cyklů téměř nemění Obr. 3 Zobrazení frekvenční distribuční funkce závislé veličiny při 100 cyklech, osa x hodnota přeneseného výkonu [W], osa y četnost výskytu Q 12 = (0,26 ± 0,06) W Obr. 4 Zobrazení frekvenční distribuční funkce závislé veličiny při cyklech, osa x hodnota přeneseného výkonu [W], osa y četnost výskytu Q 12 = (0,25 ± 0,06) W

4 CFD APLIKACE Až dosud jsme se zabývali pouze jednoduchým využitím citlivostní analýzy v příkladu, který byl snadno popsatelný. V praxi se však s takovými příklady téměř nesetkáme a vždy se jedná o model daleko složitější, málokdy popsatelný jednoduchými rovnicemi. A právě na takové případy lze využít externí model. V našem případě budeme hovořit o modelu vytvořeném pro simulační prostředí CFD (Gambit Fluent). Jedná se o stejný případ jako je na obr. 1 s tím rozdílem, že přichází v úvahu více parametrů (tab. 4). Tab. 4 Hodnoty parametrů a jejich nejistot pro případ citlivostní analýzy programem Simlab s externím modelem pro CFD Parametry Popis Hodnota Odchylka* a [m] b [m] h [m] a [ ] b [ ] e 1 [-] e 2 [-] e o [-] e p [-] T 1 [K] T 2 [K] *hodnoty standardních odchylek Šířka sálající plošky 0,069 ± 0,004 Délka sálající plošky 0,20 ± 0,01 Hloubka 0,080 ± 0,004 Úhel podélného 45 ± 2 Úhel příčného 45 ± 2 Emisivita destičky 0,90 ± 0,05 Emisivita 0,40 ± 0,02 Emisivita stěn a stropu 0,85 ± 0,04 Emisivita podlahy 0,85 ± 0,04 Povrchová teplota destiček 1173 ± 59 Povrchová teplota podlahy 283 ± 14 Cílem celé analýzy je stanovení citlivostních indexů jednotlivých parametrů při přestupu tepla sáláním v uzavřeném prostoru z povrchu keramické destičky světlého plynového zářiče na plošku na podlaze. Jelikož se nacházíme zatím pouze na začátku této analýzy, byla zvolena pro první přiblížení mnohá zjednodušení, aby bylo dosaženo rychlé konvergence výsledků (při dlouhém výpočtu by nebylo možné provést takový počet cyklů, jaký by byl potřeba). Zejména se jednalo o: 1. zjednodušení modelu (geometrické i fyzikální hledisko); 2. snížení počtu parametrů (ne všechny ovlivňující hodnoty byly uvažovány jako parametry); 3. odhad nejistot u všech parametrů na stejnou relativní hodnotu. Obr. 5 Schéma externího modelu citlivostní analýzy pro program Simlab a simulační prostředí CFD Externí model (obr. 5) se skládá ze tří základních prvků, programů Simlab 2.2, Gambit 2.3 a Fluent 6.2. Začátek postupu je stejný jako v případě prvního příkladu. Parametry se zadají do Simlabu (1). Ten podle nastavení připraví matici MxN a zapíše ji do externího souboru (2); v tomto případě byla využita možnost propojení s Excelem. Simlab vytvoří v zadaném souboru list se jménem Inputs a čeká do té doby, než bude soubor uložen a Excel uzavřen. Předpokládá přitom, že se ve stejném souboru v listu nazvaném Outputs objeví sloupec začínající jménem závislé proměnné a seznamem výsledných hodnot odpovídajících počtu cyklů N. Hodnoty z listu Inputs jsou mezitím vloženy do vstupního souboru pro Gambit, tzv. žurnálu a současně skriptu generujícím žurnál pro Fluent. Je spuštěn proces generace sítě (mesh) pro všech N kombinací vstupních hodnot (3) a zároveň vytvořen žurnál pro Fluent. Fluent je spuštěn, postupně si načítá jednotlivé soubory s hotovou sítí (4) a zapisuje po konvergenci každého případu hledané hodnoty dopadajícího radiačního toku do dalšího souboru (5). Výsledky jsou opět načteny do původního Excel souboru do listu Outputs a Excel se zavírá. Tímto krokem se opět dostáváme zpět k Simlabu, který si načte potřebné hodnoty (6) a celý výsledek vyhodnotí (7), jako tomu bylo v jednoduchém případě. Pokud se nyní opět podíváme na schéma celého externího modelu (obr. 5), můžeme si vytvořit představu, jaký může být rozdíl mezi jednoduchým interním modelem a modelem externím. Aby bylo možné zahrnout všechny parametry do úvahy, bylo třeba na různých úrovních modelu vyřešit celou řadu problémů. První problém se objevil s generováním velkého množství souborů se sítí v Gambitu s rozdílnými rozměry sálající destičky a rozměry reflektorů. Tento problém byl vyřešen vytvořením žurnálu, který postupně v každém cyklu načte příslušné rozměry a podle nich vytvoří síť. Pouhou změnou počtu cyklů pak lze generovat těchto souborů libovolný počet. Další problém se objevil při snaze zahrnout do analýzy jiné proměnné, které nebylo možné vložit do Gambitu

5 (emisivity, teploty). Snaha vytvořit žurnál do Fluentu podobným způsobem jako do Gambitu selhala a tak bylo třeba nalézt jinou cestu. Nakonec se podařilo vytvořit skript, který Fluent žurnál vytvoří sám. Podobně jako v případě Gambitu pozdější změna počtu cyklů je již velice snadnou záležitostí. VÝSLEDKY Z výsledků prvního přiblížení, jak je vidět v tabulce 6, si již můžeme vytvořit představu, které veličiny jsou pro systém více důležité a které méně. Například váha některých veličin jako je emisivita e 1, emisivita okolních stěn a stropu e o, ale i úhel nastavení příčného b se zdá být zanedbatelný. Naopak podle očekávání největší vliv má teplota povrchu 1, rozměry sálající destičky a a b, úhel podélného a a překvapivě i teplota povrchu 2, jejíž vliv jsme v prvním příkladu mohli zanedbat. Zůstává ještě několik otázek, které je třeba vyřešit. Například jak je možné, že SRC u T 2 je v tomto případě najednou kladné, když by mělo mít stejně jako v prvním příkladu záporný vliv? Nebo z jakého důvodu jsou různá znaménka u úhlů nastavení a a b? Je samozřejmě možné, že zvýšením počtu cyklů se ještě výsledek nějakým směrem posune, ale jak jsme viděli u prvního příkladu, posun nemůžeme očekávat v řádu desetin, ale spíše setin. Hlavně předpokládáme zvýšení počtu hodnot, které projdou Čebyševovým testem, protože podle těchto výsledků žádná z SRC tímto testem neprošla. Tab. 5 Výsledky citlivostní analýzy prvního přiblížení pro 110 cyklů s programem Simlab a externím modelem v CFD Kromě výsledků z citlivostní analýzy je také zajímavé se podívat na výsledné rozložení dopadajícího sálavého toku jednoho ze 110 případů (obr. 6). Místo, ve kterém snímáme hodnotící veličinu, je zde na první pohled velice dobře patrné a lze si i velice snadno vytvořit představu o rozložení sálavého toku v oblasti pod zářičem. Absolutní hodnoty nejsou důležité, neboť se nejedná o reálný případ, ale pouze modelový. Výhoda Fluentu jako externího modelu spočívá v širokých možnostech výběru vstupních a výstupních parametrů. Nemusí se dokonce jednat pouze o analýzu jedné závislé proměnné, ale takových proměnných může být v rámci jednoho výpočtu hned několik. Obr. 6 Schéma externího modelu citlivostní analýzy pro program Simlab a simulační prostředí CFD VERIFIKACE MODELU V průběhu řešení byla citlivostní analýza použita zároveň pro verifikaci CFD modelu. Bylo třeba určit optimální nastavení tzv. parametrů relaxace (under-relaxation factors URF), jejichž hodnota značně ovlivňuje rychlost konvergence. Jako proměnné byly tedy zvoleny tyto URF a za výstupní hodnotu číslo iterace při které dojde ke konvergenci. Jako měřítko konvergence byla brána v úvahu pouze konvergenční kritéria, nikoli další ukazatele jako např. výsledná tepelná bilance nebo průběh sledované veličiny. Důvodem bylo, že je ve Fluentu možné automaticky ukončit výpočet, pokud tento konvergenční ukazatel dosáhne konkrétní hodnoty. U ostatních ukazatelů by automatické ukončení výpočtu po dosažení určité hodnoty bylo jen velmi těžko proveditelné. Výsledkem bylo pořadí citlivosti jednotlivých faktorů. Jednalo se však pouze o pomocnou informaci, neboť právě u URF platí, že jejich citlivost není lineární. Na tento problém je třeba si dát pozor u každého analyzovaného systému a v žádném případě závěry automaticky nezobecňovat. Vždy záleží na tom, jaká hodnota parametru bude pro analýzu zvolena. Nicméně alespoň z hlediska získání představy o chování celého systému byla tato informace velmi cenná. Podobné analýzy by se dalo využít například pro zjištění vlivu různých okrajových podmínek na konvergenci řešení nebo na výslednou tepelnou bilanci. Aplikací je celá řada a určitě v mnoha případech vhodnějších než velmi rozšířená metoda pokus omyl. ZÁVĚR Hlavním výstupem je zdokumentování postupu, který umožňuje aplikovat citlivostní analýzu v programu Simlab s využitím simulačního prostředí Gambit Fluent. Z uvedených případů vyplývá, že

6 uplatnění citlivostí analýzy s výše zmíněným simulačním prostředím je limitované velikostí modelu. Vzhledem k velkému množství cyklů výpočtu, které jsou nutné, je často problematické dosáhnout konvergence v rozumně krátkou dobu. Citlivostní analýza z toho důvodu není prakticky použitelná pro komplikované modely. Naproti tomu má celou řadu výhod a ani její použití se simulačním prostředím CFD by nemělo být v inženýrské praxi opomíjeno. V další fázi se předpokládá, jak již bylo konstatováno výše, rozšíření nejdříve počtu cyklů a následně zahrnutí rovnic popisujících proudění do výpočtu Fluentu. Očekává se, že bude poté možné výsledky lépe zobecnit a stanovit absolutní citlivostní stupnici pro ovlivňující parametry přestupu tepla od světlého plynového zářiče. Výsledky analýzy poté budou uplatněny pro optimalizaci světlého plynového zářiče a jeho geometrie sálání. t 1 t 2 T 1 povrchová teplota sálajícího povrchu [ C] povrchová teplota přijímajícího povrchu [ C] absolutní povrchová teplota sálajícího povrchu [K] T 2 absolutní povrchová teplota přijímacího povrchu [K] PODĚKOVÁNÍ Tento článek byl podpořen z výzkumného záměru MSM Technika životního prostředí. LITERATURA [1] Ferson S., Tucker T.: Sensitivity in risk analyses with uncertain numbers. Sandia National Laboratories. SAND Setauket, New York [2] Saltelli A. Tarantola S., Campolongo, F. and Ratto, M.: Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models, John Wiley & Sons publishers [3] Simlab 2.2 Software and Reference manual. Dostupné na URL adrese <http://simlab.jrc.cec.eu.int> [4] Fluent 6.2 Software and Manual. Dostupné na URL adrese <http://www.fluent.com/software/ fluent/index.htm> [5] Gambit 2.3 Software and Manual. Dostupné na URL adrese <http://www.fluent.com/software/ gambit/index.htm> PŘEHLED OZNAČENÍ a šířka sálající plošky [m] b délka sálající plošky [m] h hloubka [m] S 1 plocha sálající plošky [m 2 ] a úhel nastavení podélného [ ] b úhel nastavení příčného [ ] e 1 emisivita destičky [-] e 2 emisivita plechu [-] e o emisivita okolních stěn a stropu [-] e p emisivita podlahy [-] f 12 poměr osálání mezi povrchy 1 a 2 [-] s Stefan Bolzmanova konstanta [W m 2 K 4 ]

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů

Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů Přesvědčivost výsledků výpočtu potřeby tepla na vytápění pasivních domů Pavel Kopecký, Kamil Staněk, Jan Antonín, ČVUT, Fakulta stavební Thákurova 7, 166 29 Praha 6 Tel.: +420 224 354 473, e-mail: pavel.kopecky@fsv.cvut.cz

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz

Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz Konference ANSYS 2011 Software ANSYS pro návrh a optimalizaci elektrických strojů a zařízení, možnosti multifyzikálních analýz Jakub Hromádka, Jindřich Kubák Techsoft Engineering spol. s.r.o., Na Pankráci

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ

8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ 8 SEMESTRÁLNÍ PRÁCE VYHLEDÁVÁNÍ A ZPRACOVÁNÍ INFORMACÍ Seznámení s různými vyhledávacími databázemi vědeckých informací na internetu. Postup vyhledávání, rozšiřování a zužování vyhledávaného tématu. Vyhledávání

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

EXTRAPOLACE INTENZITNÍCH KŘIVEK PRO ÚČELY MODELOVÁNÍ SRÁŽKOODTOKOVÉHO PROCESU

EXTRAPOLACE INTENZITNÍCH KŘIVEK PRO ÚČELY MODELOVÁNÍ SRÁŽKOODTOKOVÉHO PROCESU EXTRAPOLACE INTENZITNÍCH KŘIVEK PRO ÚČELY MODELOVÁNÍ SRÁŽKOODTOKOVÉHO PROCESU P. Ježík Vysoké učení technické v Brně, Fakulta stavební, Ústav vodního hospodářství krajiny, Žižkova 17, 602 00 Brno Abstrakt

Více

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12

Obsah. Vybraná témata z Excelu pro techniky 13. Obsah. Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11. Typografická konvence použitá v knize 12 Obsah Úvod 11 Komu je kniha určena 11 Uspořádání knihy 11 Typografická konvence použitá v knize 12 1 Vybraná témata z Excelu pro techniky 13 Vzorce a funkce pro techniky 14 Vytvoření jednoduchého vzorce

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Protokol č. V- 213/09

Protokol č. V- 213/09 Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

DIMTEL - dimenzování otopných těles v teplovodních soustavách

DIMTEL - dimenzování otopných těles v teplovodních soustavách Dimenzování těles Dialogové okno Dimenzování těles lze otevřít z programu TZ (tepelné ztráty), z programu DIMOS_W a také z programu DIMTEL. Při spuštění z programu TZ jsou nadimenzovaná tělesa uložena

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

N i investiční náklady, U roční úspora ročních provozních nákladů

N i investiční náklady, U roční úspora ročních provozních nákladů Technicko-ekonomická optimalizace cílem je určení nejvýhodnějšího řešení pro zamýšlenou akci Vždy existují nejméně dvě varianty nerealizace projektu nulová varianta realizace projektu Konstrukce variant

Více

VĚTRÁNÍ HALY PRO VÝKRM KUŘAT

VĚTRÁNÍ HALY PRO VÝKRM KUŘAT 19. Konference Klimatizace a větrání 2010 OS 01 Klimatizace a větrání STP 2010 VĚTRÁNÍ HALY PRO VÝKRM KUŘAT Pavel Kic 1, Milan Zajíček 2 1 TF ČZU v Praze, Kamýcká 129, 165 21 Praha 6 - Suchdol 2 ÚTIA AV

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS Kateřina Pojkarová Anotace:Dopravu vužívají lidé za různým účelem, mimo jiné i ke svým cestám

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Simulace příletů cestujících na schengenský terminál letiště Praha - Ruzyně a jejich přestupů na navazující lety SEMESTRÁLNÍ PRÁCE Vybrané statistické

Více

OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH

OPTIMALIZACE ŽELEZOBETONOVÉHO PRŮŘEZU V ENVIRONMENTÁLNÍCH SOUVISLOSTECH Ctislav Fiala: OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB K 124FZS Doc. Ing. Petr Hájek,

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

NADSTAVBOVÝ MODUL MOHSA V1

NADSTAVBOVÝ MODUL MOHSA V1 NADSTAVBOVÝ MODUL MOHSA V1 Nadstavbový modul pro hierarchické shlukování se jmenuje Mod_Sh_Hier (MOHSA V1) je součástí souboru Shluk_Hier.xls. Tento soubor je přístupný na http://jonasova.upce.cz, a je

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005 PROPOJENÍ OPTIMALIZAČNÍHO A SIMULAČNÍHO MODELU PRO PLÁNOVÁNÍ A ŘÍZENÍ 1. Úvod FARMACEUTICKÉ VÝROBY Ing Petra Vegnerová Prof. Ing. Ivan Gros, CSc. Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská,

Více

Optimalizace radiační geometrie světlých plynových zářičů

Optimalizace radiační geometrie světlých plynových zářičů České vysoké učení technické v Praze Fakulta strojní Disertační práce Optimalizace radiační geometrie světlých plynových zářičů Technika prostředí Obor Doc. Ing. Jiří Bašta, Ph.D. Školitel Prof. Dr. Ir.

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona.

Boltzmannův zákon. Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária Rakovská, mrakovska@ukf.sk. Praktický test teoretického zákona. PROMOTE MSc POPIS TÉMATU FYZIKA 7 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Boltzmannův zákon Termodynamika, energie Daniela Horváthová, dhorvathova@ukf.sk Mária

Více

VYHODNOCENÍ PILOTNÍHO NASAZENÍ PREDIKTIVNÍHO ŘÍZENÍ V RÁMCI PROJEKTU GEOTABS

VYHODNOCENÍ PILOTNÍHO NASAZENÍ PREDIKTIVNÍHO ŘÍZENÍ V RÁMCI PROJEKTU GEOTABS Konference Vytápění Třeboň 2013 14. až 16. května 2013 VYHODNOCENÍ PILOTNÍHO NASAZENÍ PREDIKTIVNÍHO ŘÍZENÍ V RÁMCI PROJEKTU GEOTABS Ing. Jan Široký 1, Doc. Ing. Lukáš Ferkl, Ph.D. 2, Ing. Tomáš Vízner

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA)

JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA) JEDNODUCHÁ A PRAKTICKÁ METODA ODHADU PRACNOSTI PROJEKTU (S UTILITOU KE STAŽENÍ ZDARMA) 2. část autor: RNDr. Ilja Kraval, červenec 2010 http://www.objects.cz ÚVOD V minulém článku bylo pojednáno o složitosti

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská BAKALÁŘSKÁ PRÁCE. 2012 Jan Novák. Titulní strana (vnější desky)

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská BAKALÁŘSKÁ PRÁCE. 2012 Jan Novák. Titulní strana (vnější desky) České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská BAKALÁŘSKÁ PRÁCE 2012 Jan Novák Titulní strana (vnější desky) České vysoké učení technické v Praze Fakulta jaderná a fyzikálně

Více

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011

NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 NEZAMĚSTNANOST V JEDNOTLIVÝCH KRAJÍCH ČR V LETECH 2000 2011 Markéta Nesrstová Abstrakt Nezaměstnanost vždy byla, je a bude závažným problémem. Míra nezaměstnanosti v České republice se v současné době

Více

SDI. František Manlig. Technická univerzita v Liberci. Simulace diskrétních systémů 19.2.2013. TU v Liberci

SDI. František Manlig. Technická univerzita v Liberci. Simulace diskrétních systémů 19.2.2013. TU v Liberci Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Simulační projekt Technická univerzita v Liberci Simulace diskrétních systémů Technická

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Infračervená termografie ve stavebnictví

Infračervená termografie ve stavebnictví Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH

POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH POROVNÁNÍ NĚKTERÝCH SW PRO ZOBRAZENÍ GRAFU FUNKCE DVOU PROMĚNNÝCH Martin Fajkus Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky, Ústav matematiky, Nad Stráněmi 4511, 760 05 Zlín, Česká

Více

Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního

Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního Ing. Jiří Pokorný, Ph.D. Hasičský záchranný sbor Moravskoslezského kraje územní odbor Opava Těšínská 39, 746 01 Opava e-mail: jiripokorny@mujmail.cz

Více

Ing. Ondřej Audolenský

Ing. Ondřej Audolenský České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý

WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý Daniel Juřík, Antonín Popelka, Petr Marvan AIS spol. s r.o. Brno Wide Area Monitoring Systémy (WAMS) umožňují realizovat

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více