Využití expertního systému při odhadu vlastností výrobků

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Využití expertního systému při odhadu vlastností výrobků"

Transkript

1 Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních pojmů popisu parametrů ovlivňujících valitu výrobu. Správně definovaný a odladěný fuzz epertní sstém může odhadnout výsledné vlastnosti výrobu pro modifiované vstupní parametr. ento přístup je uázán na návrhu fuzz epertního sstému pro odhad pevnostních charateristi betonových směsí. 1. Úvod Fuzz Inference Sstem (FIS) jsou jednou z častých apliací fuzz množin v prai. Jejich vžití je vhodné zejména při modelování neurčitých sstémů de se předpoládá vliv veličin terou nelze přesně definovat pomocí lasicé matematicé logi a onvenčních prostředů sstémové analýz tj. napřílad diferenciálních nebo diferenčních rovnic nebo nástroji matematicé statisti. aovým sstémem může být i výrobní proces. Výroba může být ovlivňována množstvím parametrů teré nelze jednoznačně vjádřit. Pro zoumání valit výrobu je potřeba najít vztah mezi parametr ovlivňujícími výrobu a onečnými vlastnostmi výrobu. romě analticých metod se v poslední době vužívají taé neuronové sítě a metod založené na fuzz množinách. ento článe se zabývá apliací fuzz množin a zvláště pa Fuzz Inference Sstem. Správná činnost FIS závisí na vhodné volbě parametrů teré lze odhadnout na záladě předcházejících měření. Pomocí správně odladěného FIS lze odhadnout i vlastnosti taových výrobů jejichž vstupní charateristi bl pozměněn. to údaje pa lze vužít při zvalitnění a zefetivnění výrob.

2 2. Proč právě Fuzz Inference Sstem Ja jsem zmínil v úvodu eistuje více metod odhadu vlastností výrobu. Proč ted v něterých případech je vhodné zvolit právě přístup pomocí Fuzz Inference Sstém. Důvodem je pojem fuzz. V řadě případů jsou parametr teré ovlivňují vlastnosti výrobu popsané pomocí přibližných nebo zjednodušených pojmů. Při výrobě předpoládáme že materiál vstupující do výrob má předepsanou valitu. V mnoha případech ale nelze v předcházejících rocích výrob dodržet přesně daný parametr. Příladem může být síla vlána teré olísá v určitém rozmezí nebo ubetonových směsí hrubost štěru. ed parametr materiálu vstupujícího do výrob nelze (v těchto případech) popsat v přesně daných pojmech ale musíme použít vágnější popis. Právě užití fuzz množin je výhodné pro popis a počítání s těmito vágními výraz. 3. Popis Fuzz Inference Sstem Pro předpověď parametrů výrobu vužijeme Fuzz Inference Sstem (dále jen FIS) terý pracuje na záladě znalostních pravidel. ato pravidla jsou definována ombinací možných vzorových vstupů a výstupů. Vzorové vstup a výstup se definují pomocí tzv. jazových proměnných a jejich hodnot. Jazové hodnot jsou popsán fuzz množinami. Vhodné ombinace vstupních a výstupních jazových hodnot definují znalostní pravidla podle terých FIS počítá. aždé pravidlo určí vztah mezi zvolenými vstupními a výstupními hodnotami. V teorii fuzz množin lze FIS považovat za fuzz relaci. Při hledání vhodného FIS jsme použili tp Mamdani (terý odpovídá předcházejícímu popisu) a taé tp Sugeno terý má výstupní veličin ve tvaru onstant nebo lineárních funcí. 3.1 Fuzz Inference Sstem (FIS) Prvním roem při definování FIS je volba počtu vstupních proměnných (n) a výstupních proměnných (m). Pro aždou proměnnou zvolíme počet a tvar předdefinovaných vstupních

3 hodnot (lze je uvažovat jao vzorové vstup a výstup). Na záladě předdefinovaných vstupních a výstupních hodnot (teré jsou uvažován ve tvaru fuzz množin) nadefinujeme pravidla FIS (počet pravidel: r). aždé pravidlo určí vztah mezi zvolenými vstupními a výstupními hodnotami. R jestliže 1 je Aj 1 a 2 je B j 2 Aj 2 a a n je m je B j m A pa 1 je j n B j 1 2 je de i je vstup do FIS A j i je předdefinovaná jazová hodnota i té vstupní jazové proměnné B j s je předdefinovaná jazová hodnota s té výstupní jazové proměnné odpovídající -tému pravidlu (i=1 n s=1 m =1 r). Při použití FIS porovnáváme libovolný vstup do FIS s předdefinovanými vstupními hodnotami. ed poud vstup ( 1 n ) patří do oblasti terá je vmezena jazovými hodnotami Aj 1 až A j n pa výstup je spočítán pomocí B j s. Na záladě tohoto porovnání a pomocí pravidel FIS dostaneme výstup FIS ve tvaru fuzz množin. Poud má být výstupem reálná hodnota provede se tzv. defuzziace d fuzz množinu nahradíme jediným číslem. ato popsaný FIS se nazývá FIS tpu Mamdani. Pro předpověď časových řad se častěji užívá FIS tpu Sugeno terý je modifiací tpu Mamdani. Uvažuje se pouze jedna výstupní proměnná a vstup do FIS je ve tvaru ( 1 n ) R n. Vstupní předdefinované hodnot jsou ve stejném tvaru jao FIS tpu Mamdani. Rozdíl je ve výstupních veličinách. aždému pravidlu přísluší funce n proměnných. R jestliže 1 je A j 1 a 2 je A j 2 a a n je A pa z = f ( 1 n ) j n de i je vstup do FIS A je j tá předdefinovaná jazová hodnota j i i té jazové proměnné odpovídající -tému pravidlu (i=1 n =1 r). ed poud vstup ( 1 n ) patří do oblasti terá je Aj 1 vmezena jazovými hodnotami j n pa výstup je spočítán pomocí funce f. Váha w výstupu z je určena mírou shod vstupu ( 1 n ) s jazovými hodnotami Aj 1 A j n obdobným způsobem jao u FIS tpu Mamdani. Pro vstup ( 1 n ) dostanu A

4 pomocí pravidel R 1 R r hodnot z 1 z r a váh w 1 w r. Pomocí váženého průměru dostaneme výslednou výstupní hodnotu z. Ve většině FIS tpu Sugeno se funce f 1 až f r definují v jao onstant: nebo v lineární tvaru: f ( 1 n ) = α f ( 1 n ) = α +β 1 +β β n n. de α j β ij i= 1 2 n j = 1 2 m jsou vhodné onstant. to onstant se často upřesňují až v procesu ladění FIS nad ladicími dat. 3.2 Návrh FIS ze zadaných dat Z výrobního postupu výrobu určíme parametr teré udávají počet vstupních proměnných (n) do FIS. Parametr popisující valitu výrobu budou výstupní proměnné ( počet m) FIS. V něterých případech je vhodné pro vbrané výstupní parametr odladit samostatný FIS. Předpoládejme ted že FIS má n vstupních a m výstupních jazových proměnných. Dále máme vzorových vstupů do FIS a nim příslušných vzorových výstupů. Označme: 1 2 X = n 2 n n 1 2 Y = m 2 m m Účelem správného definování FIS je ab fungoval nad celou oblastí možných vstupů. Proto se před laděním FIS vzorová data rozdělí na dvě části. Na ladicí část: X Y a testovací část: X Y. adicí část ladicí data slouží vtvoření jazových hodnot pravidel a odladění FIS (viz dál). estovací část testovací data slouží e ontrole FIS. Nechť máme ladících dat a H testovacích dat de = +H. Označme:

5 X 1 2 = n 2 n n Y = m 2 m m X 1 2 = H H 2 1 n 2 n H n Y = H H 2 1 m 2 m H m de X Y jsou data ladicí a X Y jsou data testovací. Rozdělení vzorových dat na ladicí a testovací data lze usutečnit následujícími způsob: a) Podle pořadí prvních se považuje za ladící data a zbte jsou testovací data. b) Poud eistují různé tp vzorových dat je vhodné ab testovací data obsahovala všechn různé tp dat. Z aždého tpu vzorových dat se vbere alespoň jeden řáde vstupů a výstupů. c) Vbereme náhodně H testovacích dat ze vzorových dat. d) Při výběru testovacích dat lze ombinovat předcházející přístup. Matice ladicích dat spojíme do jedné matice a označíme ji Z: XY 1 2 = z1 z2 z 1 n 2 n n 1 2 z1 n+ z2 n+ z m m n+ m = Z 1 m 2 m = m

6 V dalším rou tvorb FIS musíme pro aždou vstupní a výstupní jazovou proměnnou nadefinovat vzorové jazové hodnot. Musíme určit jejich počet a odpovídající tvar ve formě fuzz množin. S jejich pomocí pa určíme znalostní pravidla FIS. Eistují dva záladní přístup. a) Vchází se ze znalosti problému (obecné znalosti vužití zušeností onrétního pracovnía ) teré se převedou na odpovídající hodnot a pravidla. b) Pomocí matice dat Z se vgenerují možné jazové hodnot a pravidla. aždý řáde matice Z lze uvažovat jao bod z i v prostoru E n+m. Z lze brát jao bodů v E n+m. to bod můžeme uzavřít do n+m rozměrného vádru o stranách 1 2 n+m de stran vádru i lze definovat: j = min{ zi j i = 1 } ma{ zi j i = 1 } Označme = 1 2 n+m. S pomocí matice Z chceme pro aždou vstupní a výstupní jazovou hodnotu určit počet a tvar jazových hodnot a pomocí nich definovat pravidla FIS. Hlavní přístup je v rozladu na menší oblasti a pro aždou oblast nadefinujeme vstupní a výstupní jazové hodnot a nim odpovídající pravidla. Vužijeme dva hlavní přístup rozladu ladicích dat: a) Pomocí dělení jednotlivých stran. b) Pomocí shluovacích metod. to metod lze taé ombinovat. 4. Vužití naměřených údajů pro nastavení FIS Pomocí výše popsaných metod lze definovat více FIS. Z těchto FIS musíme vbrat ten nejvhodnější. tomu použijeme testovací část vzorových dat. Pomocí nalezených FIS a vzorových vstupů z testovacích dat provedeme odhad parametrů výrobu a porovnáme je s výstupními hodnotami testovací části. valitu FIS lze posuzovat podle více ritérií. Nejčastěji používanými ritérii jsou: MAPE veliost průměrné chb MAX maimální rozdíl

7 Nechť (r 1 r 2 r m ) jsou výstupní hodnot testovací části a (p 1 p 2 p m ) jsou předpovězené hodnot. Pa MAPE = 1 (abs( ph -rh ) rh ) h= 1 MAX = ma { abs( p -r )} h= 1 valitu předpovědi lze posuzovat i pomocí ombinací těchto (popřípadě i více ritérií). Pro odhad vlastností a valit výrobu použijeme ten FIS terý má nejlepší shodu předpovězených a testovacích hodnot. h h 5. Přílad odhad vlastností betonových směsí Příladem použití FIS pro odhad vlastností výrobů bla diplomová práce Petra Misáa ( obor Matematicé inženýrství). Jeho úolem blo popsat FIS a vužít ho pro odhad pevnostních charateristi betonových směsí při použití vbraných plastifiačních přísad a cementů. to FIS budou použit jao doporučující nástroj při návrhu nových cementů a betonových směsí zejména za účelem snížení počtu laboratorních zouše a potažmo i celových náladů. Dále je možné jejich vužití při posouzení vlivu plastifiačních přísad a cementů na pevnostní charateristi betonu Složení betonové směsi Pod pojmem betonová směs rozumíme směs cementu ameniva záměsové vod a případně plastifiační přísad. Složení betonových směsí blo totožné pro všechn zoumané vzor proměnlivé blo pouze množství přidávané plastifiační přísad. Množství betonové směsi pro vtvoření jednotlivých vzorů vcházelo z předpoladu že z aždého vzoru se má vtvořit šest zušebních těles. ři zušební tělesa bla podrobena zoušám na pevnost v tahu za ohbu a zoušce v tlau po sedmi dnech a další tři zušební tělesa bla podrobena těmto zoušám po dvaceti osmi dnech. Pro aždou plastifiační přísadu a jeden tp cementu bl ted vtvořen celem tři vzor s různým procentuálním zastoupením. Dávování

8 vcházelo z maimální střední a minimální dáv udávané výrobcem. Bla zvolena naváža 900 gramů cementu a 2700 gramů ameniva frace 0 4 mm. Množství záměsové vod blo onstantní ted 495 ml. Ab se ve výsledcích dostatečně projevil vliv různých tpů plastifiačních přísad a cementů bl použit pro všechn vzor stejný tp záměsové vod a stejné amenivo. Form se zhutnělou betonovou směsí bl uložen po dobu cca 24 hodin v laboratoři s průměrnou teplotou 20 o C. Poté bl vzor odformován a uložen do místnosti pro normální zrání (teplota 20 ± 2 o C relativní vlhost 90 ± 2%). Bl použit následující druh cementů a plastifiačních přísad. Použité druh cementů Portlandsý strusový cement CEM II/B - S 325 R (česomoravsý cement a.s. závod Morá) Portlandsý cement CEM I R (česomoravsý cement a.s. závod Morá) Portlandsý cement CEM I (česomoravsý cement a.s. závod Morá) Vsoopecní cement CEM III/A R (Cementárn a vápen Prachovice a.s.) Portlandsý cement CEM I R (Cementárn a vápen Prachovice a.s.) Portlandsý cement CEM I R (Cementárn a vápen Prachovice a.s.) Použité plastifiační přísad Sia Viscocrete - 5 Sia Plastiment - BV 40 Sia Siament - 10 HRB Sia Siament - HE 200 Sia Siament Multimi adění FIS Původním záměrem blo navržení jednoho FIS terý b zahrnoval celou šálu možných vstup ovlivňujících valitu betonové směsi. Z výrobního postupu vplnulo že se při přípravě betonové směsi používá pouze jedna plastifiační přísada. Jao výhodné se uázalo vtvoření samostatných FIS pro aždou plastifiační směs. Blo ted sestaveno celem pět FIS pro pět plastifiačních přísad. Pro aždou

9 plastifiační přísadu bl navržen FIS se čtřmi výstupními proměnnými. ěmito proměnnými bla vžd pevnost výsledného betonu v tlau po 7 a 28 dnech zrání a pevnost výsledného betonu v tahu za ohbu po 7 a 28 dnech zrání. Vstupní proměnné Měrný povrch Pevnost cementu v tlau za 28 dní Objemová stálost % plastifiační přísad vzhledem hmotnosti cementu Výstupní proměnné Pevnost v tahu za ohbu za 7 dní Pevnost v tahu za ohbu za 28 dní Pevnost v tlau za 7 dní Pevnost v tlau za 28 dní Pro vtvoření FIS bl nejprve použit shluovací metod. V průběhu testování se uázalo že poud vstupní hodnot jsou blízo vzorových vstupů dával FIS správné výsled. Poud ale odchla od vzorových dat bla větší dával FIS nereálné hodnot. ato situace bla způsobena tím že ladicí data bla soustředěna v poměrně malé části oblasti a shlu a jim odpovídající pravidla úspěšně fungovala na malé části možných vstupů. V další části se pozornost soustředila na FIS definovaný pomocí dělení na menší části. to FIS nebl ta citlivé v oblasti shluů ale poud se vstupní data více lišila od vzorových dat dával rozumné výsled. Jednotlivé FIS bl sestaven a testován pomocí Fuzz oolbou prostředí MAAB a poté spojen do jediného programu terý umožní snadné ovládání pomocí graficého uživatelsého rozhraní (GUI). Naměřená data nutná sestavení jednotlivých FIS bla zísána pevnostními zoušami provedenými na FAS VU v Brně. V další činnosti se předpoládá že pro správné fungování FIS v celé oblasti možných vstupů se provedou zouš a zísají se ladicí data porývající celou oblast vstupů. Současně s tím se bude dolaďovat FIS ta ab jím předpovězené hodnot co nejvíce odpovídal hodnotám naměřeným. Použitím FIS v této oblasti dosáhneme úspor prostředů a hlavně úspor času (není potřeba čeat na vtvrzení).

10 6. Závěr Na závěr bch chtěl ještě jednou zmínit výhod fuzz přístupu odhadování vlastností výrobů. Je to možnost pracovat s vágními dat a FIS je založen na fuzz pravidlech a není (na rozdíl od neuronových sítí) ta černou sříňou. Při zpětném pohledu na odladěné FIS a jejich pravidla lze odhadnout možné vztah mezi vstupními a výstupními veličinami. Pomocí těchto vztahů máme možnost určení vhodných vstupních parametrů výrob na jejímž onci bude výrobe s požadovanými vlastnosti. Adresa autora: RNDr. ibor Žá Ph.D. Vsoé učení technicé Brno Faulta strojního inženýrství Ústav matemati echnicá 2896/ Brno ato práce bla vtvořena v rámci projetu MŠM 1M CQR

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

Úpravy úlohy DE1 v systému LABI.

Úpravy úlohy DE1 v systému LABI. Úpravy úlohy DE v systému LABI. Edit problem DE in system LABI Bc. Daniel Kašný Diplomová práce 200 ABSTRAKT Tato práce se zabývá úpravou úlohy DE v systému LABI, terá byla vytvořena pro výuové účely

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

Certifikace účetní profese v ČR

Certifikace účetní profese v ČR Certifiace účetní profese v ČR DVA STUPNĚ KVALIFIKACE V OBORU ÚČETNICTVÍ A FINANCE INS TITUT SVAZU ÚČETNÍCH, A.S. Obsah Co je Certifiace účetní profese v ČR... 1 Kdo může vstoupit do certifiace... 2 Kontaty,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Navrhování dřevěnỳch konstrukcí podle Eurokódu

Navrhování dřevěnỳch konstrukcí podle Eurokódu PŘĺRUČKA Navrhování dřevěnỳch onstrucí podle Euroódu 5 Leonardo da Vinci Pilot Project CZ/06/B/F/PP/168007 Educational Materials or Designing and Testing o Timber Structures Leonardo da Vinci Pilot Projects

Více

Schválení Vruty EASYfast 8-12 mm, technické schválení pro izolační systémy

Schválení Vruty EASYfast 8-12 mm, technické schválení pro izolační systémy Schválení Vruty EASYfast 8-1 mm, technicé schválení pro izolační systémy Jazyy / Languages: cs BERNER_78156.pdf 013-07-5 Z-9.1-619 pro tesařsé vruty EASYfast 8,0 1,0 mm Všeobecné stavebně technicé schválení

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

raději na přednáškách a cvičeních předkládal několik interpretací a ukazoval jsem, zda je změna interpretace podstatná.

raději na přednáškách a cvičeních předkládal několik interpretací a ukazoval jsem, zda je změna interpretace podstatná. ! " #%$&(' )+*,.-/-10 Tento učební text začal vzniat v létě rou 1994, dy jsem poprvé přednášel Složitost a NP-úplnost. Přednáša byla inspirována především nihou [1] Structural Complexity I. Značnou část

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze 1. Úol měření Úolem měření na rotorové (Müllerově) odparce je sestavit energeticou a látovou bilanci celého zařízení a stanovit součinitele prostupu tepla odpary a ondenzátoru brýdových par.. Popis zařízení

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Vysokorychlostní železnice úspěchy a výzvy

Vysokorychlostní železnice úspěchy a výzvy Vysoorychlostní železnice úspěchy a výzvy Dr. Gunter Ellwanger, ředitel pro vysoorychlostní železnice, Mezinárodní železniční unie Vysoorychlostní vlay přiláaly na železnici nové cestující především na

Více

TESTY A ODHADY PARETOVA INDEXU

TESTY A ODHADY PARETOVA INDEXU ROBUST 2004 c JČMF 2004 TESTY A ODHADY PARETOVA INDEXU Jan Pice Klíčová slova: Paretův index, rozdělení extrémních hodnot, sféra přitažlivosti, Hillův odhad. Abstrat:Nechť X 1, X 2,...jsounezávisléstejněrozdělenénáhodnéveličiny

Více

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík Petr Kulí Dimenzování prvů dřevěných onstrucí 7 Dimenzování prvů dřevěných onstrucí 7.1 Úvod U dřevěných onstrucí musíme ověřit jejich stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce,

Více

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Sekce X: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Rostislav Šulc, Pavel Svoboda 1 Úvod V rámci společného programu Katedry technologie staveb FSv ČVUT a Ústavu skla

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ

APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ Úvod a záměr práce APLIKACE NÁSTROJE PASW SPSS 18.0 BASE V TRŽNÍ SEGMENTACI Autor: Mgr. Ing. David Vít Faulta eletrotechnicá ČVUT v Praze, atedra eonomiy, manažerství a humanitních věd 1. Úvod a záměr

Více

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS Kateřina Pojkarová Anotace:Dopravu vužívají lidé za různým účelem, mimo jiné i ke svým cestám

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít

0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít 0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Výpočty zkratů v technické praxi členění textu. Co je to zkrat?

Výpočty zkratů v technické praxi členění textu. Co je to zkrat? Výpočty zratů v technicé praxi 1. Josef Voál, 01 Výpočty zratů v technicé praxi členění textu (Ing. Josef Voál) 1.Zrat, zratový proud, stanovení poměrů při zratu... Výpočty zratových proudů 3... Něco z

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

2.1.15 Slovní úlohy na lineární funkce

2.1.15 Slovní úlohy na lineární funkce 2.1.15 Slovní úloh na lineární funkce Předpoklad: 2108 Pedagogická poznámka: Obsah hodin přesahuje 45 minut (pokud necháte student pracovat samostatně). Poslední příklad tak zůstává na další hodinu nebo

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

CENÍK PRACÍ. www.betotech.cz. platný od 1.1. 2014. BETOTECH, s.r.o., Beroun 660, 266 01 Beroun. Most Beroun. Trutnov Ostrava. Cheb. J.Hradec.

CENÍK PRACÍ. www.betotech.cz. platný od 1.1. 2014. BETOTECH, s.r.o., Beroun 660, 266 01 Beroun. Most Beroun. Trutnov Ostrava. Cheb. J.Hradec. ,, 266 01 Beroun CENÍK PRACÍ platný od 1.1. 2014 Cheb Most Beroun Trutnov Ostrava J.Hradec Klatovy Brno www.betotech.cz Zkušební laboratoře akreditované ČIA ke zkoušení vybraných stavebních hmot a výrobků,

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z TECHNICKÝ LIST SAKRET ZM 10 cementová malta Suchá maltová směs. Odpovídá obyčejné maltě pro zdění G třídy M 10 dle ČSN EN 998-2, ZA příloha. Odpovídá obyčejné maltě pro vnitřní a vnější omítky GP dle ČSN

Více

Určování hustoty látky

Určování hustoty látky Určování hustoty látky Očekávané výstupy dle RVP ZV: využívá s porozuměním vztah mezi hustotou, hmotností a objemem při řešení praktických problémů Předmět: Fyzika Učivo: měření fyzikální veličiny hustota

Více

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny: DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

LFLC 2000 + MATLAB/SIMULINK - SYSTÉM PRO UNIVERSÁLNTÍ APLIKACE FUZZY LOGIKY. Antonín Dvořák, Hashim Habiballa, Vilém Novák a Vikátor Pavliska

LFLC 2000 + MATLAB/SIMULINK - SYSTÉM PRO UNIVERSÁLNTÍ APLIKACE FUZZY LOGIKY. Antonín Dvořák, Hashim Habiballa, Vilém Novák a Vikátor Pavliska LFLC 2000 + MATLAB/SIMULINK - SYSTÉM PRO UNIVERSÁLNTÍ APLIKACE FUZZY LOGIKY Antonín Dvořák, Hashim Habiballa, Vilém Novák a Vikátor Pavliska Abstrakt. Softwarový balík LFLC 2000 je komplexním nástrojem

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut.

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut. Krok za krokem k nové maturitě Maturita nanečisto 005 MA MATEMATIKA společná část maturitní zkoušk Testový sešit obsahuje 0 úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu. Poznámk

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Střední průmyslová škola a Vyšší odborná škola Chomutov, Školní 50, 430 01 Chomutov, příspěvková organizace

Střední průmyslová škola a Vyšší odborná škola Chomutov, Školní 50, 430 01 Chomutov, příspěvková organizace Střední průmyslová šola a Vyšší odborná šola Chomutov, Šolní 5, 43 Chomutov, příspěvová organiace Střední průmyslová šola a Vyšší odborná šola, Chomutov, Šolní 5, příspěvová organiace Šolní 6/5, 43 Chomutov

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Kapitola 4 DŮVODY PRO LAKTÁTOVÉ TESTOVÁNÍ

Kapitola 4 DŮVODY PRO LAKTÁTOVÉ TESTOVÁNÍ Kapitola 4 DŮVODY PRO LAKTÁTOVÉ TESTOVÁNÍ Důvody pro laktátové testování jsou zcela zřejmé: Pokud jsou ostatní faktory shodné, tak ten sportovec, který během závodu vyprodukuje nejvíce energie za časovou

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ

Václav Cempírek 1 1. ZÁKLADNÍ FAKTORY OVLIVŇUJÍCÍ LOGISTICKÁ ZAŘÍZENÍ NÁVRH PARAMETRŮ LOGISTICKÝCH CENTER, DIMENZOVÁNÍ TECHNICKÝCH PROSTŘEDKŮ A ZAŘÍZENÍ THE ARGUMENTS CONCEPT OF LOGISTIC CENTRE, DIMENSOINING OF TECHNICAL INSTRUMENT AND DEVICE Václav Cempíre 1 Anotace:Příspěve

Více

Prezentace oboru Letový provoz

Prezentace oboru Letový provoz Prezentace oboru Letový provoz motto: Aktivity v letovém provozu jsou podmíněné vysokou odborností a profesionalitou v oboru doc. Ing. Luděk Beňo, CSc. VŠO Katedra letecké dopravy 1 V čem spočívá rozdíl

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

Analýza investičních pobídek v České republice

Analýza investičních pobídek v České republice Analýza investičních pobíde v Česé republice věten 2007 Vypracovali Doc. Ing. Jiří Schwarz, CSc. vedoucí autorsého oletivu Petr Bartoň, M.A. Ing. Peter Bolcha Ing. Pavel Heřmansý Ing. Petr Mach Národohospodářsá

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

ň Ý Á Ú ú ň Ó š š š ú ó ú ů ů ů š ů ů ů š ů ů ú ů ů ů ú ů ů ů ů ů ů ó ú ú ó ů ů ň ů ň ů ů ú ú ú ó š ó ú ú ó š ú š š š ú ú ů ň ú ů ú ú ú ů ú ú ň ů ú š ň ú š š š š ú ň ů ň ú š ů ů ň ů ů ů ů ú ů ú ú ň ú ú

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

11/2013. a KARTOGRAFICKÝ GEODETICKÝ. Český úřad zeměměřický a katastrální Úrad geodézie, kartografie a katastra Slovenskej republiky

11/2013. a KARTOGRAFICKÝ GEODETICKÝ. Český úřad zeměměřický a katastrální Úrad geodézie, kartografie a katastra Slovenskej republiky GEODETICKÝ a KARTOGRAFICKÝ obzor obzor Česý úřad zeměměřicý a atastrální Úrad geodézie, artografie a atastra Slovensej republiy /03 Praha, listopad 03 Roč. 59 (0) o Číslo o str. 77 308 Monitoring vality

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Informace o společnosti

Informace o společnosti Informace o společnosti K DATU 30. ČERVNA 2012 Zveřejněno na internetových stránách KUPEG úvěrové pojišťovny, a.s. www.upeg.cz OBSAH strana 1. Informace o hospodaření společnosti a. Textová část 2 b. Tabulová

Více