VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 1. TEORETICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS 1. THEORETICAL PART

Rozměr: px
Začít zobrazení ze stránky:

Download "VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 1. TEORETICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS 1. THEORETICAL PART"

Transkript

1 VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD. TEORETICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS. THEORETICAL PART Vraslava Mošová Moravsá vysoá šola Olomouc, Úsav nformay a alované maemay Absra: Waveley sou moderní maemacý rosřede, erý se využívá ředevším ř zracování nerůzněších sgnálů. Waveleová ransformace umožňue odděl od sebe aroxmace a dealy sgnálu a a rosředncvím rahování očs sgnál od šumu oř. sgnál omrmova.schonos odlš od sebe aroxmace a dealy lze využí ř analýze časových řad. Př waveleovém rozladu časové řady aroxmace oresonduí se sysemacou složou a dealy zase s nesysemacou složou řady. V ombnac s Boxovým-Jennsovým modely waveleová ransformace ředsavue alernavní násro analýze a rognózování časových řad.článe e zaměřen na eorecou záladnu éo roblemay. Klíčová slova: Časové řady, Boxovy Jennsovy modely, waveley, víceúrovňová analýza, waveleové oefceny. Absrac: Waveles are a recen mahemacal ool ha s used n he sgnal rocessng. Wavele ransformaon gves ossbly o searae aroxmaons and deals of a sgnal and hen by usng resholdng o clear nose from he sgnal or o comress he sgnal. I s ossble o use he ably o dsngush aroxmaons from deals by analyss of he me seres. The wavele aroxmaons corresond o he sysemac ar of he seres and he deals corresond o he non sysemac ar of he seres by sgnal rocessng. The wavele ransformaon n combnaon wh Box-Jenns models reresens an alernave ool for analyss and redcon n me seres. The aer resens he heorecal bass of he corresondng ssues. Keywords: Tme seres, Box Jenns models, waveles, mulresoluon analyss, wavele coeffcens. Úvod Analýza časových řad e ro eonoma důležou čnnosí, roože umožňue odhal záonos, eré funguí v dané řadě. Poud se sávaící odmíny radálně nezmění, lze na záladě zísaných oznaů odhadnou, aým směrem se bude ubíra další vývo řady v neblžším období. Vedle lascých meod vorby regresních nebo Boxových-Jennsových modelů řady lze ř zoumání časových řad využí aé Fourerovu a waveleovou ransformac. Cílem ohoo článu e seznám čenáře s eorecou záladnou ro využí waveleové ransformace ř rognózování časových řad. První čás exu se ýá časových řad a ech zracování rosředncvím Boxovy Jennsovy meodologe (vz [], [5]). Druhá čás e věnována waveleům a ěm 3

2 vlasnosem waveleové ransformace, eré sou ouželné ř rác s časovým řadam (vz [], [3], [4], [6]). Časové řady. Časové řady a orelogramy Časovou řadu můžeme vymez ao množnu chronologcy usořádaných hodno řady určého uazaele. Hodnoy časové řady budeme znač y, =,,..., T. Budeme ředoláda, že řada se sládá z nesysemacé náhodné složy I a ze sysemacých slože: rendu T (dlouhodobé endence), cylcé složy C (oaue se v nervalu delším než eden ro), sezónní složy S (oaue se v nervalu raším než eden ro). V říadě, že varabla hodno časové řady e zhruba onsanní v čase, můžeme sá y = T + C + S + I. Z různých yů grafcého znázornění časové řady s lze uvoř hrubou ředsavu o ednolvých charaersách řady o eím vývoovém rendu. K zevrubněšímu sudu a slouží meody umožňuící sesav maemacý model, erý odovídá dané řadě. Jedním ze zůsobů, a aový model vyvoř, e využí Boxovy-Jennsovy meodologe. Boxovy-Jennsovy modely se onsruuí ro saconární rocesy,. aové časové řady, eré maí ro všechna onsanní sřední hodnou onsanní rozyl a echž orelační ovaranční funce sou závslé ouze na časové vzdálenos náhodných velčn. Konsruované modely se oíraí o nformace zísané z orelogramů. grafů rezduální auoorelační funce (ACF) a arcální auoorelační funce (PACF) se zožděním. Auoregres - ého řádu defnueme vzahem y φ y + φ y φ y + a, = ve erém φ ředsavue arcální regresní oefcen a a e velčna neorelovaná s hodnoam y, y,..., y +. Zaímco ACF vyovídá o rozsahu lneární závslos mez y a y, erá může bý ovlvněna orelací s velčnam y, y,..., y +, PACF odává nformac o rozsahu lneární závslos od vlvu velčn y, y,..., y + očšěnou. V grafech ACF se na ednu osu vynášeí zoždění a na druhou osu hodnoy výběrové auoorelace T ( y y)( y y) r =, ( y y) = T ro y = y, =,,..., T. V grafech PACF se na vodorovnou osu vynášeí ednolvá T = zoždění a na svslou osu hodnoy výběrové arcální auoorelační funce, = = =, = f, f, f,, =,,..., f r de f. f, f r r,, 4

3 . Boxovy-Jennsovy modely V roce 976 Box a Jenns navrhl nový násro ro analýzu časových řad - model ARIMA. Uveďme s ednolvé záladní yy rocesů, ze erých se ARIMA sládá, yy, eré sou rozšířením modelu ARIMA. B y AR() - auoregresní model řádu má odobu y φ y + φ y φ y + a, = a zde zasuue bílý šum. Poud B e oeráor zěného osunuí, ro erý laí = y, e možné ředchozí vzah řesa na var φ ( B) y = a, φ ( B) = ( φb... φ B ). Uvažovaný roces e saconární, eslže ořeny olynomu φ (B ) leží vně ednoového ruhu. V říadě, že sřední hodnoa rocesu µ 0, e roces AR() osán vzahem y = c + φ y + φ y φ y + a, c = µ φ y φ y... φ y. Proces AR() s amaue roů zě, de byl, a od oho se aé odvíeí další redované hodnoy časové řady. MA(q) - roces louzavých růměrů řádu q e určen dferenční rovncí y = a θ a θ a... θ a. + q q Př ouží oeráoru zěného osunuí má uvedený vzah var y = θ B) a, θ ( B) = ( θ B... θ B q ( q Proces e nverblní, dyž ořeny olynomu θ (B) leží vně ednoového ruhu. Proces MA(q) s amaue, de byl a aé ešě dalších q osledních slože bílého šumu. Předověď se děe na záladě odhadu z bílého šumu. ARMA(,q) - ombnovaný roces, erý e osán rovncí y = φ y φ y + a θa... θqa Pomocí oeráoru zěného osunuí e lze sá ve formě φ B) y = θ ( B) a. q q ( q Proces e saconární, dyž ořeny olynomu φ (B ) leží vně ednoového ruhu a nverblní, dyž ořeny olynomu θ (B) leží vně ednoového ruhu. Proces s amaue, de byl, solu q s dalším hodnoam časové řady a qsložam bílého šumu. Předověď e roo ombnací hodno redovaných z auoregresní funce a z odhadů ro bílý šum. Model se oužívá v říadě, dy řada má endenc zůsa blízo dlouhodobého růměru,. ř zracování aových údaů ao sou míra nezaměsnanos, změny v cenovém ndexu, úroové sazby, oměr dluhu HDP frmy. Inegrovaný roces I - nesaconární roces určený rovncí y = δ + y + a, de onsana δ 0 ovlvňue zrychlení nebo zomalení rocesu. Pro δ = 0 hovoříme o rocesu náhodné rocházy. Analýza rocesu se rovádí užím dferencí y = y y. Proces s amaue de e, ale zaomněl, a se sem dosal, a dále se ohybue náhodně. Předověď se realzue řdáním odhadnué hodnoy ) δ e sávaícímu ozorování. Proces se využívá nař. ř modelování chování acových rhů. q q ).. 5

4 ARIMA(,d,q) - auoregresní negrovaný roces louzavých růměrů řádu, d, q. Model ohoo rocesu ř ouží oeráoru zěného osunuí má var d φ B)( B) y = θ ( B) a. ( q K analýze sudovaného rocesu se řom využívá dference řádu d. Přomeňme s, že dference sou defnovány vzahy d d d y = y y, =,3,..., T,, y = y y, = d,..., T. Model ARIMA(,d,q) se o ransformac omocí dference řádu d chová ao nverblní model ARMA(,q). Proces ARIMA e vhodný alova na hladá, omalu se měnící daa, u nchž se neočeává, že hodnoy zůsanou blízo dlouhodobého růměru. Model se oužívá ř sudu HDP nebo vah ndexu sořebelsých cen. SARIMA(,d,q) (P,D,Q) - sezonní negrovaný roces s délou sezóny s. Př ouží oeráoru zěného osunuí lze model vyádř ve formě s d s D s φ B ) φ ( B)( B) ( B ) y = θ ( B) θ ( B ) a. P ( q Q Zde e řád rocesu AR, d e řád rosé dference, q e řád rocesu MA, s e déla sezónní erody, P e řád sezónního rocesu AR, D e řád sezónní dference a Q e řád sezónního rocesu MA..3 Konsruce modelu Konsruce vhodného modelu časové řady sesává ze ří fází: výběru modelu, ověření modelu a sanovení odhadu dalšího vývoe řady. V rámc výběru modelu ) Odhadneme ze soncového grafu řady, zda e řada saconární a esl obsahue cylcou složu. ) Poud e o nuné, řadu uravíme omocí vhodné ransformace. Nař. lnearzac řady a sablzac rozylu e možné realzova rosředncvím logarmcé ransformace. 3) Výsy cylcé složy včeně eí erody ověříme omocí - erodogramu (grafcého znázornění rozladu řady na snusové vlny s různým frevencem). Výrazné vrcholy v erodogramu uozorňuí na říomnos cylu, ech oče odovídá oču cylů v řadě. Délu ednolvých cylů odhadneme omocí nevyšších hodno v erodogramu; - omocí orelogramů ACF a PACF, oud se v nch vysyuí vzory, eré se erodcy oauí. 4) Na nunos saconarzova řadu usuzueme - z grafů výběrové ACF a PACF, dyž se v rvním zoždění vysyuí hodnoy blízé edné a osaní hodnoy lesaí omalu; - oud sme zsl, že roces má sezonní složu, v grafu ACF se obevuí vysoé hodnoy v nesezónních frevencích a v grafu PACF sou vysoé hodnoy v sezónních frevencích; - z erodogramu, oud se eho výrazný vrchol nachází v nulové frevenc. Saconarzac řady rovedeme rosředncvím dferencování. 5) Rozhodnuí, erý z Boxových Jennsových modelů s vybereme, lze odeří o var grafů výběrové ACF a PACF. Poud ve saconarzované řadě - výběrová ACF má ro > exonencální nebo exonencálně snusodní var a ro výběrovou PACF e φ = 0 uvažueme roces yu AR(); - dyž ro >q v ACF e ρ = 0 a PACF e omezená exonencálním nebo exonencálně snusodním olesem, rozhodneme se ro model MA(q); 6

5 - dyž ro q> má ACF od zoždění q- exonencální nebo exonencálně snusodní oles a ro >q e PACF od zoždění -q omezená exonencálním nebo exonencálně snusodním olesem, zvolíme ARMA(,q). Př ověřování adevános modelu ARIMA se esování auoorelace nesysemacé složy oužívaí buď hodnoy výběrové auoorelační funce ) ) aa r = ), a (sříšou e označen odhad říslušné velčny) nebo e možné využí Box-Pearsonova esu s esovacím rérem K ) Q = T, r = eré má χ ( K q) rozložení, a esova hyoézu, že auoorelace nesysemacé složy sou nulové. V říadě, že nesysemacá složa není auoorelovaná, esuí se ešě aramery modelu µ, φ, θ omocí -esů ) ) ) µ φ θ µ = ), =, =,,...,, φ ) θ =, =,,..., q. ) S S S µ φ Po ověření modelu e možné řsou e onsruc ředověd omocí odmíněné sřední hodnoy E ( yt + h yt, yt, yt,...). Konréní onsruc ředovědí ro ARIMA model e možné naí v []. K orovnání valy ednolvých modelů valy redce lze využí něerý z následuících yů chyb: Průměrná absoluní rocenuální chyba T ) y y MAPE = 00 T = y růměrná rocenuální chyba T ) ( y y ) MPE = 00 T = y nebo růměrná čvercová chyba T ) MSE = ( y ) y. T = θ. Přílad Na následuících obrázcích sou zachyceny něeré grafcé výsuy z rogramu Sasca, eré byly zísány ř analýze časové řady rerezenuící vývo míry nezaměsnanos v USA v leech 960 až 009. Na Obr.. e soncový graf éo řady 7

6 Obr.. Soncový graf 0 9 Graf roměnné: nezaměsnanos 0 9 nezaměsnanos Čísla říadů Na Obr... sou zachyceny orelogramy říslušné modelu ARIMA(,0,) Obr.. Korelogramy 8

7 Předověď (rosřední řva v oncové čás grafu) na dalších 5 le s využím modelu ARIMA(,0,) e zachycena na Obr.3. Obr..3 Předověď 9.

8 3 WAVELETY A WAVELETOVÁ TRANSFORMACE 3. Co sou waveley? Efevním násroem využívaným ř analýze časových řad sou aé negrální ransformace. Fourerova ransformace umožňue omocí erodogramu odhal sezónnos v časové řadě. Waveleová ransformace zase odděl sysemacou složu časové řady od nesysemacé. Waveleovou ransformac lze cháa ao alernavu ransformac Fourerově. Fourerova nx ransformace se odvíí od Fourerovy báze { e }, erá ředsavue v rosoru L (0,π ) sysém n Z dlaovaných a osunuých snusových vln. V říadě waveleové ransformace ožadueme, aby báze onsruovaná v L ( R ) měla odobné vlasnos ao báze Fourerova. Pro eno účel e vhodné ouží funce, erým se říá waveley. To roo, že se daí zobraz ao malé vlny, eré v neonečnu rychle lesaí nule. Podněem e zoumání waveleů byly neenom důvody eorecé (vyvoření báze v rosoru funcí negrovaelných s vadráem), ale důvody racé (zracování sgnálu). První Haarův wavele - byl ouž už v roce 908 s cílem vyvoř orogonální báz v rosoru L ( R ). V roce 984 Morle za omoc waveleu, erý e součnem funce s omaním nosčem (zv. oenní funce) nx a funce e, zavedl soou waveleovou (zv. oénovou) ransformac. V roce 986 zonsruovala Ingrd Doubechová řídu waveleů, eré maí ro daný nosč maxmální možný oče nulových momenů. Tyo waveley a využla ř realzac dsréní waveleové ransformace. Na Obr. 3. sou rvní dva ze zmíněných waveleů zachyceny grafcy. Obr. 3. Haarův a Morleův wavele.0 Haar : Morle: Waveleová ransformace Pro wavele ψ defnueme waveleovou ransformac funce f L ( R) vzahem x-b W ψ(f)(a,b)= f(x)ψ dx, a a de a e šála (měřío) a b e ranslace. Hodnoy W ψ (f)(a,b) ro evně daná ( a, b) se nazývaí waveleové oefceny. V říadě, že ( a, b) R, hovoříme o soé waveleové ransformac. Když a a b sou dsréní hodnoy, mluvíme o dsréní waveleové ransformac. Z důvodu efevy výoču e zvyem olož a =, b =, ro, Z. Waveleová ransformace má a var R ( x ). W, = f(x)ψ dx a R 0

9 Dsréní reonsruce funce se realzue z ěcho oefcenů omocí dsréní nverzní waveleové ransformace f(x) W ψ ( x ). 3.3 Mulrozad Sandardzovaný sysém = Z Z ( x )}, Z, { ovšem nemusí bý ro obecnou func ψ oronormální. Jednou z možnosí, a zísa oronormální báz v L ( R ), e realzace víceúrovňového mulrozladu (MRA). Teno zůsob onsruce waveleů, erý v roce 988 navrhl francouzsý maema Malla, e osaven na onsruc aových rosorů L ( R), Z, ro eré laí exsue V0 Ze zůsobu onsruce rosorů V V +, V = { 0}, U Z I Z V ϕ a, že { } Z = L ( R), V ϕ ( x ) e úlná orogonální množna v L ( R), f V f ( x) V. 0 V e vdě, že exsuí odrosory W orogonální že V + = V W. Taé role šálové funce ϕ e v MRA odsaná. Poud V e mulrozlad se šálová funcí ϕ, erá slňue dlaační rovnc ϕ ( x) = aϕ( x ), a řdruženým waveleem říslušným uvažovanému mulrozladu e funce ψ ( x) = b ϕ( x ), b = ( ) a. (Prouže nad a značí omlexně sdružené číslo.) Na Obr. 3. Daubechové solu s říslušnou šálovou funcí. Z Z V a, e zobrazen wavele Obr. 3. Šálovací funce a wavele Daubechové Db Pomocí dlaací a ranslací šálových funcí a řdružených waveleů lze generova rosory res. W. Defnueme šálovací wavele funce V

10 Prosor V W = san = san { ϕ }, de ϕ ( x), = ϕ( x ), { } ψ, de ψ ( x) = ψ ( x ).,, Z, Z V + = V W W... W,, 0 0 lze nerreova ao aroxmační rosor rosoru L ( R). To znamená, že lbovolnou func f L ( R) e možné rozlož a f ( x) = Z a0ϕ 0 ( x) + bψ ( x). = Z V uvedeném rozladu sou a 0, =< f,ϕ0, > aroxmační (šálové) oefceny a b, =< f,ψ, > waveleové oefceny funce f na úrovn a defnueme e rosředncvím salárního součnu v L ( R ). Výoče oefcenů robíhá na záladě Mallaova algormu (vz [5]) ve dvou fázích - deomozce a reonsruce. Během rocesu deomozce se sočíaí hodnoy aroxmačních. Aroxmační oefceny řísluší nízým frevencím oefcenů { a, } a dealních oefcenů { } b, a v časových řadách odovídaí rendu. Dealní oefceny a aří vyšším frevencím, eré mohou bý nerreovány ao šum. 3.4 Přílad Pro daový soubor {,,3,4,5,6,7,8 } chceme sočía oefceny waveleové ransformace realzované 3 rosředncvím Haarova waveleu. Proože soubor obsahue hodno, e možné usuečn říúrovňový waveleový rozlad. Schéma rozladu se dá grafcy zachy ve formě sromu (vz Obr.3.3). Obr. 3.3 Schéma waveleového rozladu 0 0, 0, 0 0, 0 0, 0, 0, Hodnoy aroxmačních oefcenů se v omo říadě očíaí ao souče dvou sousedních hodno z ředchozí fáze rozladu, erý se vydělí, a hodnoy dealů se sanoví ao rozdíl dvou sousedních hodno dělený. V rosředí sofwaru Mahemaca obdržíme:

11 {0}->{.3, ,7.7787,0.6066}, {}->{ , , , }, {0,0}->{5.,3.}, {0,}->{-.,-.}, {0,0,0}->{.779}, {0,0,}->{ }}. Zísané waveleové oefceny e možné ešě řed reonsrucí modfova. Cílem e reduova nebo odsran nežádoucí nebo nadbyečná daa. a) Odsranění nechěného rendu ze sgnálu se dosáhne vymazáním slože s nízou frevencí zn. odsraní se aroxmační waveleové oefceny. b) Šum ze sgnálu zmzí, dyž se oloží rovny nule waveleové oefceny b,, eré maí menší frevenc než vybraný ráh λ. Vedle ohoo vrdého rahování e aé možné ouží měého rahování, ř erém se waveleové oefceny modfuí nař. následovně: ~ 0 ro b, < λ, b, = sgn b, b, λ ro b, λ. Po rovedení říslušných úrav realzueme zěnou reonsruc omocí nverzní waveleové ransformace alované na uravené oefceny. 3.5 Přílad Na následuícím obrázu e znázorněn waveleový rozlad daového souboru z Příladu.. Obr. 3.4 Rozlad da na aroxmace adealy dealy aroxmace 3

12 4 ZÁVĚR Waveley sou moderní maemacý aará, erý nachází ulanění ř zracování zvuových a obrazových sgnálů, v numercé maemace v rámc analýzy sascých da. Přednosí waveleové ransformace e eí myšlenová ednoduchos, erá e blízá osvědčeným Fourerovsým řísuům. Navíc Mallaův algormus výoču waveleových oefcenů umožňue zrychlení výoču omocí rychlé Fourerovy ransformace. Vlasnos waveleového rozladu římo vybízeí eho využí ř sudu časových řad. Ja uvdíme ve druhé čás článu, e waveleová ransformace ve soení s Boxovým-Jennsovým modely užečným násroem redc dalšího vývoe časové řady. Poděování Teno řísěve vznl s fnanční odorou a v rámc řešení roeu GAČR P403//8: Vývo neonvenčních modelů manažersého rozhodování v odnové eonomce a veřené eonom. LITERATURA [] Arl, J., Arlová, M., Rublíová, E. Analalýza eonomcých časových řad s řílady. VŠE Praha, 004. ISBN: [] Jansen, M., Oonncx P. Second Generaon Waveles and Alcaons. Srnger Verlag London, 005. ISBN [3] Nazar, K. Zálady eore waveleů. Karolnum Praha 004. ISBN [4] Segeh, K Numercý sofware I. Karolnum Praha, 998. ISBN [5] Segel, A. F. Praccal Busness Sascs. Elselver, 0. ISBN , [6] Švec, M. Waveleové ransformace. UJEP Úsí nad Labem, 008. ISBN

Obr. 2 Aerostatické radiální ložisko s vrtanými tryskami (vlevo) a pórovité (vpravo)

Obr. 2 Aerostatické radiální ložisko s vrtanými tryskami (vlevo) a pórovité (vpravo) Návrh aerosacých ložse Výoče a návrh aerosacých ložse Aerosacá ložsa sou charaerscá vel alý asvní odory a schonosí nés zaížení v říadě že ez luzný locha nedochází vzáenéu ohybu Nearné ření e dáno nízou

Více

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Křua Jiří, Víe Miloš (edioři). Sysémové onfliy. Vydání rvní, nálad, Vydavaelsví Univerziy Pardubice: Pardubice,, 56 s. ISBN 97887395443. SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Miroslav Barvíř Konec. a

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích

Více

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI Polcká ekonome 49:, sr. 58-73, VŠE Praha,. ISSN 3-333 Rukops ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZAHŮ MEZI ČASOVÝMI ŘADAMI Josef ARL, Šěpán RADKOVSKÝ, Vsoká škola ekonomcká, Praha, Česká národní banka, Praha.

Více

Prezentace diplomové práce: CNC hydraulický ohraňovací lis Student: Školitel: Konzultant: Zadavatel: Klíčová slova: CNC hydraulic press brake Keyword:

Prezentace diplomové práce: CNC hydraulický ohraňovací lis Student: Školitel: Konzultant: Zadavatel: Klíčová slova: CNC hydraulic press brake Keyword: Horská 3, 8 00 Praha Prezenace dilomové ráce: CNC hydraulický ohraňovací lis Suden: Školiel: Konzulan: Zadavael: Klíčová slova: Anoace: Cíle ráce: CNC hydraulic ress brake Keyword: Annoaion: Targe of work:

Více

VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST

VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST EMI, Vol., Issue 3, ISSN: -99 (Print), 5-353X (Online) VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD. PRAKTICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS. PRACTICAL PART Vratislava Mošová Moravská vysoká

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

Řetězení stálých cen v národních účtech

Řetězení stálých cen v národních účtech Řeězení sálých cen v národních účech Michal Široký msiroky@gw.czso.cz Odbor čvrleních národních účů Na adesáém 8, 00 82 Praha 0 Řeězení sálých cen Podsaa řeězení Výhody a nevýhody řeězení Neadiivia objemů

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST

ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 ZAJIŠTĚNOST ÚDRŽBY MATERIÁLY ZE XIII. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST Praha, lisoad 2003 1 OBSAH OPTIMALIZACE PREVENTIVNÍ ÚDRŽBY Prof.

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

1 3VYSOK 0 9 0 7KOLA EKONOMICK 0 9 V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravd їpodobnosti STATISTIKA VZORCE PRO 4ST201

1 3VYSOK 0 9 0 7KOLA EKONOMICK 0 9 V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravd їpodobnosti STATISTIKA VZORCE PRO 4ST201 3VYOK 9 7KOLA EKONOMICK 9 V PRAZE FAKULTA INFORMATIKY A TATITIKY Kaedra a a ravd їodobo TATITIKA VZORCE PRO 4T verze 3. oled aualzace: 6..5 KTP 5 3Po aa =,,..., P P zp z P,5 z, 5 z H H H G G...... R =

Více

IDENTIFIKACE HOSPODÁŘSKÉHO CYKLU USA KOMPARACE VYBRANÝCH METOD

IDENTIFIKACE HOSPODÁŘSKÉHO CYKLU USA KOMPARACE VYBRANÝCH METOD ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročí LV 3 Číslo 6 007 IDENTIFIKACE HOSPODÁŘSKÉHO CYKLU USA KOMPARACE VYBRANÝCH

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

3. Soustavy reakcí. Reakce vratné, paralelní, následné. Komplexní reakce.

3. Soustavy reakcí. Reakce vratné, paralelní, následné. Komplexní reakce. 3. Sousavy eaí. eae vané, aalelní, náslené. Komlexní eae. řílay olymeae aalyé eae, enzymaé ee hoření alv Zálaní haaesy omlexníh eaí: velé množsví slože (N > 0 6 ) složý ůběh vlv oolí na ůběh eae (nař.

Více

DRI. VARIZON Jednotka pro zaplavovací větrání s nastavitelným tvarem šíření

DRI. VARIZON Jednotka pro zaplavovací větrání s nastavitelným tvarem šíření VARIZON Jednoka ro zalavovací věrání s nasavielný vare šíření Sručná faka Nasavielný var šíření a ovlivněný rosor Vhodná ro všechny yy ísnosí Uožňuje čišění Míso ěření objeu vzduchu Veli jednoduše se insaluje

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

Vybrané metody statistické regulace procesu pro autokorelovaná data

Vybrané metody statistické regulace procesu pro autokorelovaná data XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,

Více

ELEKTRONICKÉ OBVODY I

ELEKTRONICKÉ OBVODY I NIVEZITA OBANY Fakula vojenských echnologií Kaedra elekroechniky -99 ELEKTONIKÉ OBVODY I čebnice Auoři: rof. Ing. Dalibor Biolek, Sc. rof. Ing. Karel Hájek, Sc. doc. Ing. Anonín Krička, Sc. doc. Ing. Karel

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů

Více

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT Návrh číslicově řízeného reguláoru osvělení s ranzisorem IGB Michal Brejcha ČESKÉ VYSOKÉ ČENÍ ECHNICKÉ V PRAZE Faula eleroechnicá Kaedra eleroechnologie OBSAH: 0. Úvod... 3. Analýza... 4.. Rozbor sávajícího

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Zhodnocení historie predikcí MF ČR

Zhodnocení historie predikcí MF ČR E Zhodnocení hisorie predikcí MF ČR První experimenální publikaci, kerá shrnovala minulý i očekávaný budoucí vývoj základních ekonomických indikáorů, vydalo MF ČR v lisopadu 1995. Tímo byl položen základ

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

Model systému na podporu rozhodování za neurčitostí. Model of the Decision Support System under Condition of Non-Determination

Model systému na podporu rozhodování za neurčitostí. Model of the Decision Support System under Condition of Non-Determination ISKI 8 Vedecko-výskumná čnnosť v obls využívn IKT Model sysému n podporu rozhodování z neurčosí Model of he Decson Suppor Sysem under Condon of Non-Deermnon Cyrl Klmeš Osrvská unverz v Osrvě Přírodovědecká

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Akceptace zpoždění a rozvázání přípojových vazeb cestujícími v železniční dopravě

Akceptace zpoždění a rozvázání přípojových vazeb cestujícími v železniční dopravě Acepace poždění a rováání přípoových vaeb cesuícími v želeniční dopravě Marin Jacura, Luáš Týfa Česé vysoé učení echnicé v Prae Faula dopravní, Úsav dopravních sysémů e-mail: acura@fd.cvu.c, yfa@fd.cvu.c

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Tvarová optimalizace rozváděcí skříně topení osobního automobilu

Tvarová optimalizace rozváděcí skříně topení osobního automobilu Taroá opmalzace rozáděcí sříně opení osobního aomobl Ing. Tomáš Mží 1. Úod Úolem éo práce e narhno opaření pro zronoměrnění hmonosního o prod zdch na ýspech z ra opení pomocí nmercých meod. To znamená

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

Otázky ke Státním závěrečným zkouškám

Otázky ke Státním závěrečným zkouškám Oázky ke Sáním závěrečným zkouškám jsou rozděleny do ří oblasí a sudenům bude oložena z každé oblasi vždy jedna oázka. Oblasi jsou rozděleny následovně :.Teorie řízení a umělá ineligence Sem aří okruhy

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež, statistika.

Více

Geometrická optika. Omezení paprskových svazků v optické soustavě OII. C aperturní. clona C C 1. η 3. σ k. π π π p p

Geometrická optika. Omezení paprskových svazků v optické soustavě OII. C aperturní. clona C C 1. η 3. σ k. π π π p p Geometricá otia Omezení arsových svazů v oticé soustavě erturní clona - omezuje nejvíce svaze arsů z osového bodu ředmětu Vstuní uila π - je obrazem aerturní clony vytvořeným částí O I Výstuní uila π -

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

PECE A ENERGETICKÉ HOSPODÁŘSTVÍ. Vypracované materiály ke zkoušce FMMI, VŠB-TUO

PECE A ENERGETICKÉ HOSPODÁŘSTVÍ. Vypracované materiály ke zkoušce FMMI, VŠB-TUO PECE A ENERGETICKÉ HSPDÁŘSTÍ yracované aerály ke zkoušce FMMI, ŠB-TU - - zracoval: Marek Heran . RZDĚLENÍ PALI A JEJICH LASTNSTI.. RZDĚLENÍ PALI Palvo je obecně kaţdá láka, jejíţ alování se uvolňuje elo.

Více

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I ESOVÁNÍ a DIAGNOSIKA VÝROBNÍCH SROJŮ I Leraura: Skra: Zdeěk Vorlíček: Solehlvos a dagoska výrobích srojů ČVU Praha 99 Vorlíček, Rudolf: Dagoska VS ČVU Praha 98 Ka.. Úvod: Proč se zabýváme esováím a dagoskou

Více

Řešený příklad - Chráněný nosník se ztrátou stability při ohybu

Řešený příklad - Chráněný nosník se ztrátou stability při ohybu Řešený říl - Chráněný nosní se ráou sbili ři ohbu Posuďe nosní I oeli S 5 n ožární oolnos R 9. Nosní ole obráu je ížený osmělými břemen, sálé ížení G 6 N, roměnné ížení Q 8, N. Proi ožáru je nosní hráněn

Více

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan

Více

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut) 15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch

Více

Matematický model zálohování a obnovy dat

Matematický model zálohování a obnovy dat Rok / Year: Svazek / Volume: Číslo / Number: 204 6 aemacký model zálohování a obnovy da ahemacal model of daa backup and recovery Karel Burda burda@feec.vubr.cz Fakula elekroechnky a komunkačních echnologí

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Digitální učební materiál

Digitální učební materiál Číslo projku Názv projku Číslo a názv šablony klíčové akvy Dgální učbní marál CZ..07/.5.00/4.080 Zkvalnění výuky prosřdncvím CT / novac a zkvalnění výuky prosřdncvím CT Příjmc podpory Gymnázum, Jvíčko,

Více

Digitální učební materiál

Digitální učební materiál Číso pojeku Název pojeku Číso a název šabony kíčové akvy Dgání učební maeá CZ..7/.5./34.8 Zkvanění výuky posředncvím ICT III/ Inovace a zkvanění výuky posředncvím ICT Příjemce podpoy Gymnázum, Jevíčko,

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Ý Ž Š Š Š Ť ů ú ý ž ý ž ý Š ý ú Ž ů ý ů Ž Ž š Ú š ř ý Ž ř ů Ú ů ý ý ž ý ú ů ů Ó ý ř Ó ýš Í ú Ý Ž Š Š Š Š ú ů ý ž ý Ž ý ý ú Ž ů ý ú Ž Ž š ú š ř ý Ž ř ů Í Ú ů š ý ž ó ý ž ý ý ý ř ý ó Ř Ý ř ů ú ý ž ý ž Š

Více

Částka 7 Ročník 2013. Vydáno dne 4. září 2013 ČÁST NORMATIVNÍ ČÁST OZNAMOVACÍ

Částka 7 Ročník 2013. Vydáno dne 4. září 2013 ČÁST NORMATIVNÍ ČÁST OZNAMOVACÍ Čáska 7 Ročník 2013 Vydáno dne 4. září 2013 O b s a h : ČÁST NORMATIVNÍ 1. Opaření České národní banky č. 1 ze dne 29. července 2013, kerým se zrušuje opaření České národní banky č. 3 ze dne 5. prosince

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

( ) 1.7.8 Statika I. Předpoklady: 1707

( ) 1.7.8 Statika I. Předpoklady: 1707 .7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Ť ď Í Í ó ř á ů ř á ť ř á á á ů ě ř ý Á ř ř ř ě é ř é ě á ý á á á ý á ř ě á ě š ě ý š ě ř ř ě ý ť á ú ú ž ů ýů ě ó é š ě é é šř ř ě ě ý é š šř á á ě á š ě ž á á šř š ě é é ř áž é é ě ě á á á é ř ý š é

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Modelování rizika úmrtnosti

Modelování rizika úmrtnosti 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 200 Modelování rizika úmrnosi Ingrid Perová Absrak V příspěvku je řešena

Více

ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN

ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN Trendy v podniání vědecý časopis Fauly eonomicé ZČU v Plzni ANALÝZA SPEKULATIVNÍCH OBCHODŮ S KOMODITAMI NA ZÁKLADĚ DETEKCE PARAMETRICKÝCH EXTRÉMŮ V ČASOVÝCH ŘADÁCH CEN Jiří Peší, Mara Šlehoferová ÚVOD

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

6. Optika. Konstrukce vlnoploch pro světlo:

6. Optika. Konstrukce vlnoploch pro světlo: 6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

4. Třídění statistických dat pořádek v datech

4. Třídění statistických dat pořádek v datech 4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot

Více

ELEKTRICKÁ TRAKCE 7. ADHEZE

ELEKTRICKÁ TRAKCE 7. ADHEZE 4..8 ER7.DOC Eletricá trace 7. Adheze Obsah Doc. Ing. Jiří Danzer CSc. ELEKRICKÁ RAKCE 7. ADHEZE Obsah Úvod...3 Adheze náravy...5. Koeficient adheze... 5. Sluzová charateristia... 8.. Poměry ve styu.....

Více

Rozhodovací stromy Marta Žambochová

Rozhodovací stromy Marta Žambochová Rozhodovací stromy Marta Žambochová Obsah: 1 Úvod... Algoritmy ro vytváření rozhodovacích stromů... 3.1 Algoritmus CART... 3.1.1 lasifikační stromy... 3.1. Regresní stromy... 4. Algoritmus ID3... 4.3 Algoritmus

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

METODY OCEŇOVÁNÍ PODNIKŮ TYPU DCF A JEJICH NUMERICKÁ REALIZACE POMOCÍ SW MATHEMATICA

METODY OCEŇOVÁNÍ PODNIKŮ TYPU DCF A JEJICH NUMERICKÁ REALIZACE POMOCÍ SW MATHEMATICA endy v podnkání vědecký časops Fakuly ekonomcké ZČU v Plzn MEODY OCEŇOVÁNÍ PODNKŮ YPU DCF A JEJCH NUMERCKÁ REALZACE POMOCÍ SW MAHEMACA Ladslav Lukáš ÚVOD Poblemaka oceňování podnků je v současnos obsáhlá

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina?

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina? 1. Do anečního kroužku chodí 15 chlapů a 20 dívek. Kolik různých párů z nich můžeme vyvoři? 2. Ze sady 28 kosek domina vyáhnu dvě. Kolika způdoby o mohu provés ak, aby ony dvě kosičky šly k sobě přiloži

Více

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY

INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY INDIKÁTORY HODNOCENÍ EFEKTIVNOSTI VÝDAJŮ MÍSTNÍCH ROZPOČTŮ DO OBLASTI NAKLÁDÁNÍ S ODPADY Jana Soukopová Anoace Příspěvek obsahuje dílčí výsledky provedené analýzy výdajů na ochranu živoního prosředí z

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

AKČNÍ PLÁN 2014 stav k 15.9.2014

AKČNÍ PLÁN 2014 stav k 15.9.2014 KČNÍ PLÁN vyhodnocení 15.9.2014 Název projeu I. PROTIPOVODŇOVÁ OPTŘENÍ KČNÍ PLÁN 2014 sav 15.9.2014 Navrhovael / Parner Umísění projeu I.1 Propovodňová opaření Terezín MZe ČR Terezín 250,00 KCE PŘED UKONČENÍM.

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

Nemocnice Břeclav - rekonstrukce stravovacího provozu. OSPIMED spol.s r.o. medicínská a gastronomická technika. F1.1-17a

Nemocnice Břeclav - rekonstrukce stravovacího provozu. OSPIMED spol.s r.o. medicínská a gastronomická technika. F1.1-17a REDUKCE ROSAHU ROJEKOVÉ DOKUMENACE NEMOCNICE BŘECAV příspěvková organizace U nemocnice, 690 74 Břeclav OSIMED spol.s r.o. medicínská a gastronomická technika MEDICOROJEC, s.r.o. Ing. uděk Vacula Ing. Vladimír

Více

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs

Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více