Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie

Rozměr: px
Začít zobrazení ze stránky:

Download "Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie"

Transkript

1 Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie Radek Černý 1,3, Ivo Světlík 1, Michal Fejgl 2,1 1 Ústav jaderné fyziky AV ČR, v.v.i., Oddělení dozimetrie, Praha 2 Státní ústav radiační ochrany, v.v.i., Praha 3 Katedra dozimetrie a ionizujícího záření, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze, Praha Kromě všeobecně známého radiouhlíkového datování mají analýzy 14 C mnoho dalších využití. Pravděpodobně nejvýznamnější další aplikací je využití 14 C pro sledování vlivu spalování fosilních paliv na rostoucí koncentraci CO 2 v atmosféře. Jelikož fosilní paliva ve své uhlíkové isotopické směsi téměř neobsahuji 14 C, je možné vyčíslit příměs fosilního uhlíku v isotopické směsi na lokální, regionální i globální úrovni. Jev vedoucí ke snižování aktivity 14 C následkem ředění jeho obsahu v uhlíkové isotopické směsi se nazývá Suessův efekt 1. Využití analýz u 14 C rovněž pomáhá ke kvantifikaci či upřesnění parametrů transportu uhlíku v rámci jeho globálního pohybu. Významné využití analýz 14 C je rovněž sledování úrovně aktivit tohoto radionuklidu v okolí jaderných elektráren. Z hlediska dávkové zátěže okolní populace je 14 C nejvýznamnějším radionuklidem uvolňovaným do ovzduší z jaderných elektráren s lehkovodními tlakovými reaktory za normálního provozu 2. Dalším využitím 14 C je ověřování přirozeného původu některých farmaceutických preparátů, potravinářských výrobků (např. lihoviny a vína) či kosmetických přípravků. Uhlík-14 jakožto izotop uhlíku, poskytuje rovněž možnost sledování toků uhlíkatých sloučenin, příjmu organických látek a jejich metabolického zpracování živými organismy. Sloučeniny značené 14 C mají samozřejmě i další využití například jako přídavek 14 CH 4 do zemního plynu pro ověřování těsnosti podzemních plynových zásobníků nebo aplikace 14 CO 2 pro sledování tvorby karbonátových sintrů v krasových oblastech. Využití pro datovací účely i pro sledování aktivit 14 C v současném životním prostředí vyžaduje dosahovat nejistot stanovení v dolních jednotkách desetin procenta. Cílem analýz je zpravidla určit zastoupení 14 C v uhlíkové isotopické směsi. Pro vyjadřování aktivity 14 C se obvykle vychází ze Struiver-Polachovy konvence 3. Tato konvence umožňuje opravit aktivitu 14 C na isotopickou frakcionaci pomocí stabilního 13 C. Výsledné aktivity jsou pak dle konvence vyjadřovány v promile Δ 14 C nebo v procentech moderního uhlíku (pmc percentage of Modern Carbon) ve vztahu ke konvenčnímu radiouhlíkovému standardu, kde platí 100 pmc = 0 Δ 14 C. Aktivita tohoto standardu odpovídá přibližně 0,226 Bq 14 C na gram uhlíkové isotopické směsi. Pro datování se výsledná aktivita 14 C po opravě na isotopickou frakcionaci vyjadřuje, dle konvence opět ve vztahu k radiouhlíkovému standardu, v letech tzv. konvenčního radiouhlíkového stáří (conventional radiocarbon age). Konvenční metody stanovení 14 C Nejstarší a nejdéle používaná je metoda využívající měření plynovým proporcionálním detektorem GPC (Gas proportional counting). Ačkoliv může být pro měření proporcionálními detektory měřen uhlík ve formě metanu, etylenu nebo etanu, je nejpoužívanější náplní detektorů oxid uhličitý pro svou relativně snadnou přípravu. Oxid uhličitý je totiž přímým produktem spalování organických vzorků nebo kyselého rozkladu karbonátů. CO 2 musí být po spálení zbaven nečistot jako jsou halogeny a oxidy síry, které mohou změnit vlastnosti měřeného plynu. Z principu metody měření vyplývá, že je obtížné opakovaně proměřovat vzorek v sérii se vzorkem pozaďovým a kontrolním 4. 7

2 Druhá, v současnosti nejpoužívanější konvenční metoda LSC (Liquid scintillation counting) je založena na měření aktivity kapalinovým scintilačním spektrometrem, podrobněji na adresách: (RI); (CRL) 5,6. Většina zařízení pracujících s metodou LSC využívá jako scintilačního solventu benzen (C 6 H 6 ), případně jeho směsi s toluenem. Benzen je sám o sobě vhodným scintilačním solventem a má také vyhovující optické vlastnosti. Pro připravuje scintilační směsi je zapotřebí pouze přídavek 1,5 hmotnostního procenta vlastního scintilátoru. Chemická forma C 6 H 6 se vyznačuje také nejvyšším možným zastoupením uhlíku od vzorku ve scintilační směsi pro LSC. Syntéza benzenu je poměrně jednoduchá a má vysokou výtěžnost. Značnou nevýhodou obou metod založených na počítání radioaktivních přeměn 14 C je poměrně dlouhá doba poločasu přeměny 14 C (5730 let). Při měření o době trvání tři dny je proto možné pozorovat radioaktivní přeměnu přibližně pouze jedné milióntiny atomů 14 C přítomných ve vzorku. Proto konvenční metody vyžadují k měření poměrně vysoké hmotnosti uhlíku od vzorku řádu dolních jednotek gramů. Urychlovačová hmotnostní spektrometrie AMS (Accelerator Mass Spektrometry) je metodou počítání jednotlivých atomů, která kombinuje efektivitu konvenční hmotnostní spektrometrie se zvýšeným rozlišením oproti isobarickým, isotopickým a molekulárním interferencím 7,8. Obvykle jde hlavně o počítání málo zastoupených radioizotopů s dlouhým poločasem přeměny. Typickým příkladem je radiouhlíkové datování využívající 14 C s poločasem 5730 let a s poměrem zastoupení 14 C oproti stabilnímu 12 C řádu Kromě 14 C je AMS používána pro měření dalších radionuklidů, zejména 10 Be, 26 Al, 36 Cl a 129 I 8. Nejvýznamnějším radionuklidem měřeným AMS je však 14 C. Vysoké rozlišovací schopnosti AMS je dosaženo urychlením iontů na vysoké energie, nejčastěji použitím elektrostatického lineárního tandemového urychlovače 7. Na obr. 1 je porovnání metody AMS s konvenčním měřením radioaktivní přeměny. Obr. 1 Účinnost měření aktivity a AMS (čas měření 1 h) jako funkce poločasu přeměny, převzato 7. Princip AMS měření lze stručně shrnout následovně 7,8. V iontovém zdroji jsou generovány záporně nabité ionty ze vzorku obsahujícího měřený izotop. Tyto ionty jsou urychleny vysokým pozitivním napětím v první části tandemového urychlovače. Urychlené ionty vstupují do centrálního kanálu urychlovače, kde dochází následkem kolize s plynem nebo tenkou folií ke změně polarity iontů. Nyní již pozitivní ionty jsou ve druhé části tandemového urychlovače dále urychleny směrem k zápornému potenciálu. Ze svazku iontů opouštějících 8

3 tandemový urychlovač jsou odstraněny nežádoucí ionty použitím elektrických a magnetických polí. Na konci trasy jsou pak vhodnými detektory měřeny počty atomů od jednotlivých izotopů. Schéma AMS trasy vhodné pro stanovení 14 C je na obr. 2. Měření velmi malého poměru zastoupení izotopů ve vzorku (např. 14 C/ 12 C až do ) je umožněno především následujícími charakteristikami AMS systému: isobarické interference jsou potlačeny použitím zdroje negativních iontů, např. v případě 14 C by rušil izobarický 14 N (dusík netvoří záporné ionty, což je pro AMS stanovení 14 C zásadní výhodou) 7. Molekulové izobarické interference (v případě 14 C molekuly 12 CH 2 a 13 CH) jsou odstraněny disociací těchto molekul v centrálním stripovacím kanálu tandemového urychlovače. Separace a identifikace iontů izotopů uhlíku je poté usnadněna jejich vysokou finální energií. Obr. 2 Schéma systému AMS pro měření 14 C, převzato 8. Z povahy měření vyplývá, že potřebné množství vzorku pro AMS je podstatně nižší oproti konvenčním metodám. Uvádí se, že množství vzorku potřebné pro AMS je řádově tisíckrát menší oproti konvenčním metodám měření 14 C (Hellborg et al., 2003). AMS měření je také oproti konvenčním metodám výrazně méně časově náročné, trvá min 9. Například pro dosažení nejistoty 0,5 % měřením radioaktivní přeměny je třeba měřit 1g vzorku moderního uhlíku po 48 hodin. Oproti tomu pro měření AMS postačuje k dosažení této nejistoty měřit 1 mg po dobu 10 min 8. Nevýhodou a limitujícím faktorem pro rozšíření AMS systémů je jejich relativně vysoká pořizovací cena a technologická náročnost. Příprava vzorků pro AMS Před spálením jsou organické vzorky přečištěny a chemicky upraveny, aby došlo k potlačení kontaminace vzorku způsobené pohyblivými mladšími chemickými formami uhlíku (karbonáty, huminové a fulvo kyseliny). Po chemické předúpravě a izolaci datovatelných chemických forem uhlíku je vzorek spálen a převeden na CO 2 v přítomnosti oxidu měďnatého jako oxidačního činidla. V případě karbonátových vzorků (např. ulity měkkýšů) je oxid 9

4 uhličitý ze vzorku uvolňován rozkladem kyselinou fosforečnou 7. Přečištěný oxid uhličitý je pak dávkován ke katalytické redukci na elementární uhlík (grafitizaci). Pro AMS měření 14 C je zapotřebí připravit terčík s obsahem elementárního uhlíku od vzorku pro iontový zdroj, tak aby byl generován stabilní proud iontů se zanedbatelným memory efektem. Nejrozšířenější metodou přípravy elementárního uhlíku je katalytická redukce oxidu uhličitého na katalyzátoru z elementárního železa. Získaný grafit (grafitizovaný vzorek) je před samotným měřením zalisován do těla katody spolu s katalyzátorem (obvykle Fe). Katody jsou poté umístěny v karuselu, který umožňuje snadnou výměnu měřených vzorků v iontovém zdroji. Na našem pracovišti byly dosud experimentálně ověřovány dva postupy přípravy. Hmotnosti zpracovávaného uhlíku od vzorku se v obou případech pohybovaly přibližně v rozmezí 1,6 až 2,0 mg. Grafitizace ve vodíkové atmosféře Tento pravděpodobně dosud nejčastěji používaný postup je založen na katalytické redukci CO 2 vodíkem o stechiometrickém přebytku přibližně 1,6. Práškové železo je umístěno v evakuovaném reaktoru o objemu přibližně 10 ml. Do reaktoru je kryogenicky převeden oxid uhličitý ze skladovací ampule. Po kvantitativním převedení CO 2 je do reaktoru napuštěn vodík (čistota 5.0). CO 2 je následně v uzavřeném reaktoru redukován při teplotě 590 C po dobu několika hodin. Pro kondenzaci vodních par, vznikajících během redukce, je spodní část reaktoru chlazena na teplotu přibližně -15 C. Grafit vzniklý při redukci je pak deponován na povrchu Fe katalyzátoru 10. Obr. 3 Grafitizační reaktor pro vodíkovou redukci. Výtěžky tohoto grafitizačního postupu lze stanovit několika metodami, které se vzájemně doplňují (měření zbytkového tlaku z reaktoru, hmotnost grafitizovaného vzorku, stanovení složení povrchové vrstvy). Na základě provedených experimentů bylo shledáno, že poměrně často dochází k výraznému kolísání výtěžků, které by v některých případech vedlo až ke znehodnocení zpracovávaných vzorků. Příčinou kolísajících výtěžností grafitizace byla nedostatečná těsnost reaktoru. Následkem průniku již malého množství vzduchu docházelo k zablokování katalytické redukce CO 2 následkem povrchové oxidace železa. Nutnost zavádění vodíku do reaktoru vyžaduje připojení uzavíracího kohoutu. Vzhledem k přetrvávajícím problémům s těsností a z toho plynoucí nestabilitě grafitizačního postupu bylo v první polovině roku 2013 upuštěno od grafitizační metody založené na vodíkové 10

5 redukci CO 2. Pro další experimenty jsme se proto zaměřili na ověření postupu založeného na redukci oxidu uhličitého zinkem. Grafitizace s použitím zinku Principem zinkové grafitizační metody je redukce oxidu uhličitého zinkem v přítomnosti vhodného katalyzátoru (železo, příp. kobalt) 11. Redukce zde probíhá ve dvou krocích. Nejprve zinek redukuje oxid uhličitý na oxid uhelnatý za teploty přibližně 450 C, který následně katalyticky aproporcionuje na uhlík a oxid uhličitý při teplotě přes 550 C. Proces je možné shrnout následujícími rovnicemi 12 : CO 2 + Zn CO + ZnO 2CO C + CO 2 Metoda byla původně popsána s využitím poměrně složité aparatury, využívající pro jednotlivé kroky dva oddělené reaktory 11. Zásadní výhodou této metody je řádové potlačení izobarických molekulárních interferencí ( 13 CH - a 12 CH 2 - ) vzhledem k absenci vodíku během redukce. V laboratoři ATOMKI bylo zjištěno, že redukce oxidu uhličitého může probíhat i v uzavřené skleněné ampuli pouze za přítomnosti zinku a železného katalyzátoru. Obdobná metoda, využívající grafitizaci v zatavené skleněné ampuli, již byla publikována, avšak pouze pro grafitizaci submiligramových vzorků 13. Také pro využití v biomedicínských aplikacích byla publikována podobná metoda s využitím grafitizačních ampulí uzavřených septem 14. Je však nutné podotknout, že pro úspěšnou grafitizaci autoři považují za nezbytnou přítomnost vody ze spalování vzorku jako zdroje vodíku, který se dle této publikace poté účastní jako redukční činidlo. Pro experimentální ověřování tohoto grafitizačního postupu používáme reaktory připravené ze skleněných trubic (borosilikátové sklo). Fotografie grafitizačního reaktoru pro zinkovou redukci je na obr. 4. Do připraveného reaktoru je poté na dno vnější ampule dávkován zinek o hmotnosti 30 mg. Na dno vnitřní ampule je dávkováno 5 mg práškového železa (katalyzátor). Do evakuovaného reaktoru je kryogenicky převeden CO 2 od vzorku. Oxid uhličitý je vymražen v dolní části reaktoru a poté je pod dynamickým vakuem reaktor zataven. Při grafitizaci je teplota železného katalyzátoru přibližně 535 C. Obr. 4 Zatavený reaktor pro zinkovou grafitizaci, Zn je umístěn na dně vnější ampule a práškové Fe ve vložené vnitřní ampuli Vzhledem k podmínkám grafitizace je problematické zhodnocení výtěžku grafitizace pomocí gravimetrie. Pro určení výtěžku jsme pro grafitizační experimenty u zinkové metody využili měření zbytkových tlaků oxidu uhličitého a oxidu uhelnatého v reaktoru. Po několika nutných modifikacích zinkového postupu se zdá, že je dobře dosažitelné zajištění výtěžků grafitizace nad 94%. AMS měření vzorků připravených zinkovou grafitizací Vzhledem ke skutečnosti, že v naší zemi dosud není vhodné AMS zařízení, je měření námi grafitizovaných vzorků realizováno ve spolupráci se zahraničními pracovišti. Na podzim

6 byly odměřeny první vzorky grafitizované pomocí zinku v naší laboratoří na AMS zařízení MICADAS v laboratoři ATOMKI HAS v Maďarském Debrecenu. Jednalo se o vzorky antracitu obsahující fosilní uhlík a vzorky standardu sekundární kyseliny šťavelové HOXII, za účelem odhalení možné kontaminace recentním, resp. fosilním uhlíkem během grafitizační procedury a manipulace se vzorkem. Tab. 1 Výsledky měření našich vzorků (CRL) a porovnání se vzorky připravenými na pracovišti ATOMKI sample code 12 C (µa) pmc absolute sig (%) +- (%) age (y) +-(y) Grafit, Zn - ATOMKI Gafit, Zn - CRL ZCS Blank ,3 0,12 0,01 4, ZCS OxaII ,9 133,99 0,54 0, ZCS OxaII ,5 134,14 0,55 0, E24 13,4 0,33 0,01 3, E28 15,8 134,12 0,53 0, E29 17,1 134,01 0,53 0, E31 17,1 0,36 0,01 3, E32 17,0 0,28 0,01 3, E35 16,6 0,31 0,01 3, V tabulce 1 jsou modře uvedeny vzorky obsahující fosilní uhlík a červeně vzorky obsahující uhlík od standardu kyseliny šťavelové. V tabulce je uvedeno také srovnání měření námi grafitizovaných vzorků s naměřenými hodnotami odpovídajících vzorků grafitizovaných laboratoří ATOMKI. Ze srovnání v tabulce je patrné, že námi produkovaný grafit poskytuje poměrně vysoké proudy C - iontů z iontového zdroje. Z měření vzorků grafitu od sekundárního standardu kyseliny šťavelové není pozorovatelná kontaminace fosilním uhlíkem během zpracování a grafitizace vzorku. Naopak, měření našeho pozaďového vzorku ukazuje na pravděpodobnou příměs recentního uhlíku, hodnota pozadí odpovídá ca let BP oproti v Debrecenu dosahovaným ca let BP. Naše pozaďové vzorky byly připraveny spalováním antracitu, pozaďové vzorky připravené v ATOMKI však vycházejí z fosilního oxidu uhličitého, pro grafitizaci dávkovaného z tlakové lahve. Pozorovaný rozdíl proto nemusí být nutně způsoben kontaminací recentním uhlíkem během zpracování vzorku. Obdobně jako vzorky zuhelnatělého dřeva je antracit schopen sorbovat plyny ze vzduchu, včetně atmosférického 14 CO 2. Podobný vliv se může projevovat i u vzorků zuhelnatělého dřeva ( uhlíků ), které se běžně zpracovávají pro datovací účely. Pokud je pro přípravu slepého vzorku použito spalování antracitu, slepý vzorek lépe odráží postup zpracování běžných vzorků. Domníváme se proto, že použití antracitu jako slepého vzorku je vhodnější, je však nezbytné vyřešit desorpci plynů před vlastním spalováním. Z tohoto důvodu, jak již bylo dříve uvedeno, se nyní intenzivně zabýváme možnostmi zlepšení předúpravy antracitu za účelem snížení pozadí. Shrnutí Analýzy 14 C mají rozsáhlé využití nejen pro datovací účely. Urychlovačová hmotnostní spektrometrie (AMS) umožňuje analyzovat vzorky o hmotnostech menších než jednotky miligramů a výrazně tak rozšiřuje možnosti využití analýz 14 C. Proto v naší laboratoři experimentálně zavádíme grafitizační metodu pro stanovení 14 C v mikrovzorcích s využitím AMS. Od poloviny roku 2013 je v naší laboratoři ověřována grafitizační metoda založená na redukci CO 2 zinkem. V rámci ověřování této metody byly provedeny experimenty za účelem 12

7 stanovení optimálních parametrů metody a identifikace rušivých vlivů ovlivňujících grafitizační postup. Výsledky měření série námi připravených grafitizovaných vzorků a jejich porovnání s obdobnými vzorky připravenými v laboratoři ATOMKI potvrdily velmi dobrou shodu při měření standardů připravených ze sekundární kyseliny šťavelové. Experimentálně připravené slepé vzorky z antracitu však dosud vykazují přibližně třikrát vyšší hodnoty pozadí nežli vzorky připravené v ATOMKI z fosilního CO 2. Další experimenty v následujícím období budou zaměřeny v prvé řadě redukci pozaďových hodnot a rovněž bude také důležité blíže kvantifikovat některé rušivé vlivy u zinkové grafitizační metody (zejména: přítomnost vodních par, vliv sorbovaných plynů na pozadí). 1. Suess H. E., Science, 122 (1955) Exposures from natural and man-made sources of radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly (UNSCEAR), Report 1, Stuiver M., Polach H.A, Radiocarbon, 19 (1977) Bowman S., Radiocarbon dating. London: British Museum, 64, Higham T., Radiocarbon Laboratory, University of Waikato, New Zealand. Radiocarbon web-info [online]. (RI). Dostupné z: (naposledy navštíveno ) 6. CRL. Radiouhlíkové datování a sledování 14 C v životním prostředí [online]. Dostupné z: (naposledy navštíveno ) 7. Hellborg R., Skog G., Mass Spectrometry Reviews. 27 (2008) Fifield L.K., Rep. Prog. Phys. 62 (1999) Hellborg R., Faarinen M., Kiisk M., Magnusson C.E., Persson P., Skog G., Stenström K., Vakuum, 70 (2003) Černý R., Porovnání metod zpracování mikrovzorků pro stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie. Bakalářská práce. Praha, FJFI ČVUT Slota P.J., Jull A.J.T., Linick T.W., Toolin L.J., Radiocarbon, 29 (1987) Liong L.W.K., P.P. Povinec, Jull A.J.T., Radiocarbon, 46 (2004) Xu, X., Gao P., Salamanca E.G., Radiocarbon, 55 (2013) Kim S.H., Kelly P.B., Clifford A.J., Analytical Chemistry, 80 (2008) Determination of 14 C by Accelerator Mass Spektrometry Radek Černý 1,3, Ivo Světlík 1, Michal Fejgl 2,1 1 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Dpt. of Radiation Dosimetry, Praha 2 National Radiation Protection Institute, Praha 3 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Praha Determination of 14 C has a large scale of applications, including radiocarbon dating. 14 C absents in isotopic mixture of fossil carbon, hence determination of this radionuclide in the air can quantify CO 2 released into atmosphere from fossil fuel combustion on local, regional, and global scale. Radiocarbon is responsible for dominant contribution to the collective effective dose from all radionuclides released by nuclear power plants with light-water pressurized reactors during normal operation and its monitoring in the surrounding environmental area can be important. Other applications are aimed on verification of natural origin of various substances utilized in pharmacy, food processing industry and cosmetic. 14 C is a carbon isotope and can be applied in biological or geochemical studies as a carbon tracer. Prevailing part of such applications request precise results of activity determination with uncertainties several per mill only. Likewise, a small quantity of sample with carbon amount of only several milligrams is often available. There are three methods of precise 14 C activity determination` two of these methods are based on counting of 14 C radioactive decays, requiring several grams of sample carbon. Utilizing Accelerator Mass Spectrometry (AMS), the sufficient sample carbon quantity is about one milligram. Resulting uncertainties of AMS based determination are similar as in the case of conventional methods, if not even smaller. In our laboratory (CRL) we started experiments with microsamples processing for the AMS measurement. This routine contains graphitization as a final part of such process. During this routine is purified CO 2 reduced catalytically on elementary carbon (only this chemical carbon form can be measured by AMS). We performed experiments both with graphitization process based on CO 2 reduction in hydrogen atmosphere (almost utilized routine) and CO 2 reduction by zinc vapors. Our experimental experiences indicate the zinc based method as an easier method with several advantages, esp. better reactor sealing and hydrogen free routine. 13

Využití a porovnání metod stanovení 14 C

Využití a porovnání metod stanovení 14 C Využití a porovnání metod stanovení C Světlík 1,2, I., Černý 1,3, R., Fejgl 2,1, M., Tomášková 1, L. 1 CRL ODZ ÚJF AV ČR, v.v.i., Na Truhlářce 39/64, 180 86 Praha 8 2 SÚRO, v.v.i., Bartoškova 28, 0 00

Více

1. Úvod Radiouhlíková datovací metoda se od svého vzniku koncem 40. let dvacátého století 1

1. Úvod Radiouhlíková datovací metoda se od svého vzniku koncem 40. let dvacátého století 1 Postupy zpracování vzorků a radiouhlíkové datování Světlík Ivo \ Dreslerová Dagmar 2, Tomášková Lenka 1 1 2 Ústav jaderné fyziky AV ČR, v.v.i., Na Truhlářce 39/64,180 86 Praha 8, svetlik@uif.cas.cz Archeologický

Více

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná

Více

CO2 v atmosféře. Světlík Ivo 7, Michálek Václav 2

CO2 v atmosféře. Světlík Ivo 7, Michálek Václav 2 CO2 v atmosféře Světlík Ivo 7, Michálek Václav 2 1 Ustav jaderné fyziky AV ČR v.v.i., Praha 2 Státní ústav radiační ochrany, Praha Uhlík je nezbytný biogenní prvek. Jeho schopnost vytvářet vazbové řetězce

Více

Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC

Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC Kohos Antonín, Katovský Karel Huml Ondřeji Vinš Miloslav Fakulta jaderná a fyzikálně inženýrská ČVUT, Katedra jaderných reaktorů,

Více

Možnosti rychlého stanovení 14 C v plynných výpustech jaderně-energetických zařízení

Možnosti rychlého stanovení 14 C v plynných výpustech jaderně-energetických zařízení Možnosti rychlého stanovení 14 C v plynných výpustech jaderně-energetických zařízení Ivo Světlík 1, Jiří Pospíchal 2, Lenka Tomášková 1, Michal Fejgl 3 1 Ústav jaderné fyziky AV ČR, v.v.i., Praha 2 ETE,

Více

Prvková analýza piv a varních vod metodou neutronové aktivační analýzy

Prvková analýza piv a varních vod metodou neutronové aktivační analýzy Prvková analýza piv a varních vod metodou neutronové aktivační analýzy Ivana Krausová 1, Jan Kučera 1, Pavel Dostálek 2, Václav Potěšil 3 1 Ústav jaderné fyziky AV ČR v.v.i., Řež 2 Fakulta potravinářské

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

277 905 ČESKÁ REPUBLIKA

277 905 ČESKÁ REPUBLIKA PATENTOVÝ SPIS (11) Číslo dokumentu: 277 905 ČESKÁ REPUBLIKA (19) Щ 8 Щ (21) Číslo přihlášky: 1619-90 (22) Přihlášeno: 02. 04. 90 (40) Zveřejněno: 18. 03. 92 (47) Uděleno: 28. 04. 93 (24) Oznámeno udělení

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Rychlé metody stanovení zářičů alfa a beta při plnění úkolů RMS (radiační monitorovací sítě )

Rychlé metody stanovení zářičů alfa a beta při plnění úkolů RMS (radiační monitorovací sítě ) Rychlé metody stanovení zářičů alfa a beta při plnění úkolů RMS (radiační monitorovací sítě ) Jiří Hůlka, Věra Bečková, Irena Malátová Státní ústav radiační ochrany Praha Radiační mimořádné situace: kontaminace

Více

Subfosilní dřevo a radiouhlíkové datování. Obsah. Tomáš Kolář

Subfosilní dřevo a radiouhlíkové datování. Obsah. Tomáš Kolář Subfosilní dřevo a radiouhlíkové datování Tomáš Kolář Obsah 1) Subfosilní dřevo 2) Metodika zpracování subfosilních kmenů 3) Proces fosilizace 4) Chemické složení a vlastnosti dřeva 5) Využití v dendrochronologii

Více

TESTOVÁNÍ MEMBRÁNOVÝCH MODULŮ PRO SEPARACI CO 2 Z BIOPLYNU

TESTOVÁNÍ MEMBRÁNOVÝCH MODULŮ PRO SEPARACI CO 2 Z BIOPLYNU PALIVA 6 (14), 3, S. 78-82 TESTOVÁNÍ MEMBRÁNOVÝCH MODULŮ PRO SEPARACI CO 2 Z BIOPLYNU Veronika Vrbová, Karel Ciahotný, Kristýna Hádková VŠCHT Praha, Ústav plynárenství, koksochemie a ochrany ovzduší, Technická

Více

Habart Jan, Tlustoš Pavel, Váňa Jaroslav, Plíva Petr

Habart Jan, Tlustoš Pavel, Váňa Jaroslav, Plíva Petr BIOLOGICKÁ STABILITA ORGANICKÝCH MATERIÁLŮ, JEJÍ STANOVENÍ A POUŽITÍ V PRAXI Biological Stability of organic materials its Determination and Practical Application Habart Jan, Tlustoš Pavel, Váňa Jaroslav,

Více

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA Dana Krištofová,Vladimír Čablík, Peter Fečko a a) Vysoká škola báňská Technická univerzita Ostrava, 17. listopadu 15, 708 33 Ostrava Poruba, ČR, dana.kristofova@vsb.cz

Více

mod ISO 6326-1:1989 Tato norma obsahuje ISO 6326-1:1989 s národními modifikacemi (viz předmluva). Národní modifikace jsou označeny národní poznámka".

mod ISO 6326-1:1989 Tato norma obsahuje ISO 6326-1:1989 s národními modifikacemi (viz předmluva). Národní modifikace jsou označeny národní poznámka. ČESKOSLOVENSKÁ NORMA MDT 553.981:543.272.5 Duben 1993 Zemní plyn ČSN 38 5565-1 STANOVENÍ SIRNÝCH SLOUČENIN Část 1: Všeobecný úvod mod ISO 6326-1:1989 Natural gas. Determination of sulfur compounds Part

Více

Radiační zátěž na palubách letadel

Radiační zátěž na palubách letadel Radiační zátěž na palubách letadel M. Flusser 1, L. Folwarczny 2, D. Kalasová 3, L. Lachman 4, V. Větrovec 5 1 Smíchovská střední průmyslová škola, Praha, martin.flusser@atlas.cz 2 Gymnázium Komenského,

Více

Použití radionuklidů při určování stáří předmětů

Použití radionuklidů při určování stáří předmětů Použití radionuklidů při určování stáří předmětů Petr Šimek MVT BAK KOM Pro určování stáří předmětů byly vyvinuty různé metody. Jedna z nejznámějších je radiouhlíková metoda 14 C použitelná pro určování

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Přehled technických norem pro stanovení radioaktivních látek ve vzorcích vody

Přehled technických norem pro stanovení radioaktivních látek ve vzorcích vody Přehled technických norem pro stanovení radioaktivních látek ve vzorcích vody Ing. Lenka Fremrová HYDROPROJEKT CZ a.s. Ing. Eduard Hanslík, CSc. Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i. 1

Více

Czech Technical University in Prague DOCTORAL THESIS

Czech Technical University in Prague DOCTORAL THESIS Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda Chemické reakce a děje Chemické reakce 1) Jak se chemické reakce odlišují od fyzikálních dějů? (2) změna vlastností látek, změna vazeb mezi atomy 2) Co označujeme v chemických reakcích jako reaktanty a

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Nuclear instrumentation - Liquid-scintillation systems - Performance verification

Nuclear instrumentation - Liquid-scintillation systems - Performance verification ČESKÁ TECHNICKÁ NORMA ICS 27.120.10 Září 1998 Přístroje jaderné techniky - Systémy s kapalnými scintilátory - Provozní zkoušky ČSN IEC 1304 35 6637 Nuclear instrumentation - Liquid-scintillation systems

Více

Příloha 4. Porovnání prototypů jednotlivých souborů s podpisem zdroje

Příloha 4. Porovnání prototypů jednotlivých souborů s podpisem zdroje Porovnání prototypů jednotlivých souborů s podpisem zdroje Obsah 1. ÚVOD... 4 2. SROVNÁNÍ PROTOTYPŮ JEDNOTLIVÝCH SOUBORŮ S PODPISEM ZDROJE... 4 2.1 POLYCYKLICKÉ AROMATICKÉ UHLOVODÍKY... 4 2.2 TĚŽKÉ KOVY...

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Důkaz C, H, N a halogenů v organických sloučeninách autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie

Více

Katedra jaderné chemie, ČVUT v Praze - FJFI, Břehová 7, Praha 1 Centrum pro radiochemii a radiační chemii, ČVUT v Praze - FJFI, Břehová 7, Praha 1

Katedra jaderné chemie, ČVUT v Praze - FJFI, Břehová 7, Praha 1 Centrum pro radiochemii a radiační chemii, ČVUT v Praze - FJFI, Břehová 7, Praha 1 Studium pevných extrahenlů HDEHP-PAN pro stanovení Sr Kužel Filip 1, John Jan 1 ' 2, Šebesta FerdinanS 1 2 Katedra jaderné chemie, ČVUT v Praze - FJFI, Břehová 7, Praha 1 Centrum pro radiochemii a radiační

Více

ití gama spektrometrie při p kolektiv KDAIZ FJFI ČVUT V PRAZE

ití gama spektrometrie při p kolektiv KDAIZ FJFI ČVUT V PRAZE Využit ití gama spektrometrie při p monitorování okolí JE kolektiv KDAIZ FJFI ČVUT V PRAZE Czech Technical University in Prague Nejstarší technická universita nejen v České republice, ale i v Evropě. Byla

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

SADA VY_32_INOVACE_CH2

SADA VY_32_INOVACE_CH2 SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

autoři a obrázky: Mgr. Hana a Radovan Sloupovi

autoři a obrázky: Mgr. Hana a Radovan Sloupovi EKOLOGIE autoři a obrázky: Mgr. Hana a Radovan Sloupovi 1. Určitě jsi v nabídkových letácích elektroniky zaregistroval zkratku PHE. Jde o poplatek za ekologickou likvidaci výrobku. Částka takto uvedená

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

SORPCE RADIOAKTIVNÍCH LÁTEK V HYDROSFÉŘE

SORPCE RADIOAKTIVNÍCH LÁTEK V HYDROSFÉŘE SORPCE RADIOAKTIVNÍCH LÁTEK V HYDROSFÉŘE Eva Juranová 1,2, Eduard Hanslík 1, Michal Novák 1 a Michal Komárek 1 1 Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i, Oddělení Radioekologie, Podbabská

Více

Co víme o nekatalytické redukci oxidů dusíku

Co víme o nekatalytické redukci oxidů dusíku Co víme o nekatalytické redukci oxidů dusíku Ing. Pavel Machač, CSc., email: pavel.machac@vscht.cz, tel.: (40) 0 444 46 Ing. Jana Vávrová, email: jana1.vavrova@vscht.cz, tel.: (40) 74 971 991 VŠCHT Praha,

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) F Imobilizace na alumosilikátové materiály Vedoucí práce: Ing. Eliška Leitmannová, Ph.D. Umístění práce: laboratoř F07, F08 1 Úvod Imobilizace aktivních

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody. Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je

Více

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM 86/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (2/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (2/2) PAN Katowice PL ISSN 1642-5308 SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM

Více

Zpráva ze zahraniční odborné stáže

Zpráva ze zahraniční odborné stáže Zpráva ze zahraniční odborné stáže Zahraniční odborná stáž byla realizována v rámci projektu ROZVOJ A POSÍLENÍ SPOLUPRÁCE MEZI AKADEMICKÝMI A SOUKROMÝMI SUBJEKTY SE ZAMĚŘENÍM NA CHEMICKÝ A FARMACEUTICKÝ

Více

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku

Více

Technický pokrok v oblasti akumulátorových baterií

Technický pokrok v oblasti akumulátorových baterií Technický pokrok v oblasti akumulátorových baterií Ing. Libor Kozubík Vedoucí sektoru energetiky IBM Global Business Services Laboratoře IBM, Almaden, San Jose, CA 2 PROJEKT BATTERY 500 Cíl: Výzkum a vývoj

Více

NOVÉ POSTUPY DEHALOGENACE PCB S VYUŽITÍM MIKROVLNNÉ TECHNIKY

NOVÉ POSTUPY DEHALOGENACE PCB S VYUŽITÍM MIKROVLNNÉ TECHNIKY NOVÉ POSTUPY DEHALOGENACE PCB S VYUŽITÍM MIKROVLNNÉ TECHNIKY Ing. Petr Kaštánek VŠCHT Praha, Ústav chemie ochrany prostředí, Technická 5, 16628, Praha 6 Konvenční metody zpracování PCB s klasickým ohřevem

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19J POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 13 12 84 (31) (PV 9743-84) (11) (Bl) (51) Int. Cl. 4 G 01 T 1/20 G 01 T 7/08 G 21 С 19/10 (40)

Více

LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE

LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE LANDFILL LEACHATE PURIFICATION USING MEMBRANE SEPARATION METHODS ČIŠTĚNÍ PRŮSAKOVÝCH VOD ZE SKLÁDEK METODAMI MEMBRÁNOVÉ SEPARACE Pavel Kocurek, Martin Kubal Vysoká škola chemicko-technologická v Praze,

Více

Název opory DEKONTAMINACE

Název opory DEKONTAMINACE Ochrana obyvatelstva Název opory DEKONTAMINACE doc. Ing. Josef Kellner, CSc. josef.kellner@unob.cz, telefon: 973 44 36 65 O P E R A Č N Í P R O G R A M V Z D Ě L Á V Á N Í P R O K O N K U R E N C E S C

Více

Stanovení profilu tekutého jádra při plynulém odlévání oceli metodou radioaktivních indikátorů Mayer Jiří, Rosypal František VÚHŽ,a.s.

Stanovení profilu tekutého jádra při plynulém odlévání oceli metodou radioaktivních indikátorů Mayer Jiří, Rosypal František VÚHŽ,a.s. Stanovení profilu tekutého jádra při plynulém odlévání oceli metodou radioaktivních indikátorů Mayer Jiří, Rosypal František VÚHŽ,a.s.,739 51 Dobrá Technologie plynulého odlévání oceli je složitý ťyzikálně-ehemický

Více

K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat

K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat K otázce pokrytí publikační aktivity českých vysokých škol v bibliografických bázích dat Jaroslav Šilhánek Vysoká škola chemicko-technologická v Praze silhanek@vscht.cz Publikované rozdíly jako výchozí

Více

ÚSTAV CHEMIE A ANALÝZY POTRAVIN

ÚSTAV CHEMIE A ANALÝZY POTRAVIN VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Laboratoř Metalomiky a Nanotechnologií Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Vyučující: Ing. et Ing. David Hynek, Ph.D., Prof. Ing. René

Více

Aspekty radiační ochrany

Aspekty radiační ochrany Aspekty radiační ochrany výzkumného reaktoru malého výkonu při experimentální výuce a vzdělávání Antonín Kolros Školní reaktor VR-1 VRABEC Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská

Více

GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS

GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených

Více

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS Trávníček P., Vítěz T., Dundálková P., Karafiát Z. Department of Agriculture, Food and Environmental Engineering, Faculty

Více

Výpočet stechiometrického a sumárního vzorce

Výpočet stechiometrického a sumárního vzorce Výpočet stechiometrického a sumárního vzorce Stechiometrický (empirický) vzorec vyjadřuje základní složení sloučeniny udává, z kterých prvků se sloučenina skládá a v jakém poměru jsou atomy těchto prvků

Více

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION UHLÍKATÉ ČÁSTICE V OVZDUŠÍ MORAVSKO- SLEZSKÉHO KRAJE CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION Ing. MAREK KUCBEL Ing. Barbora SÝKOROVÁ, prof. Ing. Helena RACLAVSKÁ, CSc. Aim of this work

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Oxidace a redukce jsou chemické reakce spojené s výměnou elektronů. Při oxidaci látka elektrony uvolňuje a její oxidační číslo se zvyšuje.

Více

FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB

FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY.1Úvod Autor: Ing. František Svoboda Csc. Zvážení rizik tvorby vedlejších produktů desinfekce (DBP) pro úpravu konkrétní vody je podmíněno návrhem

Více

KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN. KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b.

KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN. KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b. KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b a Ústav plynárenství, koksochemie a ochrany ovzuší, FTOP, Vysoká škola

Více

VYUŽITÍ FERMENTAČNÍCH ZBYTKŮ ANAEROBNÍ DIGESCE JAKO PALIVA APPLICATION OF FERMENTED ANAEROBIC DIGESTION REMAINDERS AS FUEL

VYUŽITÍ FERMENTAČNÍCH ZBYTKŮ ANAEROBNÍ DIGESCE JAKO PALIVA APPLICATION OF FERMENTED ANAEROBIC DIGESTION REMAINDERS AS FUEL VYUŽITÍ FERMENTAČNÍCH ZBYTKŮ ANAEROBNÍ DIGESCE JAKO PALIVA APPLICATION OF FERMENTED ANAEROBIC DIGESTION REMAINDERS AS FUEL J. Kára 1 ), R. Koutný 1 ), J. Kouďa 2 ) 1 ) Výzkumný ústav zemědělské techniky,

Více

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD Citace Kantorová J., Kohutová J., Chmelová M., Němcová V.: Využití a validace automatického fotometru v analýze vod. Sborník konference Pitná voda 2008, s. 349-352. W&ET Team, Č. Budějovice 2008. ISBN

Více

Extrakce. Dělení podle způsobů provedení -Jednostupňová extrakce - mnohastupňuvá extrakce - kontinuální extrakce

Extrakce. Dělení podle způsobů provedení -Jednostupňová extrakce - mnohastupňuvá extrakce - kontinuální extrakce Extrakce Slouží k izolaci, oddělení analytu nebo skupin látek s podobnými vlastnostmi od matrice a ostatních látek, které nejsou předmětem analýzy (balasty). Extrakce je založena na ustavení rovnováhy

Více

VÝZKUMNÉ ENERGETICKÉ CENTRUM

VÝZKUMNÉ ENERGETICKÉ CENTRUM VÝZKUMNÉ ENERGETICKÉ CENTRUM VŠB Technická univerzita Ostrava EMISNÉ ZAŤAŽENIE ŽIVOTNÉHO PROSTREDIA, 11. 12. 06. 2015 Ing. Jan Koloničný, Ph.D. Stručně o VEC Založeno roku 1999 pracovníky z Katedry energetiky

Více

Využití faktorového plánování v oblasti chemických specialit

Využití faktorového plánování v oblasti chemických specialit LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice STAVEBNÍ MATERIÁLY, JAKO ZDROJ TOXICKÝCH LÁTEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO GEOLOGICKÁ FAKULTA Institut čistých technologií těžby a užití energetických surovin Vliv chemické aktivace na sorpční charakteristiky uhlíkatých

Více

PEMZA, ALTERNATIVNÍ FILTRAČNÍ MATERIÁL VE VODÁRENSTVÍ

PEMZA, ALTERNATIVNÍ FILTRAČNÍ MATERIÁL VE VODÁRENSTVÍ PEMZA, ALTERNATIVNÍ FILTRAČNÍ MATERIÁL VE VODÁRENSTVÍ Ing. Ladislav Bartoš, PhD. 1), RNDr. Václav Dubánek. 2), Ing. Soňa Beyblová 3) 1) VEOLIA VODA ČESKÁ REPUBLIKA, a.s., Pařížská 11, 110 00 Praha 1 2)

Více

CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení

CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení biodeteriogenů Biokoroze stavebních materiálů Vznik a

Více

FTIR analýza plynných vzorků, vzorkovací schémata.

FTIR analýza plynných vzorků, vzorkovací schémata. FTIR analýza plynných vzorků, vzorkovací schémata. Dr. Ján Pásztor, Ing. Karel Šec Ph.D., Nicolet CZ s.r.o., Klapálkova 2242/9, 149 00 Praha 4 Tel./fax 272760432,272768569,272773356-7, nicoletcz@nicoletcz.cz

Více

Systém nakládání s institucionálními radioaktivními odpady v ÚJV Řež a.s.

Systém nakládání s institucionálními radioaktivními odpady v ÚJV Řež a.s. Nuclear Research Institute Řež plc Ústav jaderného výzkumu Řež a.s. Systém nakládání s institucionálními radioaktivními odpady v ÚJV Řež a.s. Petr Kovařík, Josef Podlaha, ÚJV Řež a.s. Radiologické metody

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Ludmila Burianová 1, Jaroslav Šolc 1, Pavel Solný 2

Ludmila Burianová 1, Jaroslav Šolc 1, Pavel Solný 2 Ludmila Burianová 1, Jaroslav Šolc 1, Pavel Solný 2 1 Český metrologický institut 2 Fakultní nemocnice Motol Beroun, 17. dubna 2015 Program EMRP European Metrology Research Programme; cíl: zkvalitnění

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Mgr.

Více

Aplikace anaerobního membránového bioreaktoru pro čištění farmaceutických odpadních vod

Aplikace anaerobního membránového bioreaktoru pro čištění farmaceutických odpadních vod Aplikace anaerobního membránového bioreaktoru pro čištění farmaceutických odpadních vod aneb zkušenosti a výsledky z odborné zahraniční stáže 3. 12. 2013 Lukáš Dvořák lukas.dvorak@tul.cz Obsah prezentace

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Organická chemie 3.ročník studijního oboru - kosmetické služby.

Organická chemie 3.ročník studijního oboru - kosmetické služby. Organická chemie 3.ročník studijního oboru - kosmetické služby. T-6 ALKANY Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu: CZ.1.07/1.5.00/34.0639 ŠABLONA III / 2

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

OR-RA-15. Zkoušení způsobilosti v oblasti radiologického rozboru vod a zeminy. duben 2015

OR-RA-15. Zkoušení způsobilosti v oblasti radiologického rozboru vod a zeminy. duben 2015 SL Středisko pro posuzování způsobilosti laboratoří Výzkumný ústav vodohospodářský T. G. Masaryka, veřejná výzkumná instituce Podbabská 2582/30, 160 00 Praha 6 aslab@vuv.cz Tel.: 224 319 783 www.aslab.cz

Více

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Laboratorní cvičení č. Tlak vzduchu: Teplota vzduchu: Vodík a kyslík Vlhkost

Více

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE INFLUENCE OF GRINDING OF FLY-ASH ON ALKALI ACTIVATION PROCESS Rostislav Šulc 1 Abstract This paper describes influence of grinding of fly - ash

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Úvod IX. -ukázka chem.skla přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce-práce s dostupnými a běžně používanými látkami, hodnocení jejich rizikovosti, posoudí bezpečnost vybraných

Více

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

Národní informační den společných technologických iniciativ ARTEMIS a ENIAC

Národní informační den společných technologických iniciativ ARTEMIS a ENIAC Národní informační den společných technologických iniciativ ARTEMIS a ENIAC 21. března 2011, Praha Pravidla a podmínky účasti v projektech ARTEMIS a ENIAC v ČR Úvod k finančním pravidlům JTIs (ARTEMIS

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1» ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (ер (23) Výstavní priorita (22) Přihlášeno 15 06 84 (21) FV 4559-84 00 (Bi) (51) Int Cl.* G 21 F 9/02, G 21 F 9/00 ÚftAD

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Název: Beketovova řada kovů

Název: Beketovova řada kovů Název: Beketovova řada kovů Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, fyzika Ročník: 3. Tématický celek:

Více

Koloběh látek v přírodě - koloběh dusíku

Koloběh látek v přírodě - koloběh dusíku Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N

Více

Voda jako životní prostředí ph a CO 2

Voda jako životní prostředí ph a CO 2 Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou

Více

místo, kde se rodí nápady

místo, kde se rodí nápady místo, kde se rodí nápady a private european network of information centres on materials and innovative products. Created in 2001 in Paris, it provides members with a large selection of specific, reproducible

Více

Chemie. 8. ročník. Od- do Tématický celek- téma PRŮŘEZOVÁ TÉMATA: Průmysl a životní prostředí VLASTNOSTI LÁTEK. Vnímání vlastností látek.

Chemie. 8. ročník. Od- do Tématický celek- téma PRŮŘEZOVÁ TÉMATA: Průmysl a životní prostředí VLASTNOSTI LÁTEK. Vnímání vlastností látek. Chemie 8. ročník Od do Tématický celek téma PRŮŘEZOVÁ TÉMATA: VLASTNOSTI LÁTEK Vnímání vlastností látek září Chemická reakce Měření vlastností látek SMĚSI Různorodé a stejnorodé směsi Roztoky říjen Složení

Více

Znečištění ovzduší Mgr. Veronika Kuncová, 2013

Znečištění ovzduší Mgr. Veronika Kuncová, 2013 Znečištění ovzduší Mgr. Veronika Kuncová, 2013 Zdroje znečištění ovzduší Zdroje související s činností člověka Tepelné elektrárny a továrny Silniční doprava Freony Metan ze skládek Spalování materiálu

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více