Tvorba interaktivního programu pro entalpickou bilanci trubkových výměníků

Rozměr: px
Začít zobrazení ze stránky:

Download "Tvorba interaktivního programu pro entalpickou bilanci trubkových výměníků"

Transkript

1 Tvorba interaktivního programu pro entalpickou bilanci trubkových výměníků Interactive software application for the enthalpy balance of tube heat exchangers calculation Jan Šebestík akalářská práce 009

2

3

4 UT ve Zlíně, Fakulta aplikované informatiky, STRKT akalářská práce se zabývá tepelnou bilancí trubkových výměníků tepla s cílem vytvořit softwarovou aplikaci pro výpočet entalpické bilance rekuperačních trubkových výměníků s paralelním tokem tekutin. Vychází ze záklaních znalostí pro výpočet prostupu tepla a tepelný tok uvnitř trubkového výměníku a uvažuje vliv tvorby kotelního kamene z hleiska účinnosti výměníku a srovnání náklaů na jeho provoz. Softwarová aplikace byla vytvořena v prostřeí programu MTL a lze ji použít pro urychlení časově náročného výpočtu. Navíc bue sloužit jako učební pomůcka pro výuku přemětu Procesní inženýrství. Klíčová slova: trubkový výměník, prostup tepla, kotelní kámen, entalpická bilance, MTL STRCT This bachelor thesis is concerne with heat balance of tube heat exchangers in orer to create a software application to calculate the enthalpy balance of recuperative tube heat exchangers with parallel flow of fluis. It was motivate from the basic knowlege of heat penetration an heat flow insie a tube exchanger an it theorizes about furstone creation regaring the effectiveness of this exchanger an the comparison for its use. The software application was create in the program MTL an it is possible to use it to accelerate time-consuming calculation. In aition, it will be useful for processing engineering methos. Keywors: tube heat exchangers, heat penetration, furstone, enthalpy balance, MTL

5 UT ve Zlíně, Fakulta aplikované informatiky, Na tomto místě bych rá poěkoval veoucí své bakalářské práce Ing. Haně Charvátové, Ph.D. za poskytnuté ray, obornou pomoc a trpělivost při řešení práce. Taktéž ěkuji roičům a kamaráům za poskytnutou poporu, íky které tato práce vznikla.

6 UT ve Zlíně, Fakulta aplikované informatiky, Prohlašuji, že beru na věomí, že oevzáním bakalářské práce souhlasím se zveřejněním své práce pole zákona č. /998 Sb. o vysokých školách a o změně a oplnění alších zákonů (zákon o vysokých školách), ve znění pozějších právních přepisů, bez ohleu na výsleek obhajoby; beru na věomí, že bakalářská práce bue uložena v elektronické poobě v univerzitním informačním systému ostupná k prezenčnímu nahlénutí, že jeen výtisk bakalářské práce bue uložen v příruční knihovně Fakulty aplikované informatiky Univerzity Tomáše ati ve Zlíně a jeen výtisk bue uložen u veoucího práce; byl/a jsem seznámen/a s tím, že na moji bakalářskou práci se plně vztahuje zákon č. /000 Sb. o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozějších právních přepisů, zejm. 35 ost. 3; beru na věomí, že pole 60 ost. autorského zákona má UT ve Zlíně právo na uzavření licenční smlouvy o užití školního íla v rozsahu ost. 4 autorského zákona; beru na věomí, že pole 60 ost. a 3 autorského zákona mohu užít své ílo bakalářskou práci nebo poskytnout licenci k jejímu využití jen s přechozím písemným souhlasem Univerzity Tomáše ati ve Zlíně, která je oprávněna v takovém přípaě oe mne požaovat přiměřený příspěvek na úhrau náklaů, které byly Univerzitou Tomáše ati ve Zlíně na vytvoření íla vynaloženy (až o jejich skutečné výše); beru na věomí, že poku bylo k vypracování bakalářské práce využito softwaru poskytnutého Univerzitou Tomáše ati ve Zlíně nebo jinými subjekty pouze ke stuijním a výzkumným účelům (tey pouze k nekomerčnímu využití), nelze výsleky bakalářské práce využít ke komerčním účelům; beru na věomí, že poku je výstupem bakalářské práce jakýkoliv softwarový proukt, považují se za součást práce rovněž i zrojové kóy, popř. soubory, ze kterých se projekt skláá. Neoevzání této součásti může být ůvoem k neobhájení práce. Prohlašuji, že jsem na bakalářské práci pracoval samostatně a použitou literaturu jsem citoval. V přípaě publikace výsleků buu uveen jako spoluautor. Ve Zlíně.. popis iplomanta

7 UT ve Zlíně, Fakulta aplikované informatiky, OSH ÚVOD...8 I TEORETICKÁ ČÁST...0 SDÍLENÍ TEPL.... SDÍLENÍ TEPL VEDENÍM..... Součinitel tepelné voivosti..... Sílení tepla válcovou stěnou.... SDÍLENÍ TEPL PROUDĚNÍM Sílení tepla mezi tekutinou a tuhým tělesem Součinitel přestupu tepla konvekcí Kritéria poobnosti pro tepelné procesy Přestup tepla bez fázové přeměny pro nucenou konvekci Systémy s teplosměnnou plochou vytvořenou z trubek Přestup tepla při fázové přeměně Konenzace Var PROSTUP TEPL Prostup tepla válcovou stěnou... VÝMĚNÍKY TEPL...4. KONSTRUKČNÍ PROVEDENÍ TRUKOVÝCH VÝMĚNÍKŮ...5. TEPELNÉ ILNCE VÝMĚNÍKŮ S PRLELNÍM TOKEM TEKUTIN Souproué uspořáání toku tekutin Protiprouý výměník Výměník tepla při varu a konenzaci Kotelní kámen POPIS PROGRMU MTL...3 II 3. PRCOVNÍ PLOCH M-SOUORY...33 PRKTICKÁ ČÁST ŘEŠENÍ VZOROVÉHO PŘÍKLDU SROVNÁNÍ NÁKLDŮ N PROVOZ NOVÉHO ZNESENÉHO VÝMĚNÍKU POPIS OVLÁDÁNÍ PLIKCE...44 ZÁVĚR...48 ZÁVĚR V NGLIČTINĚ...49 SEZNM POUŽITÉ LITERTURY...50 SEZNM POUŽITÝCH SYMOLŮ ZKRTEK...5 SEZNM ORÁZKŮ...55 SEZNM TULEK...56

8 UT ve Zlíně, Fakulta aplikované informatiky, ÚVOD Výměníky tepla slouží k vzájemné výměně tepla mezi věma fázemi, nejčastěji tekutinami. Tato zařízení mají široké uplatnění. Používají se pro ohřev či chlazení tekutin, pro vytápění místností, klimatizaci, ále jsou užívány v elektrárnách, chemických a petrochemických závoech apo. Příklaem malého tepelného výměníku je raiátor ústřeního či etážového topení, který přeává teplo z teplovoního nízkotlakého okruhu o prostřeí bytu obsahujícího jiné méium, vzuch. Součástí areálů továren a sílišť jsou výměníkové stanice, které zajišťují istribuci tepla pro vytápění objektů a ohřev teplé voy. V řaě technologických procesů se výměníky používají pro úpravu teploty tekutin vstupujících o zařízení, ve kterých se tyto procesy uskutečňují, nebo mohou být výměníky přímo součástí těchto zařízení [7][4]. Problematika výpočtu bilance tepelných výměníků je vcelku všestranná a častá záležitost. Potřeba vytápění objektů nebo zahřívání kapalin v technologickém procesu je nezbytný proces pro osažení optimálních pracovních či provozních pomínek. Vžy je potřeba najít optimální a finančně nejlevnější řešení. Tato práce je zaměřena na výpočet entalpické bilance rekuperačních trubkových výměníků typu trubka v trubce a typu svazkového výměníku. Uvažuje také vliv kotelního kamene na účinnost přenosu tepla. Cílem je navrhnout vhoný postup výpočtu a na záklaě něj vytvořit interaktivní softwarovou aplikaci pro výpočet součinitele prostupu tepla a tepelný tok stěnou ve výměníku typu trubka v trubce a ve svazkovém výměníku tepla. Při výpočtu je potřeba vycházet ze záklaních vlastností sílení tepla. Materiálem, ze kterého je zkonstruován výměník, se teplo sílí převážně veením. Je proto nutné brát ohle na použitý typ materiálu a s tím související součinitel tepelné voivosti. Mezi tekutinou a stěnou výměníku probíhá sílení tepla prouěním. Ze je ůležitým faktorem součinitel přestupu tepla. Tyto výpočty jsou mnohy komplikované, proto se k jejich určení většinou využívají metoy poobnosti za pomoci kriteriálních rovnic. Pro celkové sílení tepla se využívá označení prostup tepla. Otu také plyne součinitel prostupu tepla, který se využívá pro stanovení výkonu výměníku. Tento součinitel je také ovlivněn zanesením výměníku. Při zanesení výměníku se tento koeficient snižuje, tím se snižuje i výkon výměníku a také jeho účinnost. V praktické části je vyřešen vzorový výpočet pro protiprouý svazkový trubkový výměník. Tento příkla bue také využit pro ozkoušení vytvořené aplikace. Samotná softwarová

9 UT ve Zlíně, Fakulta aplikované informatiky, aplikace je řešena pomocí výpočetního programu MTL 6.5, který má všestranné využití. Pro naše potřeby program využíváme k výpočtu a také jako grafické prostřeí pro snanější zaávání a ovláání aplikace.

10 UT ve Zlíně, Fakulta aplikované informatiky, I. TEORETICKÁ ČÁST

11 UT ve Zlíně, Fakulta aplikované informatiky, 009 SDÍLENÍ TEPL Sílením tepla se označuje přenos energie z místa o vyšší teplotě o místa s nižší teplotou. Přenos tepla je nerovnovážný termoynamický ěj, který probíhá s konečnou rychlostí v prostoru a čase. Pro potřeby výpočtu výměníků je potřeba rozlišit va záklaní způsoby sílení tepla, a to veením (konukcí) a prouěním (konvekcí). Sílení tepla veením souvisí s tepelným pohybem a vzájemným energetickým působením molekul, atomů, iontů a elektronů. Tento typ přenosu je charakteristický pro tuhé látky, ke bývá většinou jeiným mechanismem sílení tepla. Veení může probíhat i v kapalných a plynných látkách, jsou-li v okonalém kliu. Sílení tepla prouěním probíhá pouze v prouícím prostřeí. Pohybující se tekutina přeává nebo oebírá teplo z povrchu okolních těles. Zmíněným povrchem bývá většinou povrch tuhého tělesa, ale může jím být i plocha otyku vou kapalin nebo kapaliny a plynu. Při sílení tepla ve výměnících se společně uplatňují oba zmíněny způsoby. []. Sílení tepla veením K procesu veení tepla ochází v ůsleku pohybu elektronů mezi pevně fixovanými nepohybujícími se molekulami tuhé látky nebo pohybem molekul u látek kapalných nebo plynných. Množství tepla, které se sílí tuhou látkou nebo tekutinou v kliu, je áno experimentálně stanoveným prvním Fourierovým zákonem veení tepla, který má tvar r q λ gra t λ t () Ke q r je vektor plošné hustoty tepelného toku, λ je součinitel tepelné voivosti, t je graient teplotního pole. t gra Δt t t lim () Δn 0 Δn n

12 UT ve Zlíně, Fakulta aplikované informatiky, 009 Obr. Izotermy; teplotní graient Množství tepla Q procházející izotermickou plochou se určí z rovnice Q q S τ (3) [][].. Součinitel tepelné voivosti Součinitel tepelné voivosti je fyzikálním parametrem látky. Obecně závisí na teplotě, tlaku a složení látky. Určuje se měřením hustoty tepelného toku, graientu teploty a výpočtem pole vztahu Q λ (4) gra t S τ Součinitel tepelné voivosti je tey množství tepla, které proje za jenotku času jenotkovou plochou izometrického povrchu při jenotkovém teplotním graientu. [].. Sílení tepla válcovou stěnou Uvažujme stacionární proces veení tepla v jenouché trubce. Mějme utý válec o vnitřním poloměru r a vnějším poloměru r, přičemž élka válce je mnohem větší než jeho průměr. Na vnitřním povrchu je teplota t, na vnějším povrchu je teplota t, přičemž platí t >t. Teplotní graient ve směru osy válce (osa z) je nulový a teplotní pole se po obvou válce nemění, takže teplotního pole je popsáno rovnicí t r + r t r 0 (5) Pro aný vztah určíme okrajové pomínky osazením za t t

13 UT ve Zlíně, Fakulta aplikované informatiky, Úpravou rovnice (5) s anými okrajovými pomínkami (porobněji viz []) získáme funkci t ( t t ) ln r r t (6) r Rovnice je logaritmického charakteru tzn., že rozělení teploty v trubce je pole logaritmické křivky. Pro snanější vyjáření se u válcové plochy uváí místo hustoty tepelného toku pouze tepelný tok Q &, ke Dosazením a úpravou ospějeme ke vztahu ln r t Q & λ S r (7) t t & πlλ (8) Q ln Pro vícevrstvý válec, který je složen z několika těsně k sobě přiléhajících vrstev různé tloušťky, zhotovených z materiálů o nestejné tepelné voivosti platí vztah [][] & n+ πl n (9) j+ Q j t t ln λ j j

14 UT ve Zlíně, Fakulta aplikované informatiky, Obr. Řez válcovou stěnou složenou ze tří vrstev. Sílení tepla prouěním Sílení tepla prouěním se ěje v pohybujícím se prostřeí. Většinou je o prouění v plynech nebo kapalinách, ke přenos probíhá mezi jenotlivými molekulami nebo atomy. Sílení tepla prouěním je většinou aleko intenzivnější než sílení tepla veením, ale bývá vžy oprovázeno sílením tepla veením. Pole charakteru vnějších sil působících na uvažovanou částici rozeznáváme přirozené (volné) a nucené prouění. Přirozené prouění nastává v ůsleku rozílné hustoty stuených a teplých částic tekutiny, nucené je ve většině přípaů způsobené mechanických příkonem (např. ventilátor, čerpalo). Hustota uvažované částice je funkcí teploty, proto je nucené prouění oprovázeno volným prouěním, avšak jeho vliv je u běžných přípaů nuceného prouění velmi malý. [3].. Sílení tepla mezi tekutinou a tuhým tělesem Pro praktické výpočty je záklaním úkolem určení tepelného toku Q & mezi povrchem tuhého tělesa a prouící tekutinou. Pro analyticky řešitelné úlohy lze Q & vypočítat z rozložení teplot, rychlostí a tlaků v tekutině a z teploty stěny. Většina praktických problémů je však natolik složitá, že se k určení Q & používá výsleků experimentálních výzkumů společně s aplikací teorie poobnosti.

15 UT ve Zlíně, Fakulta aplikované informatiky, Prouí-li tekutina kolem tuhého tělesa, je její rychlost na povrchu nulová. V tomto přípaě se sílí teplo pouze veením a pole prvního Fourierova zákona platí [][] t qp λ (0) n n0.. Součinitel přestupu tepla konvekcí Při určování součinitele přestupu tepla přepoklááme, že na rozhraní mezi fázemi nenastává akumulace. Pak lze přepokláat, že teplo, které je síleno z jené fáze, přeje bezezbytku o sousení fáze a teplota obou fází je na fázovém rozhraní stejná. Pak plošná hustota tepelného toku fázovým rozhraním je ána vztahem q P ( t t) (ke t P je teplota povrchu stěny, t je teplota prouící tekutiny). α () P Pro tepelný tok mezi povrchem tuhého tělesa a tekutinou platí Newtonův tákon Q & Q q S α ( t t) S α Δt S & () P k P Při praktických výpočtech se obvykle používají stření honoty veličin α a Δt, zprůměrněné přes teplosměnnou plochu. Pak přepíšeme () o tvaru k Q& α Δt k S (3) Veličina α k se nazývá součinitel přestupu tepla konvekcí a počítá se ze vztahu α k Q& q t λ n P ( t t) S t t t t p P P n0 (4) Součinitel přestupu tepla konvekcí je tey množství tepla přeané za jenotkový čas mezi tekutinou a jenotkovou plochou povrchu tělesa, je-li mezi tělesem a tekutinou rozíl teplot K. [][]..3 Kritéria poobnosti pro tepelné procesy nalytické řešení přenosu tepla je u většiny praktických úloh nemožné, takže se nejčastěji využívá experimentálních výsleků a meto teorie poobnosti. Kritéria poobnosti jsou

16 UT ve Zlíně, Fakulta aplikované informatiky, bezrozměrná čísla, která uávají vliv několika charakteristickým veličin na aný proces. Je známo více než 00 kritérií poobnosti, která jsou pojmenovány pole významných věců a jsou označovány prvními věma písmeny jejich jména. rchiméovo kriterium 3 g l Δρ r (5) v ρ Poměr součinu setrvačné a gravitační síly a ruhé mocniny vazké síly; opovíá Grashofovu kritériu u voufázového prouění Fourierovo kriterium l Přestavuje poíl charakteristického času veení tepla a charakteristického času t a Fo l a t l ρ c λ t P (6) Grashofovo kriterium 3 g l Gr β Δt v (7) Poměr součinu setrvačné a vztlakové síly a ruhé mocniny vazké síly Nusseltovo kriterium Poměr tepla síleného konvekcí a tepla síleného veením Pécletovo kriterium α l Nu (8) λ l v l v ρ cp Pe (9) a λ Poměr celkově převeeného tepla a tepla převeeného veením Prantlovo kriterium Pe Re Pr (0) v Pr () a

17 UT ve Zlíně, Fakulta aplikované informatiky, Poměr molekulárním transportem převeené hybnosti a tepla Reynolsovo kriterium v l δ v l Re () η ν Poměr setrvačné síly a vazké síly Stantonovo kriterium St α v ρ c P (3) Poměr tepla síleného konvekcí a vlastním prouěním tekutiny [6] Nu Nu St (4) Pe Re Pr..4 Přestup tepla bez fázové přeměny pro nucenou konvekci Je-li tekutina onucena k toku kolem teplosměnné plochy jinak než pouze rozílem teplot (nebo koncentrací), mluvíme o nucené konvekci. V průmyslu jsou při nucené konvekci nejčastější teplosměnné plochy vytvořené z trubek nebo náoby s míchaly. [4][5]..4. Systémy s teplosměnnou plochou vytvořenou z trubek Je třeba rozlišovat, za tekutina teče uvnitř trubek nebo je obtéká z vnějšku. Do všech vztahů uveených v tomto ostavci se při prouění uvnitř trubek kruhového průřezu osazuje za charakteristický rozměr vnitřní průměr. Vztahy lze využít i pro prouění kanály nekruhového průřezu a také pro výpočet koeficientu přestupu tepla na vnější stěnu trubek poélně obtékaného trubkového svazku, uzavřeného v plášti. Za charakteristický rozměr pak osazujeme ekvivalentní průměr e 4S e (5) s (ke S je plocha průtočného průřezu a s obvo smočený tekutinou).

18 UT ve Zlíně, Fakulta aplikované informatiky, a) Tok uvnitř trubky Při laminárním prouění, ky Re<300, je potřeba nejprve zjistit vliv volné konvekce. U svislé trubky, ky směr toku vyvolaného volnou konvekcí souhlasí se směrem nuceného prouění (tj. ohřívání a tok nahoru, nebo chlazení a tok olů) uváí rown a Grasmann, že vliv volné konvekce lze zanebat, platí-li Gr/Re<0. Sieer a Tate vypracovali pro výpočet koeficientu přestupu tepla při laminárním toku v trubce, ve které není v ůsleku malé honoty poměru élky trubky k jejímu průměru L/ stabilizován rychlostní ani teplotní profil rovnici ( ) ( 3 Pe L / ) ( η η ) 0, 4 Nu,86 W (6) (ke η je viskozita tekutiny při její stření teplotě, η W je viskozita tekutiny při teplotě stěny trubky) vztah lze použít kyž 3<Re<300 ; 0,0044<(η /η w )<0; 0,5<Pr<,7.0 ; L/<0 poku vypočtené Nu>3,65 (Vyje-li Nu menší než 3,65 jsme mimo obor platnosti i tehy, kyž ostatní pomínky jsou splněny). V tomto oboru proměnných lze očekávat chybu v určení koeficientu přestupu tepla asi ±5. Je viět, že ač rovnice byla půvoně vyvinuta pro krátké trubky, platí s přijatelnou přesností i pro osti louhé trubky. Přesto pro stabilizovaný rychlostní profil při L/>50 a Re<300 je vhonější použít rovnici, kterou ovoil Hausen na záklaě Graetzova teoretického vztahu 0,0668Pe Nu 3, ,04 L ( Pe L) 3 η ηw 0,4 (7) Poměr η /η a Pr má být asi ve stejném rozsahu jako u vztahu (0), pole autora má být Pe w /L>00, Thomas uváí že stačí i Pe /L>0. U vztahu () lze přepokláat chybu v určení Nu asi 5%, jeho hlavní výhoa proti (0) je, že Nu se neblíží nule při L/. Při turbulentním prouění používáme ále uveené vztahy, které platí pro hyraulicky hlaké trubky. V rsných trubkách může být koeficient přestupu tepla značně vyšší, ale při návrhu zařízení na to nelze spoléhat, protože nánosy z prouících méií se může kvalita povrchu teplosměnné plochy velmi rychle postatně změnit. Proto se pracuje v turbulentní oblasti vesměs se vztahy pro hlaké trubky. Ze starších rovnic se stále ještě používá Dittusova-oelterova rovnice v úpravě Mcamse

19 UT ve Zlíně, Fakulta aplikované informatiky, Nu 0,03Re 0,8 Pr 0,4 (8) platí pro 0,6<Pr<,.0 ; L/>50 a 0 4 <Re<.0 6. Pro plyny při Pr 0,7 jsou vypočtené honoty až o 0% vyšší než experimentální, v úzké oblasti,<pr<,4 je chyba vztahu asi ±0%, pro kapaliny při Pr 6 je chyba až -30%, v oboru 7< Pr<,.0 ává rovnice honoty nižší až o 0%. Postatně přesnější je rovnice, kterou publikoval Petuchov. Má tvar ke ( f 8) Re Pr Nu (9),07 +,7 f 8 3 ( Pr ) [,8 log( Re),64] f (30) a v rozsahu 0 4 <Re<5.0 6 ; 0,5<Pr<00 se ochyluje o pokusných at o ±6%, což je v mezích experimentální chyby velmi kvalitních měření. Pro přechonou oblast prouění, ke 300<Re<0 4, bývá v literatuře oporučován Hausenův vztah ( Re 3 5) Pr 3 + ( L) [ 3 ]( η η ) 0, 4 Nu 0,6 W (3) který lze použít poku 0,5<Pr<5.0 ; <(η /η )<4 a L/>. Nepoařilo se nalézt w úaje, které by umožnily rozumný oha chyby rovnice, vztah navazuje přijatelně na výsleky platné pro laminární oblast, hůře na turbulentní oblast. Koeficient přestupu tepla pro kapalinu prouící uvnitř trubkového hau můžeme zhruba ohanout, vypočteme-li jej ze vztahů platných pro přímou trubku a násobíme opravným součinitelem e pro který platí R e +,77 /R (3) R (ke je vnitřní průměr trubky, ze které je ha zhotoven a R je poloměr křivosti šroubovice veené osou trubky hau). [5]

20 UT ve Zlíně, Fakulta aplikované informatiky, Přestup tepla při fázové přeměně..5. Konenzace Pro filmovou konenzaci syté nepohybující se páry při laminárním toku konenzátu ovoil Nusselt vztah 0,5 3 λ ρ gδh lv α C (33) l η ( tv tw ) ke za C osazujeme při konenzaci na svislé trubce nebo svislé rovinné stěně,5; (l je přitom svislý rozměr stěny nebo trubky), při konenzaci na voorovné trubce je C 0,75 (a l je průměr trubky). Hustotu ρ, tepelnou voivost λ a viskozitu konenzátu η, je třeba osazovat při aritmetickém průměru teplot páry a konenzační plochy, výparné teplo Δh lv při teplotě páry; t je teplota páry a t teplota konenzační plochy. Tok konenzátu se v w považuje za laminární, je-li Re K <300, Re K je efinováno vztahem ReK 4Γ /η (34) ve kterém veličina Γ (lineární intenzita zkrápění stěny) je ána rovnicí Γ m& s (35) ke značí hmotnostní tok konenzátu a za s se osazuje v přípaě voorovné trubky její vojnásobná élka, u svislé trubky její obvo. Při splnění těchto pomínek lze očekávat chybu v určení koeficientu přestupu tepla asi 0%. Pro komplikovanější realizace procesu konenzace je třeba hleat vhoné vztahy ve specializované literatuře, nutné to je zejména při konenzaci páry za přítomnosti nekonenzujícího plynu, který koeficient přestupu tepla snižuje často několikanásobně. Jinak je koeficient přestupu tepla při konenzaci zejména voní páry vysoký a na celkový tepelný opor má tey malý vliv. Při orientačních výpočtech většinou neuěláme vážnou chybu, poklááme-li honotu koeficientu přestupu tepla při konenzaci čisté syté voní páry za rovnou 0 4 Wm - K -. [5]..5. Var Pro výpočet koeficientu přestupu tepla v oblasti bublinového varu platí vztah α Kq r p z (36)

21 UT ve Zlíně, Fakulta aplikované informatiky, 009 Poku se nám poaří nalézt v literatuře honoty K, r, z stanovené pro přesně stejnou kvalitu varného povrchu a kapalinu jakou holáme použít, ostaneme spolehlivé výsleky. K hrubému ohau s chybou často 00% můžeme pole Kutatelaze brát pro hlaké čisté povrchy napříkla z měi, mosazi a nerezavějící oceli r 0,7; z 0,4 a honoty K pro různé kapaliny z (Tabulka ). Tyto honoty platí pro 0 3 Wm - < q < 0 5 Wm -, 0 4 Pa < p <0 6 Pa. Přecho z bublinového na filmový var nastává u voy a voných roztoků překročí-li rozíl teplot mezi teplosměnnou plochou a vroucí kapalinou asi 5 K. To, že výše uveený postup poskytuje výsleky s tak velkou chybou často nevaí, protože koeficient přestupu tepla při varu (zejména voy a zřeěných voných roztoků) je velký (řáově 0 4 Wm - K - ). [5] Tabulka Empirické konstanty K (koncentrace voných roztoků jsou uveeny v hmotnostních %) Kapalina K/0 - Kapalina K/0 - Voné roztoky 9% NaCl benzen 0,74 4% NaCl,5 ethanol, 0% Na SO 4, methanol 0,85 6% glycerin tetrachlormethan 0,64 5% sacharóza,4 voa,4.3 Prostup tepla Prostupem tepla se nazývá sílení tepla z jenoho pohybujícího se prostřeí (kapaliny nebo plynu) k ruhému, které jsou oěleny stěnou jenouchou nebo vrstvenou libovolného tvaru. Prostup tepla zahrnuje přestup tepla z teplejší tekutiny na stěnu, veení tepla ve stěně a přestup tepla ze stěny o chlanější tekutiny pohybujícího se prostřeí. [3].3. Prostup tepla válcovou stěnou Sleujeme prostup tepla stejnoroou trubkou se stálým součinitelem tepelné voivosti.

22 UT ve Zlíně, Fakulta aplikované informatiky, 009 Obr. 3 Prostup tepla válcovou stěnou (ke t a t jsou teploty prostřeí, α a α jsou součinitelé přestupu tepla na vnitřní a vnější straně trubky). (Obr. 3) Při ustáleném tepelném režimu bue množství tepla, které přechází z teplejšího prostřeí k povrchu trubky a prochází přes stěnu k chlanější tekutině, áno rovnicemi: ( ) ( ) ( ) ln t t q t t q t t q S S S S π α λ π π α (37) Rovnice přepíšeme o násleujícího tvaru: ln q t t q t t q t t l S l S S l S α π λ π α π (38) Sloučením rovnic ostaneme celkový teplotní spá + + ln q t t l α λ α π (39) Otu pak

23 UT ve Zlíně, Fakulta aplikované informatiky, ( ) ln t t q l + + α λ α π (40) Označíme-li ln k l + + α λ α π (4) Pak s použitím rovnic můžeme psát: ( ) t t k q l l (4) Veličina k l se nazývá lineární součinitel prostupu tepla. Charakterizuje intenzitu sílení tepla z jené prouící tekutiny o ruhé přes rozělující je stěnu. Veličina k l přestavuje množství tepla, které prochází přes stěnu louhou m za jenotku času z jenoho prostřeí o ruhého při teplotním rozílu C. U válcové stěny složené z n vrstev platí pro lineární hustotu tepelného toku rovnice ( ) ln n n i i i i l t t q α λ α π (43) [][3]

24 UT ve Zlíně, Fakulta aplikované informatiky, VÝMĚNÍKY TEPL Výměníky tepla jsou aparáty určené k tomu, aby se v nich přeávalo teplo z jené látky o ruhé. Dělí se na rekuperátory a regenerátory. Rekuperátor je ruh výměníku, ve kterém se přeává teplo mezi věma tekutinami oělenými o sebe přepážkou. Regenerátory jsou ruhy výměníků, o nichž se přivee nejprve jena tekutina, která aparát vyhřeje nebo naopak ochlaí, a pak ruhá tekutina, která se při styku se stěnami výměníku zahřívá nebo chlaí. Ve zbývající části buou popisovány pouze rekuperátory. Obr. 4 Výměníky tepla. a schematické uspořáání prouů, b plášťové trubky, c vouchoý svazkový výměník s překážkami Rekuperátory lze v zásaě jenouše tříit pole relativního směru prouění obou tekutin. Hovoříme pak o výměnících s paralelním tokem, s křížovým tokem a se smíšeným tokem (Obr. 4). Výměníky s paralelním tokem mohou být souproué, jestliže tekutiny prouí stejným směrem a protiproué, prouí-li protisměrně. [4]

25 UT ve Zlíně, Fakulta aplikované informatiky, Konstrukční proveení trubkových výměníků Obr. 5 Výměníky tepla. a trubka v trubce, b svazkový výměník Trubkové výměníky se většinou konstruují jako celosvařované a nerozebíratelné. Válcový nerezový plášť obepíná soustavu teplosměnných trubek z nerezové oceli. Výměník tepla trubkový (svazkový) Trubkové výměníky tepla jsou univerzálně použitelné, poku je o rozmezí tlaků a teplot a použitá méia. S ohleem k různým teplotám mezi vnitřními trubkami a pláštěm (tj. teplotním spáem) se rozlišují va hlavní typy trubkových výměníků. Výměník s pevným svazkem trubek, u kterého jsou trubky svařeny nebo nalisovány o trubkovnic. Výměník s plovoucí hlavou, která vyrovnává rozílné teplotní roztažnosti vnitřní trubky a pláště. Výměník tepla typu trubka v trubce Výměník je vhoný pro malé průtoky látek. Cena m je postatně vyšší než u jiných typů výměníků, proto se používá omezeně. Jeho uplatnění je hlavně pro vysoké tlaky, přičemž méium o vysokém tlaku je veeno vnitřní trubkou. [6]. Tepelné bilance výměníků s paralelním tokem tekutin Přepokláejme okonale izolovaný výměník, ve kterém nejsou zroje tepla, a teplejší tekutina přeává veškeré své teplo tekutině chlanější, tj. neochází ke ztrátám tepla o okolí. Toto lze vyjářit rovnicí p ( t t ) m c ( t t ) Q& m& c & (44) p

26 UT ve Zlíně, Fakulta aplikované informatiky, [3][4].. Souproué uspořáání toku tekutin V souprouém výměníku je směr prouění obou tekutin stejný. Poku neochází ke změně fáze, je teplota tekutiny závislá na vzálenosti poél plochy výměny tepla ve směru prouění tekutiny. Proto vymezíme ve výměníku elementární objem věma rovinami kolmými na směr prouění tekutin. Velikost plochy výměny tepla mezi tekutinami je S a je vymezena průsečíky obou rovin s přepážkou oělující tekutiny. Tok tepla o okolí zanebáváme. Obr. 6 Sílení tepla ve výměníku se souprouým uspořááním toku tekutin Přepoklááme-li, že honoty měrného tepla a součinitele prostupu tepla zůstávají poél výměníku konstantní, pak pro bilanci souprouého výměníku platí p ( t t ) m c ( t t ) Q& Q& m& c & (45) p

27 UT ve Zlíně, Fakulta aplikované informatiky, Pro určení střeního teplotního rozílu pro souprouý výměník uvažujeme průřez x, ke t přestavuje zmenšení teploty teplejší tekutiny a t zvětšení teploty stuenější tekutiny. Obr. 7 Ovození střeního teplotního rozílu pro souprouý výměník Teplotní tok elementární plochou S lze pak vyjářit vztahem a tepelná bilance souprouého výměníku je ( t t ) S Q & k (46) Q& m& c t m& p c p t (47) Rozložením bilančního vztahu získáme rovnice t Q& m& c p (48) t Q& m & c p (49) Sečtením těchto vou rovnic ostane vztah t t m& m& c c p p ( t t ) + m& + m& c c p p Q& k ( t t ) S (50)

28 UT ve Zlíně, Fakulta aplikované informatiky, Rovnici poté upravíme o tvaru ( t t ) ( t t ) ( Δt X ) ( Δt ) X M k S Přepoklááme, že k a M jsou konstanty, pak integrací rovnice ostaneme Δt X Δt ( Δt ) Δt X X M k 0 S S (5) (5) t X Δ ln M k S (53) Δt a Δt X Δt e M ks (54) Tento vztah nám vyjařuje rozíl teplot v uvažovaném průřezu. Z rovnice také vyplývá, že tento rozíl se mění poél činné plochy výměníku exponenciálně a to v závislosti na měrných tepelných tocích obou prostřeí, součiniteli prostupu tepla k vzálenosti o vstupního okraje prostřeí. Známe-li teplotní rozíl výměníku v uvažovaném průřezu, můžeme již určit rovnici pro celou plochu výměníku. Provee integraci rovnice (5) pro meze opovíající celé ploše výměníku a Δt Δt ( Δt) Δt M k 0 S S (55) Δt ln M k S (56) Δt Δt Δt e M ks (57) Integrací vztahu (50) ostaneme rozmezí teplotních rozílů o Δ t o Δt Δt Δt ( Δt) M Δt Δt Q& 0 M Q& Q (58) (59) Vyělením rovnice (59) rovnicí (56) ostáváme výslený vztah pro určení logaritmického střeu rozílu teplot

29 UT ve Zlíně, Fakulta aplikované informatiky, Δ t Δt Δt ln Δt Q& k S Δ t ls (60) Se znalostí střeního teplotního rozílu, lze pro výpočet toku tepla v trubce použít vztah Q& k L Δ L t ls (6) ke za L se v přípaě svazkového výměníku osazuje élka všech trubek ohromay. [][4].. Protiprouý výměník V protiprouém výměníku prouí obě tekutiny proti sobě. Obr. 8 Sílení tepla ve výměníku s protiprouým uspořááním toku tekutin Vzájemný průtok teplot poél stěny výměníku je znázorněn na násleujícím obrázku Obr. 9 Ovození střeního teplotního rozílu pro protiprouý výměník Rovnice pro výpočet střeního logaritmického teplotního rozílu pro protiprou jsou stejné jako u souprouu. Musíme si pouze ávat pozor, abychom správně osaili teploty (viz Obr. 9). Pak platí

30 UT ve Zlíně, Fakulta aplikované informatiky, [][4] Δt Δt ( t t ) ( t t ) Δ tls (6) Δt t t ln Δt ln t t..3 Výměník tepla při varu a konenzaci Často se také setkáváme s výměníky, ky nastává změna fáze, tj. ochází ke změně skupenství (konenzace nebo opaření jené látky). Pro tento přípa ke teplotní průběh zobrazen na (Obr. 0). a) b) c) Obr. 0 Průběh teplotních křivek poél stěny výměníku. a při varu jenoho prostřeí, b při konenzaci v jenom z prostřeí, c při výměně tepla mezi konenzujícími parami a vroucí kapalinou Při změně skupenství platí pro výpočet tepelného toku vztah Q& m& Δ h k (63) Konenzátor je tepelný výměník pro chlazení páry a její přeměnu na kapalinu (konenzát). Konenzátor se prakticky neliší o výměníku tepla. Nejčastěji se konstruuje jako trubkový výměník nebo vzuchový chlaič. Nejčastější využití je v chemických procesech a ve strojovnách parních elektráren. Obvyklými chlaicími méii jsou voa nebo vzuch. V konenzátoru ochází k přeání konenzačního tepla páry za konstantní teploty a tlaku. Konenzátor v parních elektrárnách umožňuje proloužit expanzi páry v turbíně až o relativně hlubokého vakua, což vee ke zvýšení tepelné účinnosti parního cyklu (napříkla oproti parnímu stroji s otevřeným cyklem, který páru přímo vyfukuje o atmosféry). Chlaicí voa nebo vzuch pak ováí velké množství nízkopotenciálního tepla, které není ále rozumně využitelné.

31 UT ve Zlíně, Fakulta aplikované informatiky, Výparník je výměník tepla pro úplné nebo částečné opaření (vypaření) kapaliny. Použije-li se pro ohřev voní pára nebo horké proukty, pak se nejčastěji konstruuje jako trubkový výměník tepla. Rozlišujeme výparníky s volnou a nucenou cirkulací. [3][6][4]..4 Kotelní kámen Kotelní kámen je směs minerálů, které se vylučují ve formě pevného povlaku na stěnách náoby, v níž ochází k varu tvré voy. Velkým problémem je zvláště u kotlů s otevřeným oběhem voy. Kotelní kámen má velmi malou tepelnou voivost, a proto snižuje účinnost kotlů. Jeho usazení ve větších vrstvách je navíc nebezpečné, protože může ojít k neostatečnému nebo nerovnoměrnému ochlazování kotlové stěny voou a tím jejímu vyhřátí nebo prasknutí a náslené explozi kotle. Havarijní stav se projevuje sníženou účinností ohřevu voy, provoz kotle je často provázen nestanarními zvukovými projevy (praskání, bouchání, silné hučení). Voní kámen je pevný povlak, který se usazuje na stěnách náob, v nichž je přechovávána, veena nebo přeevším zahřívána a poté ochlazována tvrá voa, jejíž teplota neosahuje 00 C. Záklaní složkou voního kamene je obvykle uhličitan vápenatý. Tvorba voního kamene je způsobena změnou rovnováhy mezi ionty kyseliny uhličité a hyroxiu vápenatého při změně teploty a jejich vyloučením z voy. [4]

32 UT ve Zlíně, Fakulta aplikované informatiky, POPIS PROGRMU MTL MTL je integrované prostřeí pro věeckotechnické výpočty, moelování, návrhy algoritmů, simulace, analýzu a prezentaci at, měření a zpracování signálů, návrhy říicích komunikačních systémů. Výpočetní systém MTL se během uplynulých let stal celosvětovým stanarem v oblasti výpočtů a simulací nejen ve sféře věy, výzkumu a průmyslu, ale i v oblasti vzělávání. [0] 3. Pracovní plocha Po spuštění MTLu se objeví násleující ialogové okno, které přestavuje pracovní plochu Obr. Pracovní plocha po spuštění MTLu (verze 6.5) Tato plocha se stanarně skláá ze tří menších oken: Okno Comman Winows je hlavní a nejůležitější částí pracovní plochy. Tay zapisuje uživatel své příkazy a povely, ze je viět oezva MTLu a ze se zobrazují

33 UT ve Zlíně, Fakulta aplikované informatiky, systémová hlášení. Toto okno si můžeme přestavit jako chytrou kalkulačku s mnoha funkcemi a možnostmi. V oknu Comman History se zobrazují všechny příkazy a povely, zapsané a potvrzené uživatelem v hlavním okně Comman Winows. Je-li potřeba již jenou zapsaný příkaz znova použít, stačí jej v tomto okně nalistovat a poklepáním znovu aktivovat či jej přetáhnout myší o hlavního okna. Totéž je však možné v hlavním okně pomocí kurzorových šipek nahoru a olů. Okno Workspace bue při prvním spuštění prázné. Při používání proměnných v hlavním okně bue v tomto okénku přehle všech vámi použitých proměnných. Poklepete-li na symbol některé proměnné, zobrazí se etailní informace o ní (rozměr, struktura, honota, apo.). To je užitečné zejména při používání většího množství proměnných pro uržení přehleu. Okno Current Directory ukazuje seznam souborů v aktuální složce (aresáři). Příkazový řáek Current Directory (aktuální složka) je umístěn těsně na hlavním oknem (Comman History). Je možné ji změnit pole potřeby. Implicitní nastavení je o složky \MTL6p5\work, kam MTL přepokláá umístění výsleků vaší práce. [] 3. M-soubory Soubory s příponou *.m jsou textové soubory, které slouží k zápisu posloupnosti příkazů MTLu a jejich uložení např. na isk. Jsou tey zrojovým kóem, který umí MTL vykonat.

34 UT ve Zlíně, Fakulta aplikované informatiky, Obr. M-soubor s ukázkou sekvence příkazů M-soubory ělíme o vou skupin na skripty a funkce. Skript je M-soubor, který obsahuje sekvenci volaných příkazů a funkcí tak, jak bychom je zaávali postupně o Comman Winows MTLu. Funkce je M-soubor, který začíná klíčovým slovem function a její název je stejný jako název M-souboru. Funkce má vůči skriptu mnoho výho. Při zavolání se zpracuje a zkompiluje celá najenou. Může mít vstupní a výstupní parametry. Proměnné funkce se ukláají o pracovního prostoru této funkce a jsou tak chráněny proti zásahu z jiných funkcí, skriptů či Comman Winows. Po ukončení funkce se tyto lokální proměnné ostraní z paměti. [0][]

35 UT ve Zlíně, Fakulta aplikované informatiky, II. PRKTICKÁ ČÁST

36 UT ve Zlíně, Fakulta aplikované informatiky, S využitím teoretických znalostí jsem sestavil softwarovou aplikaci pro entalpickou bilanci trubkových výměníků a provel vzorový výpočet pro přípa protiprouého svazkového výměníku tepla, abych ověřil správnou funkčnost vytvořené softwarové aplikace. K výpočtu jsem použil vztahy, které jsem uvel v teoretické části práce.

37 UT ve Zlíně, Fakulta aplikované informatiky, ŘEŠENÍ VZOROVÉHO PŘÍKLDU ceton o průtoku kg.s - se přiváí o protiprouého svazkového výměníku tepla, ve kterém se ohřívá voou z teploty 0 C na teplotu 50 C. Výměník se skláá z 0 trubek o vnitřním průměru 3,5 cm a tloušťce stěny 0,5 cm. ceton protéká vnitřními trubkami. Všechny trubky jsou vyrobeny z litiny. Voa o průtoku,4 kg.s - protéká mezitrubkovým prostorem. Voa má na vstupu o výměníku teplotu 65 C. Délka výměníku je,86 m. Vypočítejte: - součinitel přestupu tepla pro vou i aceton - součinitele prostupu tepla - součinitele prostupu tepla, vytvoří-li se na straně voy voní kámen o tloušťce mm - vliv tvorby voního kamene na výkon výměníku. Výpočet příklau Obr. 3 Entalpická bilance výměníku Obr. 4 Rozměry výměníku Pro potřeby výpočtu jsem vou označil jako kapalinu, aceton jako kapalinu. Tomuto označení opovíají i inexy.

38 UT ve Zlíně, Fakulta aplikované informatiky, Nejprve je potřeba opočítat neznámou teplotu t. Pro jeho zjištění jsem použil vztahy pro entalpickou bilanci trubkových výměníků. Platí ( t t ) 03.95( 50 0) 668, W Q & m c 5 (64) Q& m t m c ( t t ) c t m c Q&, ,5 53,706 C,4 480 (65) ke 480J. kg. K, c c 03,95J. kg. K Výpočet součinitele přestupu tepla na straně voy (kapalina ): Určil jsem stření teplotu kapaliny, pole které jsem ohleal v tabulce parametry ,706 t str 59, 3508 C (66) pak tabulkové honoty pro t str jsou 3 hustota 983,kg. m, ρ 7 kinetická viskozita 4,77.0 m. s, υ koeficient tepelné voivosti λ 0,66W. m. K π ( n ) ( 0, 0 0,0386 ) 0, m π S (67) Jená se o mezitrubkový prostor, proto je pro alší výpočty potřeba vypočítat ekvivalentní průměr ekv 4 S n 0, 0 0, ekv 0, 04833m (68) o + n 0, + 00, v m 0,073m. ρ S 983, 0,0974 s,4 (69) Pr c η λ c ρ υ λ 983, 4, ,66 7,970 (70) v ekv 0,0730,04833 Re 6486,05 7 υ 4,77 0 (7)

39 UT ve Zlíně, Fakulta aplikované informatiky, jená se o přechonou oblast prouění, pro kterou platí výpočet Nusseltova kritéria použil vztah (3) Nu 300 < Re < 0 [ ] [ ] 3 38, 043 0,6( Re / 3 5) Pr / 3 ( ) 3 + ekv / 3 / 3 ( 5),970 + ( 0,04833,86) L 0,6 6486,05 Součinitel přestupu tepla na straně voy (kapalina ) je 4. Proto jsem pro (7) Nu α λ Nu α λ 38,0430,66 585,8975W. m. K 0,04833 ekv ekv (73) Ukázka zrojového kóu: pom.etapom.ro*pom.vi; pom.tlg((pom.t-pom.tt)-(pom.t-pom.tt))/(log((pom.t- pom.tt)/(pom.t-pom.tt))); 3 pom.spi*pom.3^/4-pom.n*pi*pom.^/4; 4 pom.vpom.m/(pom.ro*pom.s); 5 pom.ekv(pom.3^-pom.n*pom.^)/(pom.3+pom.n*pom.); 6 pom.repom.v*pom.ekv/pom.vi; 7 pom.prpom.cp*pom.eta/pom.lam; 8 pom.pepom.re*pom.pr; 9 if pom.re<300 %laminarni proueni 0 pom.nu.86*(pom.pe*pom.ekv/pom.l)^(/3); en; if pom.re>0^4 %turbulentni proueni 3 pom.nu0.03*pom.re^0.8*pom.pr^0.4; 4 en; 5 if pom.re>300 & pom.re<0^4 %prechoova oblast 6 pom.nu0.6*(pom.re^(/3)- 5)*pom.pr^(/3)*(+(pom.ekv/pom.L)^(/3)); 7 en; 8 pom.alfapom.nu*pom.lam/pom.ekv; Výpočet součinitele přestupu tepla na straně acetonu (kapalina ): Určil jsem stření teplotu kapaliny, pole které jsem ohleal v tabulce parametry t str 35 C (74)

40 UT ve Zlíně, Fakulta aplikované informatiky, pak tabulkové honoty pro t str jsou 3 hustota 77,69kg. m, ρ 7 kinetická viskozita 3,577.0 m. s, υ koeficient tepelné voivosti λ 0,45W. m. K π π 0,035 S n 0 0, 0096m 4 4 (75) v m 0,3469m. ρ S 77,690,0096 s (76) Pr c η λ c ρ υ λ 77,693, ,95 0,45 7 4,956 (77) v 0,3469 0,035 Re 7 υ 3, ,9334 (78) jená se o turbulentní oblast prouění, pro kterou platí Nusseltova kritéria použil vztah (8) 4 Re > 0. Proto jsem pro výpočet Nu 0,8 0,03Re Pr 0,4 0,03378,9334 0,8 4,956 0,4 80,677 (79) Součinitel přestupu tepla na straně acetonu (kapalina ) je Nu α α λ Nu λ 80,677 0,45 0, ,337W. m. K (80) Výpočet součinitele prostupu tepla pro nový výměník: Vycházím-li z přepoklau, že se jená o nový (nezanesený výměník), pak k výpočtu využiji vztah (4) k l α 334,337 + λ M π ln + α π 0, ln + 0, , ,8975 0,0386 4,0776W. m. K (8)

41 UT ve Zlíně, Fakulta aplikované informatiky, ke λ M je součinitel tepelné voivosti trubky a pro litinu platí λ M 63W. m. K Výpočet výkonu nezaneseného výměníku: Nejprve vypočítám stření logaritmický rozíl teplot Δt Δt pak výkon výměníku je ls ls Δt Δt ( t t ) ( t t ) Δt ( t t ) ln ln Δt ( t t ) ( 65 50) ( 53,706 0) ( 65 50) ln ( 53,706 0) 3,08 C (8) Q& n n k L L Δtls 0 4,0776,86 3, , 4839W (83) Stanovení ochylky vypočtené honoty výkonu výměníku vztahu (64) a výkonu Q & určeného pole vztahu (83) n Q & z tepelné bilance pole Q& Q& n 6597, ,5 x 0,00 0,% Q & 668,5 (84) Je zřejmé, že oba výsleky se téměř shoují. Rozíl obou honot je způsoben matematickým zaokrouhlováním při výpočtu a osazováním tabulkových honot termoynamických at tekutin prouících ve výměníku. Výpočet součinitele prostupu tepla pro zanesený výměník: Upravím obrázek s rozměry výměníku (Obr. 4) a rozšířím ho o rozměry opovíající zanesení. Přepokláám, že zanesení ze strany acetonu je nulové, proto platí u. Zanesení ze strany voy je pak u + tlouštka nánosu 0, ,00 0, 0406m (85)

42 UT ve Zlíně, Fakulta aplikované informatiky, Obr. 5 Zanesený trubkový výměník Při zanesení výměníku přepokláám, že průtoky a teploty se nezměnily. Rozšířením vztahu (4) získám vztah pro vícevrstvý výměník, ke alší vrstvy přestavují voní kámen (zanesení). Platí k lz α u +,945W. m λ. K u ln u π + ln λ M π 0,0386 0, ln + ln + 334,337 0, ,035,7 0, ,89750, λ u ln u + α u (86) Ukázka zrojového kóu: 9 pom.klpi/(/(pom.aalfa*pom.u)+/(pom.alfa*pom.u)+log(pom./pom.)/(*pom.lamtrubky)+log(pom./pom.u)/(*pom.lamu)+log(pom.u /pom.)/(*pom.lamu)); pak výkon výměníku je Q& z n k Lz L Δtls 0,945,86 3,08 609, 3537W (87) Ukázka zrojového kóu: 0 pom.qqpom.kl*pom.n*pom.l*pom.tlg;

43 UT ve Zlíně, Fakulta aplikované informatiky, Srovnání náklaů na provoz nového a zaneseného výměníku Násleující výpočet prováím za přepoklau, že je stanoven požaavek na celkový výkon výměníku. Výkon nezaneseného výměníku pole vztahu (64) je Q& n 6597, 4839W Výkon zaneseného výměníku pole vztahu (83) je Q& z 609, 3537W Pro účinnost zaneseného výměníku vzhleem k nezanesenému výměníku platí Q& z 609,3537 η z 0,94 9,4% (88) Q& 6597,4839 n Množství přeaného tepla v nezaneseném výměníku za hoinu provozu jsem vypočítal jako Q n J 8 Q & n τ 6597, s,3750 J s (89) Množství přeaného tepla v zaneseném výměníku určím poobně Q z J 8 Q & z τ 609, s,647 0 J s (90) Pro osažení stejného množství přeaného tepla za obu hoiny je potřeba oat (,3750,647 0 ) J J,030 J Q Q Q (9) n z Ekonomická bilance: Uvažujeme cenu kwh elektrické energie 5,5Kč. 6 kwh opovíá 3,6 0 J xkwh opovíá,030 6 J pak platí 6,030 J 5,847kWh (9) 3,60 J x 6 Otu můžeme již snano určit o kolik vzrostou náklay za hoinu provozu (N h ) Kč N h 5,847kWh 5,5 3,94Kč (93) kwh

44 UT ve Zlíně, Fakulta aplikované informatiky, POPIS OVLÁDÁNÍ PLIKCE Program pro entalpickou bilanci trubkových výměníků jsem vytvořil pomocí programu MTL 6.5. Pro poholné ovláání jsem použil grafické uživatelské rozhraní. Jenotlivé ovláací prvky jsou vykresleny o okna figure. Celý program se spouští souborem Program.m. Nejprve jsou eklarovány veškeré použité proměnné. K tomu je využita struktura, íky čemuž se velice zjenoušuje volání při používání vstupních a výstupních parametrů funkcí. Po výběru se volá aná funkce, ke se přeávají parametry pro pozici eitovatelných buněk a honoty proměnných. Program lze ukončit pouze pomocí ukončovací funkce, ke se zároveň vymažou veškeré proměnné a tím se uvolní paměťové místo. Po výběru typu výměníku je volána funkce _okno, která má na starost zobrazování a zaávání at. Zaávání honot je ve formě string. Po zaání at se volá funkce _vypocet, která mimo jiné prováí ověření zaání všech honot. V přípaě, že nebyly zaány všechny honoty nebo byly zaány špatně (např. při nechtěném zaání esetinné čárky místo požaované esetinné tečky), tak přeruší výpočet a zobrazí varovné okno s žáostí o nápravu. V přípaě správného zaání prováí převo čísla z textového o číselného tvaru (pomocí strnum). Dále vypočítá potřebné honoty až po Re. Ze pole typu prouění vypočítá Nu. Otu už jen opočítá součinitele přestupu tepla. Nakonec už jen opočítá součinitel prostupu tepla a výkon výměníku. Výslené honoty pak převee zpět o textové pooby (pomocí numstr). V této poobě jsou výsleky připravené k zobrazení. Ovláání aplikace Po spuštění aplikace se zobrazí úvoní okno (Obr. 6), ke se nachází záklaní ovláací menu. Po položkou Soubor je možnost výběru typu výměníku. Ukončení programu je možné pouze po kliknutí na Konec.

45 UT ve Zlíně, Fakulta aplikované informatiky, Obr. 6 Úvoní menu, které se objeví po spuštění programu Okna pro oba typy výměníků jsou prakticky totožná (Obr. 7). Je potřeba vyplnit všechny buňky. Program umí opočítat chybějící čtvrtou teplotu kapaliny. Samotný výpočet se provee kliknutím na Výpočet. Pro zobrazení všech výpočtů (Obr. 9) slouží tlačítko Mezivýpočty. Pro zavření okna slouží tlačítko Konec.

46 UT ve Zlíně, Fakulta aplikované informatiky, Obr. 7 Okno pro zaávání parametrů výměníku Obr. 8 Okno s výsleky výpočtu

47 UT ve Zlíně, Fakulta aplikované informatiky, Obr. 9 Okno mezivýpočtů

48 UT ve Zlíně, Fakulta aplikované informatiky, ZÁVĚR V bakalářské práci jsem se zabýval problematikou tepelné bilance výměníků s cílem sestavit softwarovou aplikaci pro výpočet entalpické bilance u rekuperačních trubkových výměníků s paralelním tokem tekutin. V teoretické části této práce jsem se proto seznámil s výpočtem tepelných ztrát prostupem a s výpočtem součinitele prostupu tepla jenouchou i vícevrstvou válcovou stěnou. Za tímto účelem jsem prostuoval a popsal mechanismus sílení tepla veením válcovou stěnou a přestup tepla mezi povrchem válcové stěny a tekutinou, která jej obtéká. Kombinace těchto mechanismů sílení tepla mi umožnila popsat sílení tepla prostupem jenouchou i vícevrstvou válcovou stěnou. Porobně jsem se zaměřil na problematiku určení součinitele přestupu tepla pro přípa nucené konvekce. Pro jeho výpočet jsem v literatuře vyhleal kritéria poobnosti, která lze pro aný přípa použít. Dále jsem popsal konstrukci a princip činnosti rekuperačních trubkových výměníků tepla. Provel jsem entalpickou bilanci trubkového výměníku tepla pro přípa souprouého a protiprouého uspořáání a popsal jsem vliv tvorby kotelního kamene na účinnost výměníku. Matematické vztahy, které jsem uvel v teoretické části práce, mi násleně umožnily sestavit interaktivní softwarovou aplikaci pro výpočet tepelného toku stěnou tepelného výměníku typu trubka a svazkového výměníku, která usnaní poměrně komplikované výpočty a umožní získat potřebné úaje v krátkém časovém intervalu. Pro vytvoření aplikace jsem použil program MTL, který přestavuje vhoné integrované prostřeí pro věeckotechnické výpočty, moelování, návrhy algoritmů, simulace, analýzu a prezentaci at. Funkčnost aplikace jsem ověřil porovnáním s teoretickým výpočtem vzorového příklau pro určení součinitele prostupu tepla a výkonu výměníku. Získané honoty jsem porovnal s přípaem, ky byl výměník zanesen kotelním kamenem. Výpočet potvril, že nános kotelního kamene na stěnách výměníku způsobí snížení součinitele prostupu tepla uvnitř výměníku, což se výrazně projeví snížením výkonnosti a tím i účinnosti zařízení. Za přepoklau, že je stanoven požaavek na celkový výkon výměníku, proto oje ke zvýšení náklaů na jeho provoz.

49 UT ve Zlíně, Fakulta aplikované informatiky, ZÁVĚR V NGLIČTINĚ In my bachelor thesis I was concerne with the issue about the heating balance of exchangers in orer to create a software application to calculate an enthalpy balance for recuperative tube heat exchangers with parallel flow of fluis. In the theoretical part of the thesis, I calculate the heat losses by penetration an a coefficient of heat penetration through an elementary an also a multi-layer cylinrical wall. I stuie an escribe the mechanism of heat sharing by conucting through the cylinrical wall an heat transfer between a circumference of cylinrical wall an a runaroune flui. With a combination of these heat sharing mechanisms, I coul escribe a heat sharing with a penetration through elementary an also multi-layer cylinrical wall. In etail, I focuse on an issue of etermination of coefficient of heat penetration for case of force convection. For the calculation, I foun in the literature some useful criterions of conformity for this given event. Further, I escribe the structure an the principle of function of recuperative tube heat exchangers. I also i the enthalpy balance of tube heat exchanger for case of a uniflow an counterflow settlement an I escribe the effect of furstone formation on heat exchanger effectiveness. Mathematical relations liste in the theoretical part of this thesis were useful for the creation of an interactive software application for the calculation of heat flux through a wall of tube heat exchanger an bunle exchanger. This application will facilitate relatively complicate calculations an it will make possible to receive neee information uring short time. To create the application I use a computer program MTL which is suitable for scientific-technical calculations, moeling, algorithm concepts, simulations, analyses an ata presentation. The functionality of these applications was atteste by comparison with a theoretical calculation of a pattern example to etermine the coefficient of heat penetration an the effort of the heat exchanger. The collecte ata was compare with an example from a blocke exchanger with furstone. The calculation confirme that the furstone layer on the exchanger walls ecreases the coefficient of heat penetration insie of the heat exchanger. It efinitely expresse the ecrease of efficiency an effectiveness of the facilities. ssuming that the eman for the general effort of heat exchanger is specifie, the charges for its service will increase.

50 UT ve Zlíně, Fakulta aplikované informatiky, SEZNM POUŽITÉ LITERTURY [] PŘÍHOD, Miroslav, RÉDR, Miroslav. Sílení tepla a prouění.. vy. Ostrava : VŠ Technická univerzita Ostrava, s. ISN [] SEDLÁŘ, Jaroslav, MCHÁČKOVÁ, lena. Procesy a aparáty.. vy. rno : Vysoké učení technické v rně, s. [3] KOLOMZNÍK, Karel, et al. Teorie technologických procesů III.. vy. rno : Vysoké učení technické v brně, s. [4] MÍK, Vlaimír. Záklay chemického inženýrství. Praha : SNTL - Naklaatelství technické literatury, s. [5] MÍK, Vlaimír, et al. Příklay a úlohy z chemického inženýrství I. a II. íl. st e. Praha : Vyavatelství VŠCHT, p. ISN [6] GRUHN, G., FRTZSCHER, W., HEIDENREICH, E. Chemické inženýrství : Oborové encyklopeie. Praha : SNTL - Naklaatelství technické literatury, s. ISN [7] ŠNIT, D. Chemické inženýrství I.. vy. Praha : Vysoká škola chemicko-technologická v Praze, 006. ISN [8] PERRY, R., H.; GREEN, D., W. Perry s chemical engineers hanbook. (CD ROM). 7 th e. New York: McGraw-Hill ook Co [9] KRN, Pavel. Matlab a Simulink. rno : Computer Press, a.s., s. ISN [0] PERŮTK, Karel. MTL Záklay pro stuenty automatizace a informačních technologií..vy. Zlín : Univerzita Tomáše ati ve Zlíně, s. ISN [] ZPLTÍLEK, Karel, DOŇR, ohuslav. MTL pro začátečník..vy. Praha : EN technická literatura, s. ISN [] ŠESTÁK, Jiří, RIEGER, František. Přenos hybnosti, tepla a hmoty. 3. vy. Praha : Naklaatelství ČVUT, s. ISN [3] ŠESTÁK, Jiří, ŽITNÝ, Ruolf. Tepelné pochoy II : Výměníky tepla, opařování, sušení, průmyslové pece a elektrický ohřev.. vy. Praha : Naklaatelství ČVUT, s. ISN

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

Kondenzace brýdové páry ze sušení biomasy

Kondenzace brýdové páry ze sušení biomasy Kondenzace brýdové páry ze sušení biomasy Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika * Email:

Více

STAD. Vyvažovací ventily ENGINEERING ADVANTAGE

STAD. Vyvažovací ventily ENGINEERING ADVANTAGE Vyvažovací ventily STAD Vyvažovací ventily Uržování tlaku & Kvalita voy Vyvažování & Regulace Termostatická regulace ENGINEERING ADVANTAGE Vyvažovací ventil STAD umožňuje přesné hyronické vyvážení v širokém

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

2.2.6 Tepelné izolace

2.2.6 Tepelné izolace ..6 Tepelné izolace Přepoklay: 5 Pomůcky: le, talířek, va mikrotenové pytlíky, Opakování z minulé hoiny: Vnitřní energie se přenáší třemi způsoby: veení prouění záření Př. 1: Máme va stejné kousky leu.

Více

Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy

Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2 PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 5

PROCESNÍ INŽENÝRSTVÍ cvičení 5 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 5 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU F. Dušek, D. Honc Katera řízení procesů, Fakulta elektrotechniky a informatiky, Univerzita Parubice Abstrakt Článek se zabývá sestavením nelineárního ynamického moelu

Více

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ

MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Simulace buov a techniky prostřeí 21 6. konference IBPSA-CZ Praha, 8. a 9. 11. 21 MODELOVÁNÍ TLAKOVÝCH ZTRÁT KAPILÁRNÍCH ROHOŽÍ Vlaimír Zmrhal, Tomáš Matuška, Jan Schwarzer Ústav techniky prostřeí, Fakulta

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Termodynamické zákony

Termodynamické zákony ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

F (x, h(x)) T (g)(x) = g(x)

F (x, h(x)) T (g)(x) = g(x) 11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Tlakové ztráty kapilárních rohoží CFD simulace (část 2)

Tlakové ztráty kapilárních rohoží CFD simulace (část 2) Počítačo vá simulace CF Computational Simulation CF oc. Ing. Vlaimír ZMRHAL, Ph.. ČVUT v Praze, Fakulta strojní Ústav techniky prostřeí Tlakové ztráty kapilárních rohoží CF simulace (část 2) Pressure Losses

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

PROCESY V TECHNICE BUDOV 12

PROCESY V TECHNICE BUDOV 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice...

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice... Obsah Převoy válečkovými řetězy Válečkové řetězy... 4 Válečkové řetězy nerezové... 10 Řetězová kola SPECIÁ... 11 Řetězová kola... 18 Řetězová kola litinová...55 Řetězová kola napínací a pro opravní pásy...59

Více

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem

Varianta A. Příklad 1 (25 bodů) Funkce f je dána předpisem Příkla 1 (5 boů) Funkce f je ána přepise Přijíací zkouška na navazující agisterské stuiu 14 Stuijní progra Fyzika obor Učitelství fyziky ateatiky pro stření školy Stuijní progra Učitelství pro záklaní

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ

Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Tento článek je věnován odborné stáži, která vznikla v rámci projektu MSEK Partnerství v oblasti energetiky. 1. ÚVOD Projekt MSEK Partnerství v oblasti energetiky

Více

Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu

Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PO III. Zpracoval: Pavel Hoffman Datum: 10/00 1. Zadané hodnoty oztok proudící

Více

PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice

PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice Rok / Year: Svazek / Volume: Číslo / Number: 014 16 PM generátory s různým počtem pólů a typem vinutí pro použití v manipulační technice PM Generators with Different Number of Poles an Wining Types for

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku

WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním balíčku Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A][F] WP13: Aerodynamika motorového prostoru a chlazení: AV/T/EV pro SVA priority [A] [F] Vedoucí konsorcia podílející se na pracovním

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

KP1 2. úloha / 2. část

KP1 2. úloha / 2. část KP1 2. úloha / 2. část Konzultace příš7 týen opaají L - v ponělí 19.3. jsem v zahraničí - střea pátek jsem nakonferenci + jenání v Břeclavi Omlouvám se. Úloha 2: Návrh konstrukčních systémů 1x A3, 1:200

Více

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

Vlastnosti konstrukcí. Součinitel prostupu tepla

Vlastnosti konstrukcí. Součinitel prostupu tepla Vlastnosti konstrukcí Součinitel prostupu tepla U = 1 si se = Požaavky ČSN 730540-2: závisí na vnitřní H a na převažující vnitřní návrhové teplotě: o 60 % na 60 % o 18 o 22 C jiný rozsah teplot U U N Požaavky

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN. KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b.

KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN. KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b. KOPYROLÝZA HNĚDÉHO UHLÍ A ŘEPKOVÝCH POKRUTIN KAREL CIAHOTNÝ a, JAROSLAV KUSÝ b, LUCIE KOLÁŘOVÁ a, MARCELA ŠAFÁŘOVÁ b a LUKÁŠ ANDĚL b a Ústav plynárenství, koksochemie a ochrany ovzuší, FTOP, Vysoká škola

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list

VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_24_MA_2.04_Množiny ve slovních úlohách pracovní list Název školy Stření oborná škola a Stření oborné učiliště, Hustopeče, Masarykovo

Více

Kuličkové šrouby a matice - ekonomické

Kuličkové šrouby a matice - ekonomické Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením). 10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

26.1 UŽITÍ KONDENZÁTORŮ 26.2 KAPACITA

26.1 UŽITÍ KONDENZÁTORŮ 26.2 KAPACITA 26 Kapacita SreËnÌ p Ìhoa BÏhem komorovè fibrilace, ËastÈho typu sreënìho z chvatu, p estanou sreënì komory pumpovat krev, protoûe stahy a uvolnïnì jejich svalov ch vl ken p estanou b t koorinov ny. Pacienta

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU

VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad VLIV OKRAJOVÝCH PODMÍNEK NA VÝSLEDEK ZKOUŠKY TEPELNÉHO VÝKONU SOLÁRNÍHO KOLEKTORU Bořivoj Šourek,

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

VF vedení. λ /10. U min. Obr.1.Stojaté vlnění na vedení

VF vedení. λ /10. U min. Obr.1.Stojaté vlnění na vedení VF veení Rozělení Nejříve si položíme otázku, ky se stává z běžného voiče veení. Opověď rozělme na vě části. V analogových obvoech, poku je élka voiče srovnatelná s vlnovou élkou nebo větší, můžeme v prvním

Více

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav

Více

Teorie přenosu tepla Deskové výměníky tepla

Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I. INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM

Více

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky -

Centrum kompetence automobilového průmyslu Josefa Božka - AutoSympo a Kolokvium Božek 2. a , Roztoky - Popis obsahu balíčku WP13: Aerodynamika motorového prostoru a chlazení WP13: Aerodynamika motorového prostoru a chlazení Vedoucí konsorcia podílející se na pracovním balíčku České vysoké učení technické

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení KEE / MS Moelování elektrických sítí Přenáška Moelování elektrických veení Moelování elektrických veení Různý přístup pro veení: Venkovní Kabelová Různý přístup pro veení: Krátká (vzhleem k vlnové élce)

Více

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ 4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické

Více

Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,

Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická

Více

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

CX51MC MODULAČNÍ PROGRAMOVATELNÝ REGULÁTOR

CX51MC MODULAČNÍ PROGRAMOVATELNÝ REGULÁTOR X51M MODULAČNÍ OVATELNÝ REGULÁTOR UŽIVATELSKÁ PŘÍRUČKA Programovatelný regulátor s mnoha nastavitelnými a zobrazitelnými parametry určený pro optimální řízení topného zařízení s moulací výkonu. OpenTherm

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Metodika pro vyjádření cílové hodnoty obsahu hotově balených výrobků deklarovaných dle objemu

Metodika pro vyjádření cílové hodnoty obsahu hotově balených výrobků deklarovaných dle objemu Metoika pro vyjáření cílové honoty obsahu hotově balených výrobků eklarovaných le objemu Číslo úkolu: VII/1/17 Název úkolu: Zpracování metoiky pro určení cílové honoty obsahu při výrobě hotově balených

Více

1/58 Solární soustavy

1/58 Solární soustavy 1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky

Více

Základy chemických technologií

Základy chemických technologií 6. Přednáška Výměníky tepla Odpařování, odparky Výměníky tepla: zařízení, které slouží k výměně tepla mezi dvěma fázemi ( obvykle kapalné) z tepejší se teplo odebírá do studenější se převádí technologické

Více

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš

Více

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více