Využití analýzy odchylek při hodnocení ziskovosti finančních institucí

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Využití analýzy odchylek při hodnocení ziskovosti finančních institucí"

Transkript

1 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 Využtí nlýzy odchylek př hodnocení zskovost fnnčních nsttucí Dn Foršková, Dgmr Rchtrová 1 Abstrkt Cílem příspěvku je ověřt využtí nlýzy odchylek zvoleného zskového krtér u fnnčních nsttucí. V příspěvku bude nejprve defnován ukztel ROE jeho význm př hodnocení bnk. Dále bude proveden pyrmdový rozkld tohoto ukztele objsněny metody nlýzy odchylek. V plkční část bude pomocí funkconální metody proveden nlýz odchylek ukztele ROE vybrné fnnční nsttuce. V závěru bude provedeno zhodnocení vlvů dílčích ukztelů n vrcholový ukztel ROE. Klíčová slov Hodnocení bnk, rentblt vlstního kptálu, pyrmdový rozkld, nlýz odchylek 1. Úvod Bnk jko jeden z nejvýznmnějších druhů fnnčních zprostředkovtelů ptří rovněž k podnktelským subjektům, které jsou zkládány z účelem zsku, le ke své čnnost musí získt bnkovní lcenc. Hospodření bnk je zcel specfcké rozdílné oprot jným podnktelským subjektům. Většn zdrojů, které bnk používá ke své podnktelské čnnost, je tvořen czím zdroj. Proto n zložení bnky jsou stnoven přísnější krtér vstup do bnkovnctví je regulován ze strny centrálních bnk. Závzky bnky vlstní kptál je zchycen n psvní strně blnce n prvé strně je zchycen mjetek. Blnce bnky je zrcdlovým obrzem blnce jných podnktelských subjektů. Součástí vlstního kptálu je tké výše zsku, kterého bnk v uvedeném období dosáhl. Velkost tohoto zsku je rozhodující pro určení výnosnost vlstního kptálu (ROE). Cílem příspěvku je ověřt využtí nlýzy odchylek ukztele rentblty vlstního kptálu u vybrné fnnční nsttuce nlyzovt vlvy, které působí n změnu vrcholového ukztele ROE. 2. Hodnocení zskovost bnk Bnk jko podnktelský subjekt sestvuje výsledek hospodření, který je prezentován v blnc výkzu zsku ztráty. Mez hlvní čnnost bnky ptří přjímání vkldů, které jsou součást psv bnky, poskytování úvěrů, které se ncházejí v ktvech bnky, tvorb bezhotovostních peněz uskutečňování bezhotovostního pltebního styku, jež jsou součástí výkzu zsku ztráty. Všechny tyto čnnost mjí význmný dopd n úroveň zsku, npř. méně rzkové nvestce snžují výnos, neúměrné snížení reálné hodnoty ktv může vést k předlužení potížím bnky, krytí dlouhodobých pohledávek krátkodobým zdroj může ohrozt budoucí lkvdtu bnky. Cílem mngementu bnky je proto řízení ktv psv tk, 1 Ing. Dn Foršková,Ph.D., Ing. Dgmr Rchtrová, Ph.D., VŠB-TU Ostrv, Ekonomcká fkult, Sokolská tříd 33, Ostrv, eml: vsb.cz, Tento příspěvek vznkl v rámc řešení projektu podporovného Grntovou genturou České republky č. 402/08/1234.

2 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 by bylo dosženo mmálního zsku př stávjící úrovn rzk. N tvorbu zsku má vlv celá řd fktorů, které můžeme rozdělt n ovlvntelné (orentce n určtou klentelu, tvorb portfol ktv td.) neovlvntelné (vývoj úrokových szeb n mezbnkovním trhu, nflce, konkurence trhu, legsltvní podmínky dlší). Zsk bnky je tké ovlvněn různým rzky, npř. úvěrovým, tržním, operčním obchodním, td. Hodnocení zskovost se provádí dvěm způsoby to globálně, př kterém se vyhodnocuje strtege lokce kptálu podle druhu rzk nebo lokálně, př kterém se ohodnocuje jednotlvý bnkovní produkt nebo obchod. 2.1 Výnosnost kptálu (Return on Equty, ROE) Cílem bnky, jko podnktelského subjektu, je tk jk u jných podnktelských subjektů generovt zsk kconáře bnky zjímá, jk mngement bnky dovede zhodnott svěřené prostředky. Pokud se sleduje jenom hodnot čstého zsku, bez uvedení všech souvslostí, tk nezískáme vypovídcí schopnost (npř. neumožňuje nám porovnání výsledku bnky v čse, n porovnání mez bnkm) o efektvtě dné fnnční nsttuce. K získání všech těchto nformcí potřebujeme získt hodnoty ukztelů ROE výnosnost kptálu (Return on Equty) ROA- výnosnost ktv (Return on Assets). Čsto se používjí ukztele ROEA (Return on Averge Equty) ROAA (Return on Averge Assets). ROE se v bnce vypočítá jko podíl zsku po zdnění ke kptálu bnky pro kconáře tento ukztel vypovídá o tom, jk zhodnotl svoj nvestc vzhledem k podstoupenému rzku tkto vypočtenou hodnotu srovnávjí s lterntvním nvestčním příležtostm. Ukztel je nesouměřtelný s osttním bnkm, nelze ho použít n pro komprc bnk v odlšných ekonomkách. Hodnot ROE by měl být vyšší než výnos z dlouhodobých cenných ppírů. Tento ukztel v bnce nebere v úvhu spekulční fktor, tudíž se může stát, že bnk zvýší ROE tím, že zvýší svoj zdluženost. Proto je důležté zbývt se ukztelem ROA sledovt vzth mez ROE ROA, sledovt ob ukztele z pohledu vystvení se spekulčnímu rzku. EAT ROE =, (2.1) Equty kde EAT je čstý zsk Equty je vlstní kptál. 3. Anlýz odchylek Jedním z přístupů k nlýze odchylek je metod pyrmdového rozkldu. Pyrmdový rozkld umožňuje stnovt vzájemné vzby mez jednotlvým ukztel jko ucelenou soustvu dentfkovt tk vlv dílčích čntelů n vrcholový ukztel. Souvslost mez vrcholovým ukztelem dílčím ukztel lze vyjádřt pomocí funkce = f ( 1, 2 n ), která umožňuje kvntfkovt míru vlvu dílčích ukztelů jko příčnných fktorů n změnu zvoleného vrcholového ukztele. Odchylku vrcholového ukztele lze vyjádřt jko součet odchylek vybrných dílčích ukztelů, y =, (3.1) kde je nlyzovný ukztel, vysvětlující ukztel, y je přírůstek vlvu nlyzovného ukztele, je dílčí je vlv dílčího ukztele n nlyzovný ukztel. Změny hodnot ukztelů mohou být vyjádřeny pomocí reltvních bsolutních odchylek. Absolutní odchylk: =, (3.2) bs 1 0

3 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září reltvní odchylk: =. (3.3) rel 0 Pro rozkld se využívjí zprvdl dvě zákldní vzby, dtvní vzb, pokud = = n, (3.4) multplktvní vzb, je-l = =..., (3.5) n výjmečně se vyskytují eponencální vzby, j j n = 1 = 1. (3.6) Př dtvních vzbách jsou přímo souměřtelné bsolutní rozdíly čntelů. Vyčíslení vlvů je pro všechny metody stejné celková změn je rozdělen podle poměru změny ukztele k celkové změně ukztelů, = y, (3.7) přtom,0, resp. =., 1,0 je hodnot ukztele v době výchozí (nde 0) následné (nde 1),,1 Podle toho, jk je řešen multplktvní vzb, se rozlšují čtyř metody: metod postupných změn, metod rozkldu se zbytkem, logrtmcká metod rozkldu, funkconální metod rozkldu, jejch odvození lze njít npříkld v Zmeškl kol. (2004), Dluhošová (2008). U metody postupných změn je celková odchylk rozdělen mez dílčí vlvy. Obecně lze vlvy dílčích ukztelů vyčíslt pro jkoukolv řdu jko, y = j,0 j,1.. (3.8) j j Předností této metody je jednoduchost výpočtu bezezbytkový rozkld. Nevýhodou metody je, že velkost vlvů jednotlvých ukztelů je závslá n pořdí ukztelů. Pro svoj jednoduchost je tto metod v pr čsto využíván, le je vždy nutno zchovávt metodku pořdí ukztelů př různých nlýzách. Výhodou metody rozkldu se zbytkem je, že výsledky nejsou ovlvněny pořdím ukztelů. Problémem je estence zbytkové složky (R), kterou nelze jednoznčně nterpretovt přřdt jednotlvým vlvům. Metod je použtelná př výskytu mlého zbytku. Obecně pro lbovolný počet dílčích ukztelů lze vlv dného fktoru vyjádřt tkto, y R = j,0 +. (3.9) n j Logrtmcká metod je zložen n spojtém výnosu slouží k postžení vlvů změny dílčích ukztelů n změnu klíčového prmetru. Vlvy jednotlvých ukztelů jsou vyjádřeny následovně, ln I = y, (3.10) ln I kde 1 I = 0,1 I = jsou ndey nlyzovného dílčích ukztelů.,0

4 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 Výhodou metody je, že se mohou zkoumt vlvy dílčích ukztelů př součsné změně osttních vysvětlujících ukztelů, dále př rozkldu nevznká zbytek význm jednotlvých ukztelů není ovlvněn jejch pořdím. Jelkož se prcuje s logrtmem ndeu změny vysvětlujících ukztelů, musí být nde kldný. U funkconální metody se prcuje oprot logrtmcké metodě s dskrétním výnosy. Výhody jsou shodné s logrtmckou metodou, nvíc je odstrněn problém záporných ndeů ukztelů. Pro součn dvou dílčích ukztelů lze vlvy funkconální metody vyjádřt tkto, = 1 2, (3.11) 1 1 = R,, 1 + R 1 R 1 y 2 (3.12) R = R,, 2 + R 2 R 2 y 1 (3.13) R 2 kde R = je dskrétní výnos ukztele, R = je dskrétní výnos ukztele. 0,0 Obecně lze vlvy určt dle vzthu (3.14), = R R R R R R R y + + j + j k + j k m (3.14) R j 2 j k 3 j k m 4 k j k> j m> k Funkconální metodu lze povžovt z zobecněný přístup k pyrmdovým rozkldům, protože jednk odstrňuje problém záporných ndeů ukztelů není ctlvá n pořdí čntelů ve výpočtu. Dá se ukázt, že pro kldné ndey jsou rozkldy blízké logrtmcké metodě. Pro dv prvky dává funkconální metod metod rozkldu s rovnoměrným rozdělením zbytků stejné výsledky, vz Zmeškl (2004). 3.1 Pyrmdový rozkld ROE Smyslem rozkldu je vyčíslt vlvy změn dílčích ukztelů n změnu vrcholového ukztele. Pyrmd názorně vysthuje postupné rozšřování počtu dílčích ukztelů v podrobnějších rozkldech. Výsledná hodnot ROEA je vyjádřená pomocí ukztele ROAA kptálového multplkátoru. EAT ROAA =, (3.15) A kde A jsou průměrná celková ktv. A Kptálový multplkátor =. (3.16) E. Pyrmdový rozkld ROEA je znázorněn n Obr Prvotní čntele pyrmdového rozkldu jsou zvýrzněny. Pro vyčíslení vlvů dílčích ukztelů lze použít jednu z metod nlýzy odchylek. S ohledem n to, že ndey mohou být záporné, je výhodnější použít funkconální metodu.

5 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 Obr. 3.1: Pyrmdový rozkld ROEA ROE kptálový multplkátor * ROA celková úroková mrže celková neoperční + celková operční mrže + - mrže celková dňová mrže čstá úroková mrže * ukztel výnosových ktv čstý úrokový spred + zsky (ztráty) z čísté úrokové pozce prům. szb úročených ktv - prům. szb čstá úroková pozce úročených psv vztžená n úročená * ktv Zdroj: ZIEGLER, K. kol. Fnnční řízení bnk, str. 8. prům. szb úročených psv 4. Aplkční část V této část příspěvku bude proveden pyrmdový rozkld rentblty vlstního kptálu (ROEA) vybrné fnnční nsttuce z období let Pro rozkld ukztele ROEA bude použt funkconální metod. Anlýzou odchylek budou vysvětleny vlvy dílčích ukztelů, které působly n změnu ukztele ROEA v nlyzovném období. 4.1 Vstupní dt V Tb. 4.1 jsou uvedeny hodnoty zákldních položek rozvhy výkzu zsku ztráty z období let vybrné fnnční nsttuce. Jedná se o fnnční nsttuc, která působí n českém bnkovním trhu jž od roku 1924 ptří mez největší unverzální bnky (dle blnční sumy) v ČR neustále potvrzuje svoj fnnční sílu, stbltu důvěru klentů. Tb. 4.1:Vstupní dt (v ml. Kč) Položk Průměrná celková ktv Průměrný kptál Celkové úrokové výnosy Celkové úrokové nákldy Operční výnosy Operční nákldy Neoperční výnosy Neoperční nákldy Zsk po zdnění

6 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září Postup řešení Tb. 4.2:Hodnoty ukztele ROEA v jednotlvých letech Ukztel ROEA (%) 18,93 26,42 18,56 Z Tb. 4.2 je ptrné, že v roce 2008 došlo ke zvýšení ukztele ROEA o 7,49 % oprot roku V následujícím období všk ukztel zznmenl výrzný pokles to o 7,86 %. Pro hodnocení zskovost dné fnnční nsttuce je důležté změřt se n všechny ukztele, které ovlvňují hodnotu ROEA. Pro nlýzu vlvů těchto fktorů bude použt nlýz odchylek pro vyčíslení vlvů bude použt funkconální metod. N Obr. 4.1 je znázorněn rozkld ROEA v letech 2007/2008. Výsledky vlvů dílčích ukztelů jsou zchyceny v Tb Obr. 4.1: Pyrmdový rozkld ROEA funkconální metod 2007/2008 název ROEA , ,26420 rozdíl výnos 0, ,39545 bsolutní vlv 0,07487 kptálový multplkátor ROAA 14, ,68000 * 0, , , , , , , ,08671 celková úroková mrže celková operční mrže celková neoperční mrže celková dňová mrže 0, , , , , , , , , , , , , , , , , , , ,01264 čstá úroková mrže ukztel výnosových ktv 0, ,04149 * 0, , , , , , , ,00530 čstý úrokový spred zsky (ztráty) z čísté úrokové pozce 0, , , , , , , , , ,00049 prům. szb prům. szb čstá úroková pozce prům. szb úročených ktv úročených psv vztžená n úročená úročených psv 0, , , , ,13140 ktv0,08462 * 0, , , , , , , , , , , , , ,00924

7 5. meznárodní konference Řízení modelování fnnčních rzk VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí Ostrv září 2010 Tb. 4.3: Vlvy dílčích ukztelů - funkconální metod CELKEM 2007/2008 Ukztel Multplkátor Celková operční mrže Celková neoperční mrže Celková dňová mrže Ukztel výnosových ktv Průměrná szb úročených ktv Průměrná szb úročených psv Čstá úroková pozce vztžená n úročená ktv -1,184% 1,545% -3,933% 1,264% 0,530% 17,870% -7,632% -0,973% reltvní vlv pořdí reltvní vlv 7,4870% Z Tb. 4.3 je ptrné, že v nlyzovném období se výrzně mění vlvy dílčích ukztelů. V období 2007/2008 měl největší vlv n růst ROEA ukztel průměrné szby úročených ktv. Bnce ve sledovném období v náročně ekonomckém prostředí nrůstly klentské úvěrové obchody, které z rok 2008 vzrostly o 9 % dosáhly tk hodnoty 461,4 mld. Kč. Výsledkem těchto obchodů ů byl nárůst celkových úrokových výnosů, které dosáhly hodnoty ml. Kč v roce Jk dále vyplývá z tbulky, je zjímvé, že v roce 2008/2009 jž tento ukztel působl n pokles hodnoty ROEA, byť bnk opět mírně ě zvýšl své úvěrové portfolo o 2 %, le došlo ke snížení celkových úrokových výnosů v roce 2009 n hodnotu ml. Kč. Tento pokles (o ml. Kč) byl způsoben snížením tržních úrokových szeb, poklesem krátkodobé úrokové szby (vyjádřená průměrným rným 3M PRIBOR) v roce 2009 n 2,2 % ze 4,00 % v roce Dlším dílčím ím ukztelem, který ovlvnl nárůst hodnoty ROEA byl celková operční mrže. Vlv tohoto ukztele je po celé nlyzovné období stejný. V hodnocené fnnční nsttuc došlo ve sledovných letech k výrznému vzestupu operčních výnosů, které dosáhly v roce 2008 hodnoty ml. Kč v roce 2009 se zvýšly o 531 ml. Kč. Obr. 4.2: Velkost vlvů dílčích ukztelů funkconální metod 2008/2009 reltvní vlv pořdí -0,582% 4. 1,351% 2. -7,698% 8. -0,810% 5. -1,132% 6. -5,788% 7. 6,925% 1. -0,126% 3. -7,861% Dále došlo ke zvýšení nákldů n popltky provze, všk toto zvýšení nebylo tk výrzné, by byl tím ovlvněn ukztel celkové operční mrže. Je velm zjímvé, že dlším

8 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 ukztelem, který způsobl v období 2007/2008 nárůst ROEA, byl ukztel celkové dňové mrže, což může znčt, že bnk umí optmlzovt svoj dňovou povnnost tk, by výrzným způsobem nesnížl hodnotu ukztele výnosnost kptálu. V mezročním období 2008/2009 nopk tento ukztel působl negtvně způsobl pokles hodnoty ROEA. Dlším z ukztelů, který měl vlv n zvýšení hodnoty ROEA v 2007/2008 byl ukztel výnosových ktv, který se vypočítá podílem průměrných úročených ktv k průměrným celkovým ktvům. Nám zvolená bnk vykzuje vyšší podíl průměrných úročených ktv oprot průměrným úročeným psvům, což znmená, že má poztvní čstou úrokovou pozc. V období 2008/2009 se změnlo pořdí vlvu dílčích ukztelů n hodnotu ROEA. Kldně n hodnotu ROEA působly dv ukztele - průměrná szb úročených psv celková operční mrže. Osttní ukztele ovlvňovly hodnotu ROEA záporně. Největší kldný vlv n změnu hodnoty ROEA měl ukztel průměrná szb úročených psv, který je dán podílem celkových úrokových nákldů průměrných úročených psv. Vývoj tohoto ukztele byl ovlvněn tím, že bnk přes probíhjící krz dosáhl v roce 2009 objem prmárních vkldů ve výš 643,4 mld. Kč tím se bnk stl nezávslou n mezbnkovním zdrojích. Tento nárůst prmárních vkldů měl všk tké dopd n vyplácené úroky. Úrokové nákldy v roce 2009 dosáhly hodnoty ml. Kč, což je pokles o ml. Kč oprot roku N hodnotu ukztele má tké dopd struktur úročených psv. Dlším ukztelem, který poztvně ovlvnl hodnotu ROEA byl celková operční mrže. Pokles tohoto ukztele oprot období 2007/2008 může být způsoben tím, že došlo jen k neptrnému zvýšení hodnoty operčních výnosů, le k vyššímu zvýšení operčních nákldů. Průměrná celková ktv dosáhl hodnoty mld. Kč. N snížení hodnoty ROEA měl největší záporný vlv ukztel celková neoperční mrže, který vypovídá o tom, jk bnk dokáže efektvně zhodnott osttní neoperční příjmy, npř. příjmy z držení cenných ppírů fnnčních dervátů. 4.3 Výsledky zhodnocení Ukztel rentblty vlstního kptálu předstvuje klíčový ukztel pro hodnocení bnk. Rozkldem ukztele ROEA byly zjštěny vlvy dílčích ukztelů. Z provedené nlýzy jednoznčně vyplývá, že se ve sledovném období měnlo pořdí vlvů dílčích ukztelů. V letech 2007/2008 měl největší kldný vlv n růst ROEA ukztel průměrné szby úročených ktv, dále celková operční dňová mrže. Nopk největší záporný vlv měl ukztel průměrné szby úročených psv celková neoperční mrže. V letech 2008/2009 došlo k poklesu ROEA o 7,86 %. N tento pokles měl největší vlv ukztel celkové neoperční mrže průměrné szby úročených ktv. Ukztele průměrné szby úročených psv celkové operční mrže nopk kldně ovlvňovly vývoj ROEA. Anlýzou odchylek bylo tké zjštěno, že ukztel průměrná szb úročených ktv, který vypovídá o efektvnost ocenění ktv, předstvuje klíčový ukztel, který nejvýrzněj ovlvňovl vývoj ukztele výnosnost kptálu ROEA v nlyzovném období. 5. Závěr Příspěvek byl změřen n možnost využtí nlýzy odchylek př hodnocení zskovost fnnčních nsttucí. Hodnotícím krtérem byl stnoven ukztel výnosnost kptálu ROE vybrné fnnční nsttuce. V přípdě hodnocení efektvnost fnnčních nsttucí je nutno brát zřetel n konstrukc ukztelů, které jsou odlšné od nefnnčních nsttucí. Ukztel ROE je stnoven jko součn kptálového multplkátoru ROA. Pro nlýzu zskovost je důležté sledovt nejen velkost ukztele v čse, le tké je nutno provést nlýzu odchylek, která zjšťuje, jk dílčí ukztele ovlvňují vrcholový ukztel. Pro objsnění změn ukztele ROE v období let byl použt nlýz odchylek ukztele ROE. Pro nlýzu byl použt funkconální metod, kterou lze povžovt z zobecněný přístup k nlýze odchylek.

9 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí září 2010 Z provedené nlýzy jednoznčně vyplývá, že pro hodnocení výkonnost bnk je vhodné dný ukztel zkoumt dynmcky ne pouze sttcky. Všechny ukztele jsou ovlvňovány nejen vntřním (npř. personální obszení bnky, mrketngová strtege, struktur bnkovních produktů, pod.), le vnějším fktory (vývoj HDP, nezměstnnost, vývoj nflce, stnovení úrokových szeb, td.). Ltertur [1] DLUHOŠOVÁ, D. Fnnční řízení rozhodování podnku. Prh: Ekopress, [2] DLUHOŠOVÁ, D. kol. Nové přístupy fnnční nástroje ve fnnčním rozhodování. Ostrv: VŠB - Techncká unverzt Ostrv, [3] KAŠPAROVSKÁ, V. kol. Řízení obchodních bnk. Prh: C.H.Beck, [4] RICHTAROVÁ, D. Anlýz odchylek krtér NPV př postudtu nvestc. Ostrv: VŠB TU Ostrv, [5] ZIEGLER, K. kol. Fnnční řízení bnk. Prh: Bnkovní nsttut vysoká škol, [6] ZMESKAL, Z. Fnnční modely. Ekopress Prh, [7] Internetové zdroje hodnocené fnnční nsttuce. [8] Výroční zprávy hodnocené fnnční nsttuce. Summry The m of ths pper s to pply methods of nfluence quntfcton on selected proftblty rto of fnncl nsttuton. Frst, return on equty rto wll be defned nd ts mportnce for bnk nsttutons evluton. Net, pyrmdl decomposton of ths rto wll be mde ncludng nfluence quntfcton. In the pplcton prt, nlyss wll be mde by pplyng functonl method of ROE rto of selected fnncl nsttuton. In the concluson, nfluences of ndctors on bsc rto wll be dscussed nd compred.

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. Písemnost yl podán elektronicky dne: 20.6.2012 Podcí : 2172526 Heslo zjištění stvu: c3d895fe Stv podání: vyřízeno ROZVAHA ke dni... 3 1. 1

Více

ROZVAHA. ke dni... Roset s.r.o. 31. 12. 2011. Raisova 1004 Strakonice 386 01

ROZVAHA. ke dni... Roset s.r.o. 31. 12. 2011. Raisova 1004 Strakonice 386 01 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. ROZVAHA ke dni... 31. 12. 2011 jednotky: 1000 Kč Rok Měsíc IČ 2011 1 2 28065280 Ochodní firm neo jiný název účetní jednotky Roset s.r.o. Sídlo

Více

ROZVAHA Burza cenných papírů Praha a.s. v plném rozsahu 31.3.2015 (v celých tisících Kč) Rybná 14 Praha 1 47115629 110 05

ROZVAHA Burza cenných papírů Praha a.s. v plném rozsahu 31.3.2015 (v celých tisících Kč) Rybná 14 Praha 1 47115629 110 05 Minimální závzný výčet informcí podle vyhlášky č. 500/00 Sb ROZVAHA v plném rozshu ke dni... 3.3.05 (v celých tisících Kč) IČ 47569 Obchodní firm nebo jiný název účetní jednotky Burz cenných ppírů Prh.s.

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU

ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ÚČETNÍ ZÁVĚRKA V ZJEDNODUŠENÉM ROZSAHU ke dni 31. prosine 2013 ( údje jsou vyčísleny v elýh tisííh Kč ) sestvená v souldu se zákonem č. 563/1991 S. o účetnitví, ve znění pozdějšíh předpisů, s vyhláškou

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012 Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. ROZVAHA ke dni... 3 1. 1 2. 2 0 1 0 jednotky: 1000 Kč Ochodní firm neo jiný název účetní jednotky Správ městských sportovišť Kolín,.s. Sídlo

Více

Jedštěd 73, spolek Horní Hanychov 153 468 08 Liberec 8 Účetní jednotka doručí: 1 x příslušnému finančnímu orgánu

Jedštěd 73, spolek Horní Hanychov 153 468 08 Liberec 8 Účetní jednotka doručí: 1 x příslušnému finančnímu orgánu ROZVAHA dle vyhlášky 54/22 1.1.-31.12.213 Název, sídlo právní form s účinností pro účetní jednotky (v celých tisích Kč) účetní jednotky účtující podle účtové osnovy pro nevýdělečné orgnizce IČO Jedštěd

Více

Národní centrum výzkumu polárních oblastí

Národní centrum výzkumu polárních oblastí Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT POLICEJNÍ AKADEMIE ČESKÉ REPUBLIKY V PRAZE AKADÉMIA POLICAJNÉHO ZBORU V BRATISLAVE pořádjí ČTVRTOU VIRTUÁLNÍ VĚDECKOU KONFERENCI s mezinárodní účstí SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT PRAHA

Více

ROZVAHA v plném rozsahu ke dni...

ROZVAHA v plném rozsahu ke dni... Oshuje závzný výčet informí uvedený ve vyhláše MF / S. Účetní jednotk doručí účetní závěrku součsně s doručením dňového přiznání z dň z příjmů x příslušnému finnčnímu úřdu ROZVAHA v plném rozshu ke dni...

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

ROZVAHA v plném rozsahu ke dni...

ROZVAHA v plném rozsahu ke dni... Oshuje závzný výčet informí uvedený ve vyhláše MF 500/2002 S. Účetní jednotk doručí účetní závěrku součsně s doručením dňového přiznání z dň z příjmů x příslušnému finnčnímu úřdu ROZVAHA v plném rozshu

Více

ACHENBACH CZ s.r.o. 31.12.2014 v celých tisících K. Fialková 23 2.049-638 1.411 2.387 814-638 176 1.224 1.224 2.203 987 987 1.573

ACHENBACH CZ s.r.o. 31.12.2014 v celých tisících K. Fialková 23 2.049-638 1.411 2.387 814-638 176 1.224 1.224 2.203 987 987 1.573 Minimální závzný vý et informí ROZVAHA Jméno p íjmení, ohodní firm neo jiný podle vyhlášky. 500/00 S. ve zjednodušeném rozshu název ú etní jednotky ve zn ní pozd jšíh p edpis ACHENBACH CZ s.r.o. ke dni

Více

Podmínky externí spolupráce

Podmínky externí spolupráce Podmínky externí spolupráce mezi tlumočnicko překldtelskou genturou Grbmüller Jzykový servis předstvující sdružení dvou fyzických osob podniktelů: Mrek Grbmüller, IČO: 14901820, DIČ: CZ6512231154, místo

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Rozvh podle Přílohy č. vyhlášky č. 504/00 S. Účetní jednotk doručí: x příslušnému fin. orgánu Rozvh v plném rozshu k..0 ( v celých tisících Kč ) Název, sídlo právní form účetní jednotky IČO 8589 Společenství

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 57545/2012/KnD ČÍSLA USNESENÍ: 1883-1895 ZPRACOVATEL: Dniel Knpková Usnesení z 63. schůze Rdy měst Kopřivnice ze dne 27.11.2012

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

ROZVAHA. v plném rozsahu. (v celých tisících Kč) 60193549 186 07 Praha 8. AKTIVA b. označ. a. řád. c Brutto 1. Běžné účetní období Korekce 2

ROZVAHA. v plném rozsahu. (v celých tisících Kč) 60193549 186 07 Praha 8. AKTIVA b. označ. a. řád. c Brutto 1. Běžné účetní období Korekce 2 Minimální závzný výčet informí uvedený ve vyhláše č. 500/00 S. Účetní jednotk doručí účetní závěrku součsně s doručením dňového přiznání z dň z příjmů ROZVAHA v plném rozshu k 3..03 (v elýh tisííh Kč)

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Rozvaha v plném rozsahu k 31.12.2012 ( v celých tisících Kč ) Název, sídlo a právní forma

Rozvaha v plném rozsahu k 31.12.2012 ( v celých tisících Kč ) Název, sídlo a právní forma Rozvh podle Přílohy č. vyhlášky č. 504/00 S. Účetní jednotk doručí: x příslušnému fin. orgánu Rozvh v plném rozshu k 3..0 ( v celých tisících Kč ) Název, sídlo právní form účetní jednotky IČO 643695 Ndce

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem:

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem: Níže uvedeného dne, měsíce roku byl uzvřen mezi těmito smluvními strnmi: obchodní společnost se sídlem: IČ: DIČ: zpsná zstoupen (dále jen jko budoucí strn prodávjící ) v obchodním rejstříku vedeném, oddíl,

Více

zisk : srovnávaná veličina (hodnocená,vstupní)

zisk : srovnávaná veličina (hodnocená,vstupní) 4. přednáška Finanční analýza podniku - FucAn Návaznost na minulou přednášku Elementární metody a) analýza absolutních ukazatelů b) analýza rozdílových a tokových ukazatelů c) analýza poměrových ukazatelů

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Rozvh podle Přílohy č. vyhlášky č. 504/00 S. Účetní jednotk doručí: x příslušnému fin. orgánu Rozvh v plném rozshu k 3..03 ( v hléřích ) Název, sídlo právní form účetní jednotky IČO 6674354 Ndční fond

Více

1. Informace o obchodníku s cennými papíry

1. Informace o obchodníku s cennými papíry 1. Informace o obchodníku s cenným papíry a) Obchodní frma: CITCO - Fnanční trhy a.s. Právní forma: Akcová společnost Sídlo: Radlcká 751/113e Praha 5, PSČ 158 00 IČ: 250 79 069 b) Datum zápsu do obchodního

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ Prof. Ing. Mloš Mařík, CSc. BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ RESUMÉ: Jedním z důležtých a přtom nepřílš uspokojvě řešených problémů výnosového oceňování podnku je kalkulace

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

ROZVAHA (BILANCE) sestavená k 31.12.2006. Základní škola Přemyslovo nám. 1 627 00 Brno A K T I V A. Název, sídlo a právní forma jednotky

ROZVAHA (BILANCE) sestavená k 31.12.2006. Základní škola Přemyslovo nám. 1 627 00 Brno A K T I V A. Název, sídlo a právní forma jednotky Příloh účetní závěrky dle přílohy č.1 k vyhlášce č. 505/2002 S. ROZVAHA (BILANCE) (v tisících Kč n 2 des. míst) sestvená k Název, sídlo právní form jednotky Zákldní škol Přemyslovo nám. 1 627 00 Brno příspěvková

Více

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d Přijímcí řízení kdemický rok 2012/2013 Kompletní znění testových otázek ekonomický přehled 1 Koš Znění otázky Odpověď Odpověď Odpověď Odpověď Správná ) ) c) d) odpověď 1. 1 Mezi ekonomické sujekty trhu

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

ke dni... 30.6.2015 (v celých tisících Kč) POWER EXCHANGE CENTRAL EUROPE,.a.s. 682/14, 110 05 Praha 1 Číslo řádku c Korekce 2 Netto 3 Brutto 1 Netto

ke dni... 30.6.2015 (v celých tisících Kč) POWER EXCHANGE CENTRAL EUROPE,.a.s. 682/14, 110 05 Praha 1 Číslo řádku c Korekce 2 Netto 3 Brutto 1 Netto Ohodní firm neo jiný název účetní jednotky ROZVAHA POWER EXCHANGE v plném rozshu Minimální závzný výčet informí podle vyhlášky č. 500/00 S CENTRAL EUROPE,..s. Sídlo neo ydliště účetní jednotky místo podnikání

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 19020/2013/KnD ČÍSLA USNESENÍ: 2258-2301 ZPRACOVATEL: Dniel Knpková Usnesení ze 72. schůze Rdy měst Kopřivnice ze dne 30.04.2013

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Píloha k roní úetní závrce za rok 2012

Píloha k roní úetní závrce za rok 2012 Píloh k roní úetní závre z rok 2012 l. 1 Oené údje Sujekt: U2Brno s.r.o. sídlo: Brno, Píkop 843/4 právní form: spolenost s ruením omezeným IO: 607 16 380 pedmt innosti: - speilizovný mloohod - poskytování

Více

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA DOPORUČENO PRO AUTORIZOVANÉ OSOBY SLEVY: AO ČKAIT 10 %, ČBS 20 %, AO+ČBS 30 % PŘI ÚČASTI NA 5. NEBO 6. BĚHU ŠKOLENÍ EC2-1 DALŠÍ SLEVA 5 % Ktedrou betonových zděných konstrukcí

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM Ing. Michl Sedláček, Ph.D. ko-k s.r.o., Thákurov 7, Prh 6 Sptil erth pressure on circulr shft The pper present method for estimtion sptil erth pressure

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Úvod do politiky soudržnosti EU pro období 2014-2020

Úvod do politiky soudržnosti EU pro období 2014-2020 Úvod do politiky EU pro období 2014-2020 Politik Červen 2014 Co je politik? Politik je hlvní investiční politik EU Cílí n všechny měst v Evropské unii. Jejím cílem je podpor vytváření prcovních míst, konkurenceschopnosti

Více

Úřad vlády České republiky Rada vlády pro udržitelný rozvoj

Úřad vlády České republiky Rada vlády pro udržitelný rozvoj pro udržitelný rozvoj Záznm ze zsedání Rdy vlády pro udržitelný rozvoj 27. zsedání, čtvrtek 15. 2. 2015, 16:30-19:00, Úřd vlády (místnost č. 147) Přítomní členové členky Rdy: Libor Ambrozek, Richrd Brbec,

Více

GIS v památkové péči Historická geografie Začínáme s ArcGIS Online. informace pro uživatele software Esri a ENVI

GIS v památkové péči Historická geografie Začínáme s ArcGIS Online. informace pro uživatele software Esri a ENVI GIS v pmátkové péči Historická geogrfie Zčínáme s ArcGIS Online informce pro uživtele softwre Esri ENVI 2 20 13 Nskočte do ArcGIS Online S progrmem Jumpstrt pro ArcGIS Online se sndno rychle stnete správcem

Více

IES, Charles University Prague

IES, Charles University Prague Insttute of Economc Studes, aculty of Socal Scences Charles Unversty n Prague Trh práce žen: Gender pay gap a jeho determnanty artna ysíková IES Workng Paper: 13/2007 Insttute of Economc Studes, aculty

Více

ešení Teorie mezinárodního obchodu

ešení Teorie mezinárodního obchodu ešení Teorie mezinárodního obchodu Absolutní výhody P íkld 1 1) mecko má bsolutní výhodu ve výrob ut, nebo vyrobí jedno uto z 30 hodin, ztímco eská republik z 50 hodin. opk eská republik má bsolutní výhodu

Více

Usnesení. konaného dne 18. 11. 2008

Usnesení. konaného dne 18. 11. 2008 z 15. zsedání Zstupitelstv měst Usnesení z 15. zsedání Zstupitelstv měst, 319 - Zstupitelstvo měst po projednání 1. b ere n věd o mí zprávu ověřovtelů zápisu pn MUDr. Rudolf Bbince pn RSDr. Krl Kuboše

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

finanční zdraví firmy (schopnost hradit krátkodobé i dlouhodobé závazky, schopnost zhodnotit vložené prostředky, silné a slabé stránky firmy)

finanční zdraví firmy (schopnost hradit krátkodobé i dlouhodobé závazky, schopnost zhodnotit vložené prostředky, silné a slabé stránky firmy) FINANČNÍ ANALÝZA Cíle a možnosti finanční analýzy finanční zdraví firmy (schopnost hradit krátkodobé i dlouhodobé závazky, schopnost zhodnotit vložené prostředky, silné a slabé stránky firmy) podklady

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

Komuniké. předsedy Nejvyššího kontrolního úřadu Slovenské republiky. prezidenta Účetního dvora Slovinské republiky

Komuniké. předsedy Nejvyššího kontrolního úřadu Slovenské republiky. prezidenta Účetního dvora Slovinské republiky Komuniké předsedy Nejvyššího kontrolního úřdu Slovenské republiky prezident Účetního dvor Slovinské republiky prezident Nejvyššího kontrolního úřdu, Česká republik prezident rkouského Účetního dvor o výsledcích

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

dodatek č. 1 ke smlouvě o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

dodatek č. 1 ke smlouvě o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc.

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc. Unverzta Pardubce Fakulta ekonomcko-správní Modelování predkce časových řad návštěvnost web domény pomocí SVM Bc. Vlastml Flegl Dplomová práce 2011 Prohlašuj: Tuto prác jsem vypracoval samostatně. Veškeré

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Protokol generálního shromáždění resp. Rady bezpečnosti. Rezoluce 1325 (2000) odsouhlasena na 4213. zasedání Rady bezpečnosti 31.

Protokol generálního shromáždění resp. Rady bezpečnosti. Rezoluce 1325 (2000) odsouhlasena na 4213. zasedání Rady bezpečnosti 31. Spojené národy /RES/1325 (2000) Protokol generálního shromáždění resp. Rdy bezpečnosti. Rd bezpečnosti k distribuci: všeobecně 31.říjn 2000 Rezoluce 1325 (2000) odsouhlsen n 4213. zsedání Rdy bezpečnosti

Více

Vážené dámy, vážení pánové,

Vážené dámy, vážení pánové, 2013 2011 ÚVODNÍ SLOVO Dr. Pvel Doležl ředitel Zlté koruny Vážené dámy, vážení pánové, devátý loni oslvil ročník Zltá soutěže korun opět deset potvrdil, let že letošním Zltá korun ročníkem má tk n českém

Více

ZÁKLADNÍ ÚDAJE O SPOLEČNOSTI ZÁKLADNÍ KAPITÁL. Firma: CYRRUS a.s. Právnĺ forma: Akciová společnost. lc: 63907020. Rok založení: 1995

ZÁKLADNÍ ÚDAJE O SPOLEČNOSTI ZÁKLADNÍ KAPITÁL. Firma: CYRRUS a.s. Právnĺ forma: Akciová společnost. lc: 63907020. Rok založení: 1995 loz SU SL1}1HÁ UAUJdZ iujojc Obsh: ZÁKLADNÍ ÚDAJE O SPOLEČNOSTI 2 ZÁKLADNÍ KAPITÁL 2 ÚDAJE O ČINNOSTI 3 ÚDAJE O MAJETKU A FINANČNÍ SITUACI 4 MANAGEMENT A ORGANIZAČNÍ STRUKTURA 4 PROFIL SPOLEČNOSTI 5 SOUČASNOST

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák *

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák * Znamená vyšší korupce dražší dálnce? Evdence z dat Eurostatu Mchal Dvořák * Článek je pozměněnou verzí práce Analýza vztahu mez mírou korupce a cenovou úrovní nfrastrukturních staveb, kterou autor zakončl

Více

pro čajovou ligu družstev Č l á n e k I. - O r g a n i z a c e soutěže

pro čajovou ligu družstev Č l á n e k I. - O r g a n i z a c e soutěže H r í ř á d pro čjovou ligu družstev Č l á n e k I. - O r g n i z e soutěže I-1. Vymezení soutěže Soutěž je pořádán pro družstv složená z hráčů, kteří hrjí go pro zpestření svého volného čsu htějí změřit

Více

Studijní materiál PASCAL

Studijní materiál PASCAL Obsh Studijní mteriál PASCAL /76 Obsh Obsh Algoritmus 5 Vlstnosti lgoritmu 5 Metod návrhu lgoritmu 5 3 Rekurzivní lgoritmy 5 4 Překldč jeho struktur 6 4 Druhy překldčů 6 4 Hlvní části překldče 6 Jzyk Pscl

Více

STATUTÁRNÍ MĚSTO OSTRAVA MĚSTSKÝ OBVOD OSTRAVA-JIH USNESENÍ. z 12. zasedání Zastupitelstva městského obvodu. Ostrava-Jih

STATUTÁRNÍ MĚSTO OSTRAVA MĚSTSKÝ OBVOD OSTRAVA-JIH USNESENÍ. z 12. zasedání Zastupitelstva městského obvodu. Ostrava-Jih 1 STATUTÁRNÍ MĚSTO OSTRAVA MĚSTSKÝ OBVOD OSTRAVA-JIH USNESENÍ z 12. zsedání Zstupitelstv městského obvodu Ostrv-Jih které se konlo 13. 9. 2012 09:00 (usn. č. 0354/12 - usn. č. 0376/12) Mgr. Krel Sibinský

Více

Využití shlukové analýzy a metody hlavních komponent při identifikaci faktorů ovlivňující přijetí IFRS pro SME

Využití shlukové analýzy a metody hlavních komponent při identifikaci faktorů ovlivňující přijetí IFRS pro SME Trendy ekonomiky mngementu / Trends Economics nd Mngement Využití shlukové nlýzy metody hlvních komponent při identifikci fktorů ovlivňující přijetí IFRS pro SME The Use of Cluster Anlysis nd Principl

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více