Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Rozměr: px
Začít zobrazení ze stránky:

Download "Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace"

Transkript

1 Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing. Martin Dostál, Ph.D. Ing. Karel Petera, Ph.D. Prof. Ing. Tomáš Jirout, Ph.D.

2 Modelování potrubních sítí Cílem práce je vytvoření matematického modelu potrubní kanalizační sítě, který by umožňoval o určit průtok odcházející z kanalizační sítě na čistírnu odpadních vod v závislosti na přítocích do kanalizační sítě z jednotlivých jímek, o zjistit tlakové poměry v kanalizační síti a to z hlediska dimenzování potrubních prvků kanalizační sítě o a zjistit energetické poměry, tj. množství energie potřebné na provoz kanalizační sítě. Úkolem tohoto matematického modelu je o porovnání různých strategií vyprazdňování jednotlivých jímek kanalizační sítě právě z hlediska co nejrovnoměrnějšího nátoku na čistírnu odpadních vod zpracovávající odpadní vody (primární cíl), o a pokus o optimalizaci jednotlivých segmentů potrubní sítě z hlediska úspory materiálu a energií potřebných pro čerpání při zachování správného dimenzování prvků potrubní sítě z hlediska povolených tlaků a minimálních průtokových rychlostí.

3 Modelování potrubních sítí Matematický model potrubní sítě Stacionární jedná se o výchozí matematický model potrubní sítě, který umožňuje spočítat průtoky v jednotlivých větvích potrubní sítě a tlaky v jednotlivých uzlech potrubní sítě pro zadané přítoky. nestacionární bez uvažování stlačitelnosti a setrvačných sil tento model využívá výše popsaný stacionární model, který řeší v každém časovém kroku. Na základě tohoto řešení je pak možné získat časové závislosti průtoků a tlaků v potrubní síti. Model samozřejmě vyžaduje informace o přítocích v jednotlivých uzlech potrubní sítě, tj. v jednotlivých splaškových jímkách (nutné zvolit vhodnou strategii generování množství odpadních vod odpovídajících počtu EO pro danou jímku v závislosti na denní době), velikosti jednotlivých jímek odpadních vod a charakteristiku kalového čerpadla a strategii vyprazdňování jednotlivých jímek, tj. strategii zapínání a vypínání kalového čerpadla (zatím je implementována ta nejjednodušší varianta, kdy čerpadlo zapíná a vypíná při určité výšce hladiny v jímce). nestacionární s uvažováním stlačitelnosti tento model umožňuje předpovídat jevy s náhlými změnami probíhajícími v potrubní síti, například náhlé zavření průtoku v nějaké větvi potrubní sítě (ráz). Soustava hyperbolických diferenciálních rovnic popisující proudění stlačitelné tekutiny kanálem v proměnných výška H a průtok Q.

4 Modelování potrubních sítí Stacionární/nestacionární model Model je založen na aplikaci rovnice kontinuity v jednotlivých uzlových bodech potrubní sítě Laminární proudění větví potrubní sítě lze popsat, viz Bird et al. (2007) Pro turbulentní proudění například

5 Modelování potrubních sítí Dosazením do rovnice kontinuity spolu s uvažováním hydrostatických tlaků od nestejných výšek dostaneme soustavu rovnic. resp. v maticovém tvaru Soustava rovnic (nelineární) je řešena iteračním způsobem s využitím programových nástrojů a knihoven funkcí programu MATLAB.

6 Modelování potrubních sítí TK Kojetice / případová studie 694 uzlových bodů Doba simulace denního cyklu 3 hod Výpočtové schéma TK (uzly černě a větve modře). Souřadnice uzlových bodů X a Y jsou v metrech.

7 Simulační výpočet TK Kojetice TK Kojetice / případová studie Výsledky výpočtu veličin jednoho časového kroku. Na svislé ose grafu jsou znázorněny tlaky v uzlových bodech kanalizační potrubní sítě. Na výstupu kanalizační sítě je zadán atmosférický tlak.

8 Simulační výpočet TK Kojetice Přítok jímek

9 Simulační výpočet TK Kojetice Dvoustavové spínání čerpadla jímky

10 Simulační výpočet TK Kojetice Spínání čerpadla v pevných časových intervalech (1/den)

11 Simulační výpočet TK Kojetice Spínání čerpadla v pevných časových intervalech (3/den)

Výpočet stlačitelného proudění metodou konečných objemů

Výpočet stlačitelného proudění metodou konečných objemů Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

MODELOVÁNÍ POTRUBNÍCH SÍTÍ. Vladimír Hanta. Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky

MODELOVÁNÍ POTRUBNÍCH SÍTÍ. Vladimír Hanta. Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky MODELOVÁNÍ POTRUBNÍCH SÍTÍ Vladimír Hanta Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Klíčová slova: distribuční logistika, potrubní sítě, optimální potrubní cesta,

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika NUMERICKÉ ŘEŠENÍ BUDÍCÍCH SIL NA LOPATKY ROTORU ZA RŮZNÝCH OKRAJOVÝCH PODMÍNEK SVOČ FST 2008 ABSTRAKT Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Úkolem

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE Praha 2000 Martin Fišer ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE TECHNICKÁ FAKULTA KATEDRA TECHNOLOGICKÝCH ZAŘÍZENÍ STAVEB MODERNIZACE ČISTÍRNY ODPADNÍCH

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

Vozíky Graf Toku Výkonu

Vozíky Graf Toku Výkonu Graf Toku Výkonu Michal Menkina, Petr Školník TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ..07/2.2.00/07.0247, který

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Užití software Wolfram Alpha při výuce matematiky

Užití software Wolfram Alpha při výuce matematiky Jednalo se tedy o ukázku propojení klasického středoškolského učiva s problematikou běžného života v oblasti financí za pomoci využití informačních technologií dnešní doby. Hlavním přínosem příspěvku je

Více

OBHAJOBA DIPLOMOVÉ PRÁCE

OBHAJOBA DIPLOMOVÉ PRÁCE OBHAJOBA DIPLOMOVÉ PRÁCE Lukáš Houser FS ČVUT v Praze Ústav mechaniky, biomechaniky a mechatroniky 28. srpen 2015 Simulační modely tlumičů a jejich identifikace Autor: Studijní obor: Lukáš Houser Mechatronika

Více

Úvodní list. Zdravotní technika 4. ročník (TZB) Kanalizace Výpočet přečerpávané odpadní vody

Úvodní list. Zdravotní technika 4. ročník (TZB) Kanalizace Výpočet přečerpávané odpadní vody Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 06 Jméno autora Období vytvoření materiálu Název souboru Zařazení

Více

Verifikace modelu VT přehříváků na základě provozních měření

Verifikace modelu VT přehříváků na základě provozních měření Verifikace modelu VT přehříváků na základě provozních měření Jan Čejka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ

NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ Číslo dokumentu: Druh dokumentu: TS 25.07 TECHNICKÝ STANDARD Vydání číslo: Účinnost vydání od: Strana číslo : 1 10.6.2008 1 / 8 NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ Obsah interní dokumentace

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol

Více

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator Colloquium FLUID DYNAMICS 2009 Institute of Thermomechanics AS CR, v.v.i., Prague, October 21-23, 2009 p.1 SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Výpočet nejistot metodou Monte carlo

Výpočet nejistot metodou Monte carlo Výpočet nejistot metodou Monte carlo Mgr. Martin Šíra, Ph.D. (ČMI, Brno) červen 2012 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. p. 1 Výpočty nejistot

Více

Struktury a vazebné energie iontových klastrů helia

Struktury a vazebné energie iontových klastrů helia Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Světový den vody 2015: Voda a udržitelný rozvoj

Světový den vody 2015: Voda a udržitelný rozvoj SOVAK ČR řádný člen EUREAU Z OBSAHU: Světový den vody 215: Voda a udržitelný rozvoj Novela vyhlášky pro pitnou vodu, metodika stanovení nerelevantních metabolitů Optimalizace systémů tlakových kanalizací

Více

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011 Matematika (a fyzika) schovaná za GPS Michal Bulant Masarykova univerzita Přírodovědecká fakulta Ústav matematiky a statistiky Brno, 2011 Michal Bulant (PřF MU) Matematika (a fyzika) schovaná za GPS Brno,

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Modelování proudění metanu

Modelování proudění metanu Modelování proudění metanu GOTTFRIED, Jan 1 1 Ing., Institut ekonomiky a systémů řízení, VŠB-Technická univerzita Ostrava, Třída 17.listopadu 708 33 Ostrava Poruba, jgottfried@iol.cz, http://www.vsb.cz/~vg98015

Více

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického

Více

Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody

Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody Ing. Kateřina Slavíčková, Ph.D., Prof. Ing. Alexander Grünwald, CSc, Ing. Marek Slavíček, Ph.D., Ing. Bohumil Šťastný,

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10

Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 Obsah Předmluva 9 Obsah knihy 9 Typografické konvence 10 Informace o autorovi 10 Poděkování 10 KAPITOLA 1 Úvod 11 Dostupná rozšíření Matlabu 13 Alternativa zdarma GNU Octave 13 KAPITOLA 2 Popis prostředí

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

Instalace solárního systému

Instalace solárního systému Instalace solárního systému jako opatření ve všech podoblastech podpory NZÚ Kombinace solární soustavy a různých opatření v rámci programu NZÚ výzva RD 2 Podoblast A Úspory nejen na obálce budovy, ale

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,

Více

OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO ŠOUPÁTKA

OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO ŠOUPÁTKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA

EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA OBSAH Přehled legislativy Nařízení o ekodesignu č. 813/2013 Předmět nařízení Požadavky na účinnost Stanovení sezonní účinnosti ƞ s SPER pro palivová

Více

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

Více

A. NÁZEV OBCE. A.1 Značení dotčených částí obce (ZSJ) Hůrky. Mapa A: Území obce

A. NÁZEV OBCE. A.1 Značení dotčených částí obce (ZSJ) Hůrky. Mapa A: Území obce (karta obce: CZ041_0041_08) A. NÁZEV OBCE Název části obce (ZSJ): Mapa A: Území obce Přehledová mapka Kód části obce PRVK: CZ041.3403.4103.0041.08 Název obce: Karlovy Vary Kód obce (IČOB): 06343 (554961)

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

BAKALÁŘSKÁ PRÁCE VZDUCHOTECHNIKA

BAKALÁŘSKÁ PRÁCE VZDUCHOTECHNIKA BAKALÁŘSKÁ PRÁCE VZDUCHOTECHNIKA analýza objektu rozdělení na funkční celky VZT, koncepční řešení celé budovy, vedoucí zadá 2 3 zařízení k dalšímu rozpracování tepelné bilance, průtoky vzduchu, tlakové

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

NOVINKY TEPELNÁ ČERPADLA

NOVINKY TEPELNÁ ČERPADLA NOVINKY TEPELNÁ ČERPADLA 016 JAK POUŽÍVAT HPC 2010 MAKING MODERN LIVING POSSIBLE Manuál pro HPC software 1 TEPELNÁ ČERPADLA DANFOSS VMBME148 ÚVOD Software HPC je určen pro dimenzování tepelných čerpadel

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Stanovení hloubky karbonatace v čase t

Stanovení hloubky karbonatace v čase t 1. Zadání Optimalizace bezpečnosti a životnosti existujících mostů Stanovení hloubky karbonatace v čase t Předložený výpočetní produkt je aplikací teoretických postupů popsané v navrhované certifikované

Více

4. cvičení- vzorové příklady

4. cvičení- vzorové příklady Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci

Více

Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla

Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla Ing. Jan Berka, Ing. Rostislav Kasal Ph.D., Ing. Jan Cihlář VRV a.s., Nábřežní 4, 150 56 Praha 5 Úvod Význam řešení problematiky úniků

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE

Více

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání

Více

VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN

VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN M. Cepák, V. Havlena ČVUT FEL, katedra řídicí techniky Abstrakt Tento příspěvek se zabývá modelováním parního kondenzátoru a jeho následnou

Více

Porovnání metodik měření rozstřikových charakteristik rozstřikovacích trysek RT 240

Porovnání metodik měření rozstřikových charakteristik rozstřikovacích trysek RT 240 České vysoké učení technické v Praze Fakulta strojní, Ústav mechaniky tekutin a energetiky, Odbor mechaniky tekutin a termodynamiky Porovnání metodik měření rozstřikových charakteristik rozstřikovacích

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Postup řešení a průběžné výsledky úkolu: Posuzování pracovní zátěže u onemocnění bederní páteře

Postup řešení a průběžné výsledky úkolu: Posuzování pracovní zátěže u onemocnění bederní páteře Konzultační den odd. Pracovního lékařství 4/2015 Postup řešení a průběžné výsledky úkolu: Posuzování pracovní zátěže u onemocnění bederní páteře MUDr. Jana Hlávková Ing. Petr Gaďourek Ing. Tomáš Lebeda

Více

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Praktické využití Mathematica CalcCenter Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Obsah Popis Pojetí Vlastnosti Obecná charakteristika Ovladače

Více

Odvodnění střech. Ing. Stanislav Frolík, Ph.D. katedra TZB fakulta stavební ČVUT v Praze Thákurova 7, Praha 6

Odvodnění střech. Ing. Stanislav Frolík, Ph.D. katedra TZB fakulta stavební ČVUT v Praze Thákurova 7, Praha 6 Odvodnění střech, přečerpp erpání splaškových odpadních vod Ing. Stanislav Frolík, Ph.D. katedra TZB fakulta stavební ČVUT v Praze Thákurova 7, Praha 6 Navrhování systémů TZB 1 Odvodnění střech ČSN EN

Více

Posouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub.

Posouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub. přivaděče zhotoveného z polyetylénových trub. Autor: Vedoucí diplomové práce: Konzultant: Prof. Ing. Jan Melichar, CSc. Ing. Tomáš Hyhlík Ph.D Obsah Cíle práce Aktuální stav Hydraulický výpočet gravitačního

Více

Recyklace energie. Jan Bartáček. Ústav technologie vody a prostředí

Recyklace energie. Jan Bartáček. Ústav technologie vody a prostředí Recyklace energie z odpadní vody v procesu čištění odpadních vod Jan Bartáček Ústav technologie vody a prostředí Zdroj Energie Zdroj Nutrientů Zdroj Vody Použitá voda (Used Water) Odpadní voda jako zdroj

Více

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB

REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB 62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup

Více

Posouzení Jihočeské vodárenské soustavy pomocí hydraulického modelu SiteFlow Lubomír Macek 1, Marek Slavíček 2 a Vladimír Fürth 3

Posouzení Jihočeské vodárenské soustavy pomocí hydraulického modelu SiteFlow Lubomír Macek 1, Marek Slavíček 2 a Vladimír Fürth 3 Posouzení Jihočeské vodárenské soustavy pomocí hydraulického modelu SiteFlow Lubomír Macek 1, Marek Slavíček 2 a Vladimír Fürth 3 1 Aquion s.r.o., Praha 2 Katedra zdravotního inženýrství Fakulty stavební

Více

DATOVÝ SKLAD TECHNOLOGICKÝCH DAT

DATOVÝ SKLAD TECHNOLOGICKÝCH DAT R. T. S. cs, spol. s r. o. Novinářská 1113/3 709 00 Ostrava IČO: 18051367 DIČ: CZ18051367 Tel.: +420 59 7450 219 Fax: +420 59 7450 247 E-mail: info@rtscs.cz URL: www.rtscs.cz Společnost je zapsána v OR

Více

Elektronické obvody analýza a simulace

Elektronické obvody analýza a simulace Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika

Více

Minimální rozsah dokumentace přikládaného k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory C.3 Rodinné domy

Minimální rozsah dokumentace přikládaného k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory C.3 Rodinné domy Minimální rozsah dokumentace přikládaného k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory C.3 Rodinné domy K žádosti o poskytnutí dotace se přikládá dokumentace, z níž je patrný rozsah

Více

dq/dt+da/dt=q a rovnice o zachování hybnosti dq/dx+d(ß*q*q/a)/dx+gady/dx+gai(f)=gai(b)

dq/dt+da/dt=q a rovnice o zachování hybnosti dq/dx+d(ß*q*q/a)/dx+gady/dx+gai(f)=gai(b) 2. Hydrotechnické výpočty 2.1.Popis modelu Výpočet průběhu hladin jsme provedli výpočtem nerovnoměrného neustáleného proudění pomocí programu MIKE11, vyvinutým Dánským hydraulickým institutem pro výpočet

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

1 Studijní program: N2301 Strojní inženýrství

1 Studijní program: N2301 Strojní inženýrství 1 Obsah 1 N2301 Strojní inženýrství 2 1.1 2301T001-Dopravní a manipulační technika (prezenční)....................... 2 1.2 2302T040-Konstrukce zdravotnické techniky (prezenční).......................

Více

Vliv podzemní těsnicí stěny na havarijní únik kontaminantu

Vliv podzemní těsnicí stěny na havarijní únik kontaminantu Vliv podzemní těsnicí stěny na havarijní únik kontaminantu Ing. Petr Trávníček, Ph.D., Ing. Petr Junga, Ph.D. Mendelova univerzita v Brně, Ústav zemědělské, potravinářské a environmentální techniky, Zemědělská

Více