Rozměr: px
Začít zobrazení ze stránky:

Download ""

Transkript

1 Úlha č.2 Elektrické řístrje - cvičeí Přechdé děje ři vyíáí Zadáí: Pr vyíač a jmevité aětí = kv a jmevitý vyíací rud I k = ka vyčtěte: a) hdtu aralelíh tlumícíh dru tak, aby tlumil kmity ztaveéh aětí číaje kmitčtem f m = 5000 Hz. Vyčteu hdtu zakruhlete a desítky Ohmů a zětě řečtěte hdtu mezíh kmitčtu f m. b) velikst rudu a jeh fázvý suv rtékajícíh aralelím tlumicím drem uhasutí luku v hlavím zhášecím systému. Srvejte žadavky a dimezváí hlavíh zhášela a zhášela r vyutí aralelíh dru. c) Průběh ztaveéh aětí ři vyíáí vdu s vlastím kmitčtem: - f = 5000 Hz bez tlumícíh dru (α = 000) - f = f mskut. (viz. zadáí bd a)) - f < f m - f > f m Pzámka : Vyíaý vd važujte za ryze iduktiví. Časvé růběhy ztaveéh aětí vyeste d slečéh grafu včetě růběhu aětí veéh. Rzbr: Při určváí růběhu ztaveéh aětí je ejdůležitější hdtu vdu její kaacita, resektive vlastí kmitčet vdu. Nejeřízivější říad astae ři vyíáí vysce iduktivích vdů, kdy aětí ředbíhá rud téměř 90 (π/2), tz. ři růchdu rudu ulu (kamžik vyutí) je aětí zdrje rávě maximálí. Přitm řechdá slžka aětí má kmitavý charakter. De: Skuia: Autr: - -

2 Vyracváí: a) Výčet aralelíh tlumicíh dru Na r. je zázrě áhradí vd jedé fáze vyíaéh vdu. Budeme ředkládat, že jedtlivé fáze reáléh vdu se evlivňují a reálé arametry vdu ahradíme arametry sustředěými. SB f C VYP R Obr.. Schéma áhradíh vdu r výčet ztaveéh aětí rčeí arametrů vdu: Pr imedaci vdu latí (viz. zadáí) Z = = X = ω = 3 I 3 I 2πf k k Při výčtu hdty áhradí kaacity vyjdeme ze zadaéh kmitčtu f m = 5000 Hz a vztahu r vlastí kmitčet elektrickéh vdu. ω = 2π f m = C = 2 2 C 4π f m () Záme-li yí arametry vyíaéh vdu můžeme stavit hdtu aralelíh tlumícíh dru, r který latí: R = 2 C Hdtu dru zakruhlíme a celé desítky Ohmů, řečteme hdtu áhradí kaacity a zětým dsazeím d vztahu () vyčteme skutečý vlastí kmitčet f mskut.. De: Skuia: Autr: - 2 -

3 b) Výčet rudu aralelím tlumicím drem latí: Pr imedaci vdu s aralelím tlumicím drem a rud jím rcházející 2 2 Z R += X, I =, 3 Z Nyí zbývá je určit fázvý suv tht rudu vůči aětí. Platí ϕ = arcta X R c) výčet ztaveéh aětí Při vyíáí mhu astat dva mžé stavy. Zarvé stav kdy vyíáme vd vysce iduktiví ( >>R ), tm ztaveé aětí kmitá klem aětí zdrje ( tzv. veé aětí ), eb kdy vyíáme vd mál iduktiví ( <<R ), tm je ztaveé aětí aeridicky řetlumeé. Obecě lze a říady sat těmit rvicemi: si ω t + ϕ siϕ siω t + csω t e ω α αt a) ( ) z = α αt b) si( ω ϕ ) siϕ sihδ cshδ z = t + δ t + t e (2) (3) Pr říad kdy jede děj řechází d druhéh, tz. děj kmitavý d aeridicky řetlumeéh (děj a mezi aeridicity) latí αt [ e ] c) = si( ω t + ϕ ) siϕ ( + αt) z (4) Vlastí řešeí: - vd bez tlumícíh dru (f = 5000 Hz, α = 000) r zadaé hdty stuě vyčteme: De: Skuia: Autr: - 3 -

4 2 ω = 2 π f, = = fm 3, Dsazeím d rvice (2) a řešeím r siϕ ϕ = (ϕ = π/2) vyčteme růběh ztaveéh aětí v rzsahu cca jedé ůleridy aětí zdrje. - vd s tlumicím drem r mezí kmitčet ( f = f mskut. ) Pr tet říad musíme vyčíslit hdtu tlumícíh čiitele α, r který latí α = 2 R C a dsazeím d vztahu (4) za stejých dmíek jak u vdu bez tlumícíh dru vyčteme růběh ztaveéh aětí a mezi eridicity. - vd s tlumicím drem r vlastí kmitčet ( f < f m ) Prtže vlastí kmitčet vyíaéh vdu je meší ež mezí, erjeví se vliv tlumícíh dru, tz. růběh ztaveéh aětí bude kmitavý. Obdě jak v ředešlých říadech vyčteme stuě jedtlivé veličiy třebé r dsazeí d vztahu (2), a t : Vlastí úhlvu frekveci ω, áhradí kaacitu vdu C a čiitel tlumeí α a vyčteme růběh ztaveéh aětí r stejý časvý iterval jak v ředešlých bdech. - vd s tlumicím drem r vlastí kmitčet ( f > f m ) Prtže vlastí kmitčet vyíaéh vdu je yí větší ež mezí, rjeví se vliv tlumícíh dru ještě více, tz. růběh ztaveéh aětí bude aeridicky řetlumeý. Vlastí výčet je idetický jak v ředchzím bdě, s tím rzdílem, že míst úhlvé frekvece ω vyčteme čiitel δ a dsadíme d vztahu (3). δ = kde C je áhradí kaacita vdu r zadaé f 2. 4 C C 2 R Všechy čtyři vyčteé růběhy vyeseme ve slečém grafu a vyhdtíme. De: Skuia: Autr: - 4 -

5 Pzámky: Vlastí zadaé hdty zvlte z tab. Zadáí [kv] I k [ka] f [Hz] f 2 [khz] De: Skuia: Autr: - 5 -

Elektrické přístroje. Přechodné děje při vypínání

Elektrické přístroje. Přechodné děje při vypínání VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306

Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306 74 Odchlka římek Předklad: 708, 706 Př : Zakj a rej defiici a mžé hdt: a) laimetrick zaedeé dchlk římek b) úhl ektrů zaedeéh aaltické gemetrii Na základě ráí arhi st r ýčet dchlk římek aaltické gemetrii

Více

Řízení otáček změnou počtu pólů

Řízení otáček změnou počtu pólů Řízeí táček změu pčtu pólů Tet způsb řízeí táček mtrů umžňuje změu táček puze p stupích. čet stupňů však ebývá veliký, běžě se pužívá puze dvu stupňů. r zvláští účel lze pužít i větší pčet stupňů. T však

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

ě ď Č ú ď Š Á É ř Č ú ř ě ř ě é ě ů é ř ě ř š ř é ž é ž š é š ý é ř é ě ř ů ý ž ž ě ý ř é ě ř ů é é ž é ž ř é é ř Ž é ř é ú ý é é ž ř ž ž ě é ě é š ě ň é ž ř š é š ý é Ť ď é ě ř ů ý ž ž ď ž ý ř é ě é é

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

ř ř ď ř ř ř ř é é ř ř é ř ř ř ú ů ů Ý ř ř ň é é ř ť ř ř ř ř ř é ř ř Í Ú é é ř ř ř ř ř ř ú ů ů ů Č é Ž ř ř ň Ž é ú ř ů ř ř é ú ů ř ř é ů ř ú ř é ř ú ř ů ú é ú é ř Ť ř ů ř ů ů ú ů ř ů ř ř ř ť ž Í é ž ú ř

Více

Á Ý Á Ť ĚŽ Í Ý Ť ŘÍ Ť Š Í ť Č Ž Č Č Ý Á Í Ž Š Á Ž ň Á Í Í Í Á Č Ř Á ÁČ Á Ž ť ť Í ť Ť ť Ť Ť Ť Ť Í ŘÍ Š Ť Ť Ž ŠŽ ň Ť Ť ň Š ň Ť ú Í Ý Á ď Š Ř ď Ť Í ď ň Ť ň ň Ď Ž Ž ň ň ň Š Ť Š ň Í ň Í ň Ť ň ť Č ň Š Š ň Í

Více

Ě Ý Í Č ě ř ŠÍ Á Ú Ř Ž ú Ž Ž Ú ž ě ů ž ý ř ď ř ů ů ž ý ě ř ř ě ě ý ú ď ž ý ě ě ř Í ž ý ý ě ý ú ď ž ý ý ů ě ý ž Ž Í ř ž ě ž ě ý ú ď ž é ř ý ž ď ž ř ů ý ř ý é ú ž ř é ž ů ř é é ů é ř ě é ž ě ý ř é é ř Ž

Více

Ř Í Š Š Č Ť š é é ž é é é Ť š ť Ť ť ž ž Ť Ť š Í Ť Ž č é č č ž é č ž Ť š Ť Ď ž ž é ž Í č ň é Ť ž é é é Č č ž ž ř ž š š č č š ď Ž Č Ť é é Ť č é ž é ž é é é Ť ž ň š Ť Ž č š ž Č é č é š é é Ť Ž é č č š š é

Více

Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

2.2. Termodynamika míšení

2.2. Termodynamika míšení .. ermyamika míšeí Míšeí lyů Míšeí lyů rbíhá amvlě, a tey ři ktatí teltě a tlaku muí být tet ěj rváze ížeím Gibbvy eergie. Důkaz r ieálí lyy: čátečí tav kečý tav + + G + G mě + Změa Gibbvy eergie ři tmt

Více

Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n

Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n ieárí zbrzeí V prstru je dá krtézský systém suřdic Oyz Ozčme symblem f tčeí klem sy 9 ve směru d y k z symblem g tčeí klem sy y 9 ve směru d z k symblem h tčeí klem sy z ) Určete suřdice bdů f ( M ) (

Více

ť ť ť ó ť Ž ť ť ó Č ň ů ť ť ť ť ů ňť ť ů ť ť ť ť ť Č Č Č Í Ý Ý ť Č Č ť Š Č ď ť Ý Ú ť ó ť ó ď ů ň Ó ť ť ó ň Ř ó Ó É ď ó Ň ň ť Č ň ó Ý Ý ť Ý Ý ó Ž Ý Č Ř Ý ť Ý ť Ň ť ť Č Á Š Č Ž Č ť ť ů Č ů Č Č ť Č Ú ď ó

Více

O Jensenově nerovnosti

O Jensenově nerovnosti O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú

Více

ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í

Více

ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š

Více

Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý

Více

Metody získávání nízkých tlaků

Metody získávání nízkých tlaků Medy získáváí ízkých laků. Základí rici čeráí Čeraý rsr - vakvá kmra (lak, kcerace, vý če čásic N a vývěva (lak

Více

ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž

Více

Č é ě é ě ě š ř ů ó ú ů ě ě š ř ů ř š ř ě š é ě ř ě ř é š ě š ú Ř Ť Č é ě Č ř é š ě š ú š ř é š ě é š ě ž š Č ú ř ě ě é é ů ž é ž ť ě š š š é é é ě é š ďě ň é ě éž ů ě ř ř ě ř é š ě ž ě š ž š é ř ž ě é

Více

ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

ě ř é í ří í é š ý š Š ě š ří í é í í í í Ú í í í í í í ě ů í é é ř é ú ě š ú ě é ž é ě é ří ěž í Ú é í ř é í š ř í í Š ří ý í í ž ří ů š í é í ž ří ý ěř ž í š í í ž í í ě Č ří é í í í í ř ě í š ř í í

Více

Ž Ě Č ÝÚ Ú ž Č š Í Í ň Í Ú ř Ů ů Ž Í Ú ů ů Ů ů ř ř Í Ů Í ů ř ř ř ř ř ň Í Í É ň ů Ú ň Ě Í Č ŘÍ Ů Í Ř ň Ž ů ň ů ř ř ř ň ř ř ň ř ř ň ř ř ň ř É ř ň š Ž ř Ť ř ř ř ř ř ř ř ů ř ř ů Ů ř ň ů ř ř ř ř ř ř ř Ž Ž ó

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Vývěvy pracující na základě přenosu impulsu

Vývěvy pracující na základě přenosu impulsu Vývěvy racující a základě řesu imulsu Na mlekuly čeraéh lyu se růzými zůsby řeáší imuls (hybst) v žadvaém směru čeráí - d vstuíh hrdla vývěvy k výstuímu. Mlekuly lyu mají samzřejmě stále své eusřádaé teelé

Více

Á Č É ŘÍ ě š ž ě ě š ú ě ů ě ě ě ž Ž ž ě ž ů ě ě ň š ú ě ž ě ž ě Á Á ď ď Ý ž ů ě ě ě ž ě ž ě ů ů ě Ý ž ů ě ěž ž Ý Č ě Ý ůž ěž ě ž Ý ž ůž ě ě ž ě ž ú ě ůž ěž ůž ě ě ě ž ůž ě ž ž ě ů ě ě š ú ž ě Ý ě ž ůž

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

ý Š Á ž Ě Ě Á Í Í ý ě ě ů ý Ž ž ý ž ý ě ý ŽÍ ě ě ě ů ý ž ý Í ě ě ě ž ý ě Ž ě ž ý ě ě ě ů ů ě ě ě ů ž ě ž ě ě ž ž ý ž ě ě ž ý ž ě ě ě ž ý ě ž ý ž ě ě ě ž ě ě ž ě ě ž ě ž ě ž ě ě ň ě ě ěž ě ě ů ý ý ý ě ý

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

Ř ň ř Í Č Č ř Č ě ů ť Í ř Ř Š Č ě ů Ž ú Č Č Š ě ř ě ě ř ě ř Č ř ů ř ě ří ř š ř ř Č Š ř š ů Ž ř ů ů ř š ň Í ř ř ě Č ě Č Č Ě ť ú Í Ť Í š Č Ž ě šř Ž Č Ú ř ú ř Č Í ě ě Ž š Ž ř Ž ě ě Ž ů ů ř Č ř Í Š ě Ž Š Č

Více

í í ý ý ý é íš ů ý í á ě í ří áš ý í ě í í ý ý ý á íš á í Ží á á ů í á í á é á é Č ů é é é á í š ě Ž Č ů ř í á ášť á ě á ř í Č áš á ě á é ř ý í é á ý ě ý š í ý ší í í á ř á í í í ý ě ř š í í Ž í é ř š

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Á É Á Í ř é á á á č ý á í é í í á í č íř í á í ř í Úř á í á ě ý í é č ř ý á á ě í ě ší ř ů á á č ě í é á á í ř ý á ť í á á ě á í é ř é á ě í ť č é ě á ě ú ž é ě í ť íč é í ř é á í í ě é í í ř Úř á í á

Více

Á É é Č é ř é ě é é ě ěř ů Á Ě š ý ý ř ý ř ě ě ý ě ó š ě é Ú Č Í ý ý ěř ř ř Č Č é š š ó ě ř ě ěř é ů Á É é Ř Á Ě Í Č é ě ý ě ř ý ž ě é ě ěž š žšř ů Í ř ý ý ě š žšř ů é šš ř ř ž Č šš ž é Á É é Č é ř é ě

Více

Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í

Více

Á ě Ě Ň Ý ř ě ř Ř Ě Á Ž ú ř Ž ě Š Ž ě Ž ř ů Ž ř ú ř ř ř ě ě ř ů ř ř ě Ň Ý Ě Á ř ě Ž ř ů ú Ž ř ř Ž Ž ů ř Ž ě ř Ž Í Í Ě Á ě ř Ž ř ž ř ř ž ž Ž Á Í ř ž ř ř ř ř Í Í Ě Á Á ř ř ě ů ěř ě ěř Á Í Ň Ý ř Ý ž ě ě ř

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

ř ě é ř š ž ř ý é ů ý é š ž ř é ě ě ň ž ř é ř ř ý ř Ý é Ý Ý ú é ř ř ě é ž ů Á ž Č é ť Ú ýš é ž ž ú é ú š ý ž ž Ž é ě ě é ě ř ě ů ě é é ú ě Ť é ě é ě ý ř ž ý ž ř ě š Ť ž ě é ý ě é ž ž ť ě š é ě é š ě š

Více

Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im

Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im Střední průmyslvá škla strjní a elektrtechnická Resslva 5, Ústí nad Labem Fázry a kmplexní čísla v elektrtechnice A Re + m 2 2 j 1 + m - m A A ϕ ϕ A A* Re ng. Jarmír Tyrbach Leden 1999 (2/06) Fázry a kmplexní

Více

Č Č ž é ň ě ť ě ě š é ň ě éš ň ě Í ž é š ř ď ě š ě ě š é é ě ň é ě š ť ě é ě ě š ť ě ť ě ěž Ž ěž ť é ěž é Ž ť ě ě ě ť š ě Á Í Ů ť ť ť š Ž Í ď Ě š ě ě Í ě é ě ě ě ť ě ě ť é ř é ť ě ž é Í ě é Ž é ě Ů Í š

Více

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

Á Č Á Ú ú ž Ú ž ž ž ž ž Ť Á Ú ž ň ň Ž ž ň ň Ř ž ž ú ň ó Ň Ě É Á ť ň ó Ú ž Ú Ú ž ž ž ň ž Ú ž ň ž ž ž ž ž ž Ž Á žá ž Ů ž ž ž ž ž Č Š ú ž ú ú ú Ě Ú ť ž ž Í Š Š ž ž Ú ú ž Ů ž ž ú ž ž ú ú ú ž ž ž ú ž ž Ě Ž

Více

ě ý šš ř ě ň Á ě ř Ů ř ě ěš ý é ě é ž ě é ě ěš ě ěš ý ž š ě é é ý ě šť ěř š é š ž ý ě ů ě é šť ě ž ý é š ěž é ž š ě š š ě ý ě ě é š ě ě ý ě ý ů ň ý ž é ř ž ž é ř ř Í Ř Ž ž Ř ň ÁŠ Á Ž Ý ř é ý Š Í Á ž Ě

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Í ý ý Í š é ú Í Á É ď ř ú ř ř é ň é é Ť ř š ř é ž é é ž ž ý ř é ř ů é é ž é ř ž ř é é ř ž é Í ú ý é é ž ž ž é é Š ň é ž ř Ž ř é é ó é ž ř é Š Ú ž ď ř é ž Ť é ů Š ý ú ř Ť ž ž ř ř ř é š ý ž ý é ř Ť š ř ř

Více

É Á Í Í Á Á ÝŤ ÚŘÍ ř ý ř ř říú ř É Á Í ÍÍ Á Í ž ž ý ýš ý ř ý š ř ů é ř é é ÍÚ ž ř É é ř éř ř é é ř ý é ř ř é Ž é é ýš é ď é ú ř Č Ú ř ř ž ů ř š éž Ť ž ů ř ř š é ž ď ů Ž ď Ž ď ý Ž ů ý ž ů é ž ůí Ý ůž ř

Více

š ú ú Č Č ř ž Ř Ě ř ř ů Ě Ý Ě É Ř ů ř ě ě š ř ů ř ů ř ž Ř ř ě ř ě ř ř ě ú ž š š ř ř ě ř ů ě ř ř ň š ú ě ř Ú ňě ř Č ě ř š ě ř ř ě ř Ř ž ů Ř Ú ž ů ě š ř ě ř Ú Ú Ú Ú ž ž Ú ů ž ř ě ů ř É Ú ě ř Ú ň ÚČ ě ě Č

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Geometrická optika. Fermatův princip

Geometrická optika. Fermatův princip Fermatův pricip Gemetrická ptika světl se šíří mezi dvěma bdy A a A p takvé dráze, že dba k prběhutí tét dráhy je extrémí eb staciárí ve srváí s jakukliv susedí drahu A A δv ( A, A ) δ ( x, y, z) ds 0

Více

1 Nekonečné řady s nezápornými členy

1 Nekonečné řady s nezápornými členy Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete

Více

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program)

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program) 4. Torba áhradího schématu Před proedeím ýpočtu sítě uto ji adefioat (i případě, že yužíáme počítačoý program) Pro optimálí olbu řešeí jsou důležité zjedodušující předpoklady chceme sestait áhradí schéma

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

ž ó ř š ť é ž é ů ť ň ť ř ť ž č é ú ž ř ě ú ě ď ř ů ě ěž ů ě ř š Č ď č ř ě č řš č ř ř ě ě ě Ť ť ě ť ó ú ě óó ů Ř ň ň ó ě ď ě č é ů ř Ž ž č č é č ž ž ú ž ž ž ž ž ž ž ř ťž ž ž ť č ž ů š č š č š č š č š ě

Více

1.6.3 Osová souměrnost

1.6.3 Osová souměrnost 1.6.3 Osvá suměrnst Předklady: 162 Pedaggická známka: Je třeba stuvat tak, aby se v hdině stihnul vyracvat a zkntrlvat bd 5. Pedaggická známka: Hned u střídání vázy je třeba dát zr. Narstá většina dětí

Více

č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š

Více

Prostorová akustika. Akce: Akustické úpravy nové učebny č.01 ZŠ Líbeznice, Měšická 322, 250 65 Líbeznice. akustická studie. Datum: prosinec 2013

Prostorová akustika. Akce: Akustické úpravy nové učebny č.01 ZŠ Líbeznice, Měšická 322, 250 65 Líbeznice. akustická studie. Datum: prosinec 2013 Prostorová akustika Číslo dokum.: 13Zak09660 Akce: Akustické úpravy nové učebny č.01 ZŠ Líbeznice, Měšická 322, 250 65 Líbeznice Část: akustická studie Zpracoval: Ing.arch. Milan Nesměrák Datum: prosinec

Více

ť Á ČÍ Á ť ť Í Á Í Í ú ť Ů Ů ú ť Ě Ů Ž ť ť Ů Ů Ů Á ť Í Ó Á Ý ň Č Ě Ó Ž ň ť ú ň ť Ě Í Í Í Á Ý ť Í Á Ž Ů ť Ů Ž Ě ť ť ú ť ť ť Ž Ě Ě ť Ů Ů Ě Ů Ě Ž ť Ě Ě Ě Ó Í Ď Ó ť Ě Ě Í Ý Ě Ů Ó Ů ť ť ť É Ž Š Š Š Ž Č Š Š

Více

Ť Ž Ě Ý Ý ť Ú ě ě ž Ú Ž ě Ú ě ě Ú ě ě ě Ť Ž É Ó Ý ď Ú ť ž ú ž Ž ž ž É Ž ě ž ž ě ž ž ž ž ě ž ú ž ě ó ě ě ť ž ě ó ó ž ě ě ě ě ú ě ě ě ž ě ž ě ě Ž Ž ž ž ě ě ě ž Ě Ý ť Ž ě ž ě ě ň ě Ú Ž ě Ú ě ž ť ž ě ě ě ž

Více

ó š Ž šť Č Č š ů š ž š š š ž Ž š š š š š š š š š Ú Í Š Ě Ú Í š É Ý Á Š Š ú ň Í š Ý š ň Š É É š š š ň Š š Ů š ž ž š Í Ž š ú Č Á š Č š š š ú ú š ží ž ň š Ť Á š Ř Ě Š Ě Á Á Á š ž š ž š ž š š š ú š Í š š š

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

VŠB Technická univerzita, Fakulta ekonomická. Katedra regionální a environmentální ekonomiky REGIONÁLNÍ ANALÝZA A PROGRAMOVÁNÍ.

VŠB Technická univerzita, Fakulta ekonomická. Katedra regionální a environmentální ekonomiky REGIONÁLNÍ ANALÝZA A PROGRAMOVÁNÍ. VŠB Technická univerzita, Fakulta eknmická Katedra reginální a envirnmentální eknmiky REGIONÁLNÍ ANALÝZA A PROGRAMOVÁNÍ (Studijní texty) Reginální analýzy Dc. Ing. Alis Kutscherauer, CSc. Ostrava 2007

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

ř ě é é ě ř ž ě é Ž Ý Ú ž é ě ů é ř é Ý é ů ÁŠ ú é é é ž ž é ě ů ž ř ž ů ě ň ú ě š ě é ú ú š ť š ě é ř é ú š ú š ě é ř ť é ž š ě ě ů ě ě ž ř ě ž ř ž ú ú š š ě ř é é ř š ě ř é ě ř ě ů š Ů é ž ů š ě ě ě

Více

č čí č í ě ě ř ů ě ř é í é ů Č é é ř í í ó é ř í í ó í č é ž é Č ý ěší Ý Ř č ž í í ý č é ž ú í ěš é Š ó ě í í í é ů Č é ž ň ěší ý ř ů í í é Č ř é í ý ý ť č í ř ě ě é ř úč é ý ů Č é š í é é č é ý ř š é

Více

Opakování (skoro bez zlomků)

Opakování (skoro bez zlomků) 2.2.27 Oakvání (skr bez zlmků) Předklady: 010217 Pedaggická známka: v Tét hdině užívám systém takzvanéh výstuu. Žáci čítají samstatně s tím, že zájemcům máhám, nikd však nemůže čekávat, že budu stát řád

Více

VY_32_INOVACE_G 21 17

VY_32_INOVACE_G 21 17 Název a adresa škly: Střední škla růmyslvá a umělecká, Oava, řísěvkvá rganizace, Praskva 399/8, Oava, 7460 Název eračníh rgramu: OP Vzdělávání r knkurenceschnst, blast dry.5 Registrační čísl rjektu: CZ..07/.5.00/34.09

Více

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu: RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%

Více

š ů Á Ě Ž Í Ř Í ě ř ě ř Ž š š ě ě úť š Č ě Ř ÁŠ ě ž ř ě ě ř š úř ě ě ě ů ě ě š ř ů ě ř š úř ř ě ďě š ř ů ů úř ú ř ě ř ž ď ě Č ě ě š Č ě ě ě ú ě ě ě ě ú ě ě ú ě ě ú ě ě ú ě ě ě ě ú ě ě ú ě ě ě ě ě ě Í ú

Více

Kotlík na polévku Party

Kotlík na polévku Party Ktlík na plévku Party 100.054 V3/0107-1 - CZ 1. Obecné infrmace 102 1.1 Infrmace týkající se návdu k bsluze 102 1.2 Vysvětlivky symblů 102 1.3 Zdpvědnst výrbce a záruka 102-103 1.4 Ochrana autrských práv

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více