MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
|
|
- Lubomír Havlíček
- před 2 lety
- Počet zobrazení:
Transkript
1 Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové desy vzhledem ose procházející těžištěm TEORETICKÝ ÚVOD Moment setrvačnosti Moment setrvačnosti je fyziální veličina, terá je mírou setrvačných účinů tělesa při rotačním pohybu Pro tělesa se spojitě rozloženou hmotou je moment setrvačnosti definován vztahem = r dm, () ( V ) de r je olmá vzdálenost elementu hmotnosti dm od osy rotace a V je objem tělesa Moment setrvačnosti tedy závisí na rozložení hmoty vzhledem rotační ose Čím dále od osy rotace je hmota v tělese rozložena, tím větší je moment setrvačnosti Pro všechny rovnoběžné osy je moment setrvačnosti nejmenší vzhledem ose, terá prochází těžištěm Tuto sutečnost vyjadřuje Steinerova věta: Moment setrvačnosti vzhledem určité ose se rovná momentu setrvačnosti vůči ose s ní rovnoběžné a jdoucí těžištěm, zvětšenému o součin hmotnosti m tělesa a čtverce olmé vzdálenosti a těžiště od této osy, tj: = + ma () Z definice () lze určit moment setrvačnosti homogenních těles pravidelných geometricých tvarů Např moment setrvačnosti ose jdoucí těžištěm olmo na rovinu homogenní obdélníové desy o stranách b, c a hmotnosti m je ob = m( b + c ) (3) a ruhové desy hmotnosti m a poloměru R je = mr (4) r Kyvadlo Fyzicé yvadlo je aždé těleso otočné bez tření olem vodorovné osy neprocházející těžištěm Vychýlíme-li yvadlo z rovnovážné polohy o malý úhel α, začne onat periodicý pohyb, pro jehož dobu yvu odvodíme z pohybové rovnice pro rovinnou rotaci vztah: Viz Hofmann, Urbanová M: Fyzia I, str 9-97 ** Viz Hofmann, Urbanová M: Fyzia I, str - 75
2 = π, (5) mga de je moment setrvačnosti tělesa vzhledem pevné ose rotace Doba yvu je doba, terou yvadlo potřebuje pohybu z rovnovážné polohy do rajní výchyly a zpět do rovnovážné polohy nebo doba z jedné rajní výchyly do druhé rajní výchyly na opačné straně Doba mitu T = Matematicé yvadlo je hmotný bod hmotnosti m zavěšený na nehmotném vláně dély l eho moment setrvačnosti je dán součinem hmotnosti bodu a čtverce jeho vzdálenosti od osy, olem níž ývá: = ml Doba yvu matematicého yvadla je pa podle vztahu (5) pro a = l rovna: l = π (6) g Déla l matematicého yvadla, teré ývá se stejnou dobou yvu jao fyzicé yvadlo, se nazývá reduovaná déla fyzicého yvadla Vztahy (5) a (6) platí přesně jen pro malý rozyv α 5 Máme-li měřit dobu yvu, musíme udělit yvadlu taovou počáteční výchylu α, aby bylo možno pozorovat větší počet yvů Měřenou dobu yvu α je potom nutno origovat na nulový rozyv podle vztahu: = α ( ) (7) Hodnoty pro něteré úhly rozyvu jsou uvedeny v tabulce: α ,,48,7,9,97,48 PRINCIP METODY Stanovení momentu setrvačnosti tuhého tělesa z doby yvu Ze vztahu (5) plyne pro moment setrvačnosti vzhledem ose neprocházející těžištěm výraz: mga =, (8) π terý umožňuje výpočet momentu setrvačnosti tělesa z jeho hmotnosti m a z doby yvu (naměřená hodnota α origovaná na nulový rozyv) vzhledem ose vzdálené od těžiště o délu a za předpoladu, že známe tíhové zrychlení v místě pousu a dovedeme určit vzdálenost a Z momentu setrvačnosti pa můžeme ze Steinerovy věty () určit moment setrvačnosti vzhledem rovnoběžné ose jdoucí těžištěm Tuhým tělesem, jehož moment setrvačnosti máme určit, je obdélníová resp ruhová ovová desa V desách je odvrtáno něoli ruhových otvorů nad sebou, do terých se postupně upevňuje břit s upevňovacím šroubem Ostří břitu definuje rotační osu (viz obr ) Desa je ostřím břitu opřena v lůžu na stojanu K odečtení úhlu rozyvu slouží úhlové měříto, dělené po 5, teré se poládá na stojan 76
3 Protože v desách jsou otvory, nebudou jejich těžiště přesně v jejich geometricém středu Při určení vzdálenosti těžiště od osy rotace bychom tedy měli uvažovat posuv těžiště, způsobený odvrtáním otvorů *) Vzhledem tomu, že posuv těžiště je zanedbatelný vzhledem měřeným vzdálenostem a jednotlivých os od T, de T je geometricý střed (viz obr ), lze do vztahu (8) dosadit za a přímo měřené vzdálenosti a jednotlivých os od T a za celovou hmotnost m součet hmotnosti desy m a šroubu m (m = m + m ) R a T Obr Definování rotační osy Např pro ruhovou desu (viz obr ): Označíme-li R a r příslušné poloměry desy a otvorů, m hmotnost desy s otvory, m hmotnost šroubu, m hmotnost odvrtaného materiálu z jednoho otvoru pro ruhovou desu je mr m = R 4r Pro obdélníovou desu o stranách b, c je m m π r bc 4π r = V další úvaze je značení pro obě desy stejné; T geometricý střed, T těžiště desy s otvory, T těžiště desy s upevněným břitem v -tém otvoru, a i vzdálenosti jednotlivých os od T, x = T T Hledaný posuv těžiště x dostaneme z podmíne rovnováhy tuhého tělesa mx = m ( a + r), n i= i m ( x x) = m ( a + r + x), ze terých pro posuv těžiště dostaneme n m a i + 4r m( a + r) i= x = Obr Posuv těžiště, způsobený odvrtáním otvorů m + m Pro výpočet momentu setrvačnosti vzhledem jednotlivým osám (v případě ruhové desy =,, 3, 4) bychom tedy měli do vztahu (8) dosadit za a vzdálenost osy ývání od těžiště a = a + x a za hmotnost m = m + m R x r T T T x a ḱ a í 3 Postup měření a vyhodnocení Zvažte desy (m ) a břit s upevňovacím šroubem (m ) na daných vahách 77
4 Změřte ocelovým měřítem geometricé rozměry dese: poloměr R v případě ruhové desy a rozměry b, c v případě obdélníové desy Nejistoty měření určete odhadem 3 Postupně upevňujte břit do jednotlivých otvorů a změřte posuvným měřítem vzdálenost a mezi břitem a geometricým středem vyznačeným na desce 4 ao první otvor (osa č ) berte otvor nejbližší e geometricému středu T 5 Pro aždou osu změřte dobu 5 yvů 5-rát Dodržujte vždy stejný úhel rozyvu α Spočtěte α a origujte na nulový rozyv 6 Momenty setrvačnosti vzhledem jednotlivým osám neprocházejících těžištěm počítejte ze vztahu (8) ejich nejistoty ze vztahu (9) 7 Momenty setrvačnosti vzhledem ose procházející těžištěm určete ze vztahu () ejich průměrnou hodnotu určete ze vztahu () Zároveň spočítejte standardní nejistotu u pro jednu vybranou osu ze vztahu () 8 Tabula pro záznam naměřených a vypočtených hodnot: ruhová desa č m = (g), m = (g), m = (g), R = (cm) osa č 5 α (s) α (s) (s) a (cm) (g m ) (g m ) 9 Spočtěte moment setrvačnosti vzhledem ose jdoucí těžištěm z teoreticých vztahů (3) a (4) a spočtěte standardní nejistotu u Tyto hodnoty porovnejte s výsledy zísanými z naměřených hodnot a vypočtených pomocí vztahu () 4 Přesnost výsledů Přímo měřenými veličinami v úloze jsou čas, déla a hmotnost Přesnost výsledu je závislá na přesnosti těchto přímo měřených veličin Pro absolutní standardní nejistotu měření momentu setrvačnosti vzhledem jednotlivým osám, teré neprocházejí těžištěm, odvodíme ze vztahu (8): u um ug u u a = m g a (9) Ve vztahu (9) jednotlivé nejistoty přímo měřených veličin představují nejistoty typu B Chyba vážení na daných vahách je m = ± g Bereme-li v úvahu bimodální rozdělení Θ =, pa u m = m Chyba měření vzdálenosti a mezi břitem a pravděpodobnosti ( ) 78
5 geometricým středem je při užití posuvného měříta a = ±,5 mm Při předpoládaném a rovnoměrném rozdělení ( Θ = 3) pa u a = Chybu tíhového zrychlení budeme 3 odhadovat jao chybu způsobenou zaorouhlením Vzhledem chybám ostatních veličin ve vztahu (9) lze tuto chybu zanedbat Chyba stanovení doby yvu je = ±,4 s (chyba stope je ±, s pro 5 yvů) Uvažujeme-li bimodální rozdělení ( = ) Θ, pa u = Průměrnou hodnotu momentu setrvačnosti vzhledem ose procházející těžištěm obdržíme ze vztahu n n = =, () de jsou hodnoty momentů setrvačnosti zísané přepočtem ze Steinerovy věty () z experimentálně stanovených hodnot momentu setrvačnosti vzhledem jednotlivým osám, teré neprocházejí těžištěm Standardní nejistotu u vzhledem vybrané ose odvodíme ze vztahu (): 4 um ua u = u + m a +, () m a de jednotlivé nejistoty představují nejistoty typu B Standardní nejistota u je daná vztahem (9), nejistoty stanovení hmotnosti u m a vzdálenosti a mezi břitem a geometricým středem u a jsou uvedeny v rozboru stanovení nejistot přímo měřených veličin ve vztahu (9) 79
(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.
Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného
1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
DYNAMIKA ROTAČNÍ POHYB
DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Měření momentu setrvačnosti prstence dynamickou metodou
Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte
Experimentální hodnocení bezpečnosti mobilní fotbalové brány
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.
1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul
1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy
MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení
Stanovení hustoty pevných a kapalných látek
55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní
Mechanické kmitání - určení tíhového zrychlení kyvadlem
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení
3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření
6. Měření Youngova modulu pružnosti v tahu a ve smyku
6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny
Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V
7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL
Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN
ELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou
Test jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.
VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL
VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská
TŘENÍ A PASIVNÍ ODPORY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez
Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole
Moment síly Statická rovnováha
Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný
Obr.1 Princip Magnetoelektrické soustavy
rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního
Několik nápadů o volném pádu. Pracovní listy
UNIVERZITA HRADEC KRÁLOVÉ - PŘÍRODOVĚDECKÁ FAKULTA K A T E D R A F Y Z I K Y IVO VOLF - PAVEL KABRHEL Několik nápadů o volném pádu Pracovní listy HRADEC KRÁLOVÉ 01 Obsah Měření tíhového zrychlení g z volného
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí
Univerzita Tomáše Bati ve Zlíně
Univerzita omáše Bati ve Zíně LABORAORNÍ CVIČENÍ Z FYZIKY II Název úohy: Měření tíhového zrychení reverzním a matematickým kyvadem Jméno: Petr Luzar Skupina: I II/1 Datum měření: 3.října 007 Obor: Informační
β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
Laboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
MJ ČESKÉ VYSOKÉ UČENí TECHNIC'KÉ V PRAZE
MJ ČESKÉ VYSOKÉ UČENí TECHNIC'KÉ V PRAZE FAKULTA STROJNí Prof.lng. František Hrdlička, CSc. děkan V Praze dne 5.1.2010 Návrh kriterií pro výběrové řízení - Koncept bezpečné fotbalové branky 1. Splnění
2 i i. = m r, (1) J = r m = r V. m V
Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko
h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k
h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí
3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu
Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
ROVNOMĚRNĚ ZRYCHLENÝ POHYB
ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE
VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických
- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
Analýza dynamiky pádu sportovní branky, vč. souvisejících aspektů týkajících se materiálu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická katedra řídicí techniky Technická 2, 166 27 Praha 6 13. listopadu 2009 Analýza dynamiky pádu sportovní branky, vč. souvisejících aspektů týkajících
GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.
Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková
Název: Studium kmitů na pružině
Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano
Tuhé těleso, hmotný bod, počet stupňů volnosti hmotný bod je model tělesa, nemá tvar ani rozměr, ale má hmotnost tuhé těleso nepodléhá deformacím, pevné těleso ano Stupně volnosti konstanta určující nejmenší
Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa
Fyzika pokus 11 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Projekt TROJLÍSTEK podpora výuky přírodopisu, biologie, fyziky a chemie žáků ve věku 11 až 15 let reg.
Příklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P.
Řešení úloh. ola 53. ročníu fyziální olympiády. Kategorie B Autořiúloh:J.Thomas(,,7),M.Jarešová(3),I.ČápSK(),J.Jírů(5) P. Šedivý(6).a) Objem V ponořenéčástiválečuje63%objemu V celéhováleču.podle Archimedova
7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
Mechanika úvodní přednáška
Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je
F - Jednoduché stroje
F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Matematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
SCLPX 07 2R Ověření vztahu pro periodu kyvadla
Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.XI Název: Měření stočení polarizační roviny Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 10.3.2006 Odevzdaldne:
ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch
ZATÍŽENÍ KŘÍDLA - I Rozdělení zatížení - Letová a pozemní letová = aerodyn.síly, hmotové síly (tíha + setrvačné síly), tah pohon. jednotky + speciální zatížení (střet s ptákem, pozemní = aerodyn. síly,
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Úvod. 1 Převody jednotek
Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině
Jméno: Třída: Spolupracovali: Datum: Teplota: Tlak: Vlhkost: Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Teoretický úvod: Rovnoměrně zrychlený pohyb Rovnoměrně zrychlený pohyb je pohyb,
6 Měření transformátoru naprázdno
6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte
ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk
ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných
Tematický celek: Jednoduché stroje. Úkol:
Název: Kladka jako jednoduchý stroj. Tematický celek: Jednoduché stroje. Úkol: 1. Kladka jako jednoduchý stroj. 2. Navrhněte konstrukci robota s pevnou kladkou. 3. Určete, jakou silou působil při zvedání
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA SOUBOR PŘÍPRAV PRO 2. R. OBORU 26-41-M/01 ELEKTRO- TECHNIKA - MECHATRONIKA Vytvořeno
Základní jednotky v astronomii
v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
SCLPX 11 1R Zákon zachování mechanické energie
Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie
Lineární pohon s kuličkovým šroubem
Veličiny Veličiny Všeobecně Název Typ Znača Jednota Poznáma ineární pohon s uličovým šroubem OSP-E..SB Upevnění viz výresy Rozsah teplot ϑ min C -20 ϑ max C +80 ineární pohon s uličovým šroubem Série OSP-E..SB
Obsah 1 Technologie obrábění na CNC obráběcím stroji... 2
Obsah 1 Technologie obrábění na CNC obráběcím stroji... 2 Souřadnicový systém... 2 Vztažné body... 6 Absolutní odměřování, přírůstkové odměřování... 8 Geometrie nástroje...10 Korekce nástrojů - soustružení...13
1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.
1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí
6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:
6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s
Vzdělávací obor matematika
"Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost
Laboratorní práce č. 4: Určení hustoty látek
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník
17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 38 KONTROLA A POHONY]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman [ÚLOHA 38 KONTROLA A POHONY] 1 ÚVOD Úloha 38 popisuje jednu část oblasti sestava programu Solid Edge V20. Tato úloha je v první části zaměřena
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny
125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které
STŘEDNÍ PRŮMUSLOVÁ ŠKOLA V TEPLICÍCH
STŘEDNÍ PRŮMUSLOVÁ ŠKOLA V TEPLICÍCH Strojní oddělení Protokol o provedeném měření Druh měření Měření a kontrola vnějších závitů číslo úlohy 1 Měřený předmět 3 vzorky závitů Měřil Jaroslav ŘEZNÍČEK (T.
OVMT Kontrola úchylky tvaru a polohy Tolerance tvaru
Kontrola úchylky tvaru a polohy Tolerance tvaru Potřeba jednotného definování a předepisování tolerancí tvaru, směru, polohy a házení souhrnně zvaných geometrické tolerance byla vyvolána zejména v poválečných
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem