naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená."

Transkript

1 Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají 2 body. U otázek s možností volby odpovědi, je vždy správná právě jedna možnost. Správnou odpověd zřetelně zakroužkujte.v případě, že nebude jednoznačně zřejmé, která z variant je zakroužkována, či pokud nebude zakroužkována žádná nebo naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. 1. Uved te předpis a načrtněte graf libovolné posloupnosti {a n } n=1, která je ostře rostoucí a konvergentní. například posloupnost a n = 1 1 n, 2. Napište libovolné parametrické vyjádření úsečky y = x, x (, 1). například x(t) = t y(t) = t, t (; 1) 3. Uved te funkční předpis a načrtněte graf libovolné ostře klesající funkce f : R R tak, aby platilo: 1 f(x) dx = 8. pravidlo ostře klesající splňuje například funkce f : y = x + b a hledáme b tak, aby platilo 1 [ ] 1 ( x + b) dx = 8 x2 + bx = b = 8 b = Zadání úlohy splňuje tedy funkce f : y = x

2 4. Uved te příklad funkce dvou proměnných (předpisem nebo graficky), která je zdola omezená. například funkce f(x, y) = x 2 + y 2, [x, y] R. 5. Napište alespoň jedno řešení obyčejné diferenciální rovnice u (t) u(t) =, t R. Všechna řešení dané rovnice jsou tvaru u(t) = c 1 e t + c 2 e t, t R 6. Metodou prosté iterace řešíme nelineární rovnici x 2 x =. Rekurentní formuli uvažujeme ve tvaru x k+1 = x 2 k. Z jakého intervalu musíme volit počáteční aproximaci x, aby metoda konvergovala k řešení rovnice? (a) x (1, 2) (b) x 1, 1 (c) x 2, 4 (d) x ( 1, 1) (b) 7. Pomocí mocninné [ metody ] hledáme dominantní (v absolutní hodnotě největší) vlastní číslo 3 1 matice A =. Pro jakou volbu počátečního vektoru y 2 metoda nalezne dominantní vlastní číslo matice A? (a) y = [1, 1] T (b) y = [, ] T (c) y = [ 1, 1] T (d) y = [1, ] T (d) 8. Jaká je diskrétní L 2 -aproximace konstantní funkcí ϕ(x) = const. pro funkci f = f(x), x která je dána tabulkou i ? f(x i ) (a) ϕ(x) = 3 (b) ϕ(x) = 2,6 (c) ϕ(x) = 2 (d) ϕ(x) = 1,8 (b) 9. Pomocí složeného lichoběžníkového pravidla chceme přibližně určit x 2 dx. Jaký dostaneme výsledek, pokud budeme volit krok h = 1? 3 2

3 (a) 8,75 (b) 9 (c) 9,5 (d) 1 (c) 1. Necht P (A) =.3 a P (B) =.2. Určete P (A B) a P (A B) víte-li, že A a B jsou nezávislé. P (A B) = P (A) P (B) =.3.2 =.6 a P (A B) = P (A) + P (B) P (A B) = = V rámci statistického šetření bylo naměřeno následujících deset hodnoty: 3, 12, 1, 2, 3, 3, 1, 3, 1, 1. Spočtěte výběrový medián a výběrový průměr. uspořádáme hodnoty podle velikosti 1, 1, 1, 1, 2, 3, 3, 3, 3, 12, medián je prostřední hodnota, tj. x = 2.5, průměr x = 1 n xn = 3 1 = Na obrázcích jsou zachyceny pravděpodobnostní funkce dvou náhodných veličin. Určete zda (a) rozptyl náhodné veličiny X 1 je větší než rozptyl náhodné veličiny X 2 ; (b) rozptyl náhodné veličiny X 1 je menší než rozptyl náhodné veličiny X 2 ; (c) rozptyl náhodné veličiny X 1 je roven rozptylu náhodné veličiny X 2 ; (d) rozptyl náhodné veličiny X 1 a rozptyl náhodné veličiny X 2 nelze porovnat. (b) 13. Do jednoho obrázku načrtněte graf funkce hustoty N (; 1) a N ( 1; 3). 14. Je dána náhodná veličina X, která se řídí rovnoměrným rozdělením. Pro kvantily x.1 a x.25 této náhodné veličiny platí (a) x,1 < x,25 (b) x,1 > x,25 (c) x,1 = x,25 3

4 (d) x,1 a x,25 nelze porovnat (nerovnost záleží na parametrech rozdělení) (a) 15. Stanovte střední hodnotu a rozptyl náhodné veličiny, která se řídí rovnoměrným rozdělení na intervalu, 1. EX = 1 2 = 5 a DX = varx = = Napište obecný tvar smíšeného procesu ARM A(1, 2). y t = a 1 y t 1 + ɛ t + b 1 ɛ t 1 + b 2 ɛ t Pro X Exp (δ = 2) určete funkci hustoty veličiny Y = X 2. { 1 e x δ pro x Známe distribuční funkci exponenciálního rozdělení F (x) = pro x < Distribuční funkce Y :F (y) = P (Y < y) = P (X 2 < y) = P (X < y) = F ( y) = 1 e y δ Funkce hustoty Y : f(x) = F (x) = e y 1 δ 2 1 y δ 18. Uved te konkrétní příklady následujících hospodářských pojmů (respektujte účetní, nikoliv, daňové pojetí): (a) Výnos, který není příjmem: (b) Příjem, který není výnosem: (c) Výdaj, který není nákladem: (d) Náklad, který není výdajem: (a) Např.Tržba za dodávku odběrateli v okamžiku uskutečnění dodávky odběrateli. Příjmem se stává až v okamžiku zaplacení faktury. (b) Např. Finančním úřadem uskutečněný převod peněz podniku za nadměrný odpočet DPH. (c) Např.: Zaplacená vlastní daňová povinnost při měsíčním (čtvrtletním) vyúčtovaní DPH. (d) Např.: Účetní odpis majetku. 19. Vklad je úročen sazbou 2% p.a.. Úrok je připisován pololetně. Vklad na počátku ročního období obsahoval 1 mil. Kč. V průběhu ročního období nebyly na účtu žádné jiné než úrokové pohyby. Kolik bylo na vkladu na konci ročního období po připsání posledních úroků (uved te v milionech Kč na plný počet potřebných desetinných míst)? Při prvním připsání úroku (po půl roce) na účtu bude 1+1 tis.kč.=11 tis. Kč. Při druhém připsání úroku na účtu bude ,1 tis.kč = 12,1 tis. Kč. 2. (a) Do hospodářského výsledku podniku před daní nepatří příjem za nadměrný odpočet DPH. Správnou variantu zakroužkujte ANO NE 4

5 (b) Do hospodářského výsledku podniku před daní nepatří příjem peněz z vystavené faktury (výnosy za dodávku k této faktuře již byly účtovány). Správnou variantu zakroužkujte ANO NE (a) Nadměrný odpočet DPH do hospodářského výsledku podniku nepatří. (b) Příjem peněz za zaplacenou fakturu do hospodářského výsledku nepatří. Tato částka se do hospodářského výsledku dostala již při vystavení faktury. 5

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

6.8 Základní účtování nákladů a výnosů

6.8 Základní účtování nákladů a výnosů 6 Základní účtování nákladů a výnosů 6.8 Základní účtování nákladů a výnosů 6.8.1 Vymezení pojmu náklady a výnosy Náklady! & Při podnikatelské činnosti dochází ke spotřebě majetkových složek (například

Více

6.8 Základní účtování nákladů a výnosů

6.8 Základní účtování nákladů a výnosů .8 Základní účtování nákladů a výnosů.8.1 Vymezení pojmu náklady a výnosy Náklady Při zhotovování výrobků nebo provedení jiných výkonů dochází ke spotřebě výrobních činitelů (spotřeba materiálu, pracovní

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

Maturitní témata ÚČETNICTVÍ, EKONOMIKA

Maturitní témata ÚČETNICTVÍ, EKONOMIKA Maturitní témata ÚČETNICTVÍ, EKONOMIKA 1. a) Právní úprava účetnictví b) Ekonomika a ekonomie, potřeby, základní ekonomické pojmy 2. a) Účetní dokumentace b) Ekonomické systémy, úloha státu ve smíšené

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika a statistika

Matematika a statistika KMA/SZZMS Matematika a statistika Matematika 1. Číselné posloupnosti: Definice, vlastnosti, operace s posloupnostmi; limita posloupnosti a její vlastnosti, operace s limitami 2. Limita funkce jedné proměnné:

Více

Přednáška č. 7 ZÚČTOVACÍ VZTAHY. Charakteristika zúčtovacích vztahů. Pohledávky z obchodního styku. Závazky z obchodního styku

Přednáška č. 7 ZÚČTOVACÍ VZTAHY. Charakteristika zúčtovacích vztahů. Pohledávky z obchodního styku. Závazky z obchodního styku Přednáška č. 7 ZÚČTOVACÍ VZTAHY Charakteristika zúčtovacích vztahů Pohledávky z obchodního styku Závazky z obchodního styku Charakteristika zúčtovacích vztahů Pohledávky a závazky - převážná část zúčtovacích

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

6.2 DPH a její účtování

6.2 DPH a její účtování .2 DPH a její účtování Dosud jsme neuvažovali, že podnikatel je plátcem daně z přidané hodnoty, tzn. že při nákupech neměl nárok na odpočet daně na vstupu (DPH vstupovala do pořizovací ceny majetku, v

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice ÚČETNICTVÍ 3 12. KAPITOLA: DENÍK PŘÍJMŮ A VÝDAJŮ U NEPLÁTCE DPH,, PLÁTCE DPH Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

ÚČTOVÁNÍ O DLOUHODOBÉM MAJETKU

ÚČTOVÁNÍ O DLOUHODOBÉM MAJETKU ÚČTOVÁNÍ O DLOUHODOBÉM MAJETKU Příklad 0/1 Podnikatelský subjekt, akciová společnost XYZ Jičín má ke dni zapsání do obchodního rejstříku dne 11.3.20xx základní kapitál ve výši 2 mil. Kč ve formě vkladu

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Písemná práce neplátce varianta A. Počáteční stavy 1. Pokladna 12.000,-- Kč 2. Banka 520.000,-- Kč

Písemná práce neplátce varianta A. Počáteční stavy 1. Pokladna 12.000,-- Kč 2. Banka 520.000,-- Kč Písemná práce neplátce varianta A Počáteční stavy 1. Pokladna 12.000,-- Kč 2. Banka 520.000,-- Kč Zapište: 1. FAP 1 za osobní auto 300.000,-- Kč 2. FAP 2 za materiál 36.000,-- Kč 3. FAV 1 za výrobky 78.000,--

Více

Kapitola 2 Krátkodobý finanční majetek

Kapitola 2 Krátkodobý finanční majetek Kapitola 2 Krátkodobý finanční majetek SHRNUTÍ UČIVA O KRÁTKODOBÉM FINANČNÍM MAJETKU se účtuje ve druhé účtové třídě. Patří sem zejména peníze v pokladně, ceniny, bankovní účty a krátkodobé cenné papíry.

Více

ZPRÁVA O PLNĚNÍ ROZPOČTU A HOSPODAŘENÍ ZA 1. POLOLETÍ 2015

ZPRÁVA O PLNĚNÍ ROZPOČTU A HOSPODAŘENÍ ZA 1. POLOLETÍ 2015 ZPRÁVA O PLNĚNÍ ROZPOČTU A HOSPODAŘENÍ ZA 1. POLOLETÍ 2015 10. srpna 2015 OBSAH 1. PŘEHLED HLAVNÍCH UKAZATELŮ HOSPODAŘENÍ... 3 2. VÝNOSY A NÁKLADY... 4 3. ROZVAHA... 6 4. POHLEDÁVKY A ZÁVAZKY... 7 5. FINANČNÍ

Více

Aplikace matematiky v ekonomii

Aplikace matematiky v ekonomii KMA/SZZAE Aplikace matematiky v ekonomii Matematické modely v ekonomii 1. Klasifikace prostředků matematického modelování v ekonomii. 2. Modely síťové analýzy: metody CPM a PERT. 3. Modely hromadné obsluhy:

Více

6.2 DPH a její účtování

6.2 DPH a její účtování .2 DPH a její účtování Dosud jsme neuvažovali, že podnikatel je plátcem daně z přidané hodnoty, tzn. že při nákupech neměl nárok na odpočet daně na vstupu (DPH vstupovala do pořizovací ceny majetku, v

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

2. přednáška - 7.3. 2006. Téma: Účtování zásob. 1) Pořízení materiálu nákupem ze zahraničí

2. přednáška - 7.3. 2006. Téma: Účtování zásob. 1) Pořízení materiálu nákupem ze zahraničí 2. přednáška - 7.3. 2006 Téma: Účtování zásob Osnova: 1) Účtování DPH při pořízení materiálu ze zahraničí 2) Pořízení materiálu s poskytnutou zálohou 3) Reklamace materiálu 4) Prodej materiálu 5) Škody

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ INSTITUT SVAZU ÚČETNÍCH KOMORA CERTIFIKOVANÝCH ÚČETNÍCH CERTIFIKACE A VZDĚLÁVÁNÍ ÚČETNÍCH V ČR ZKOUŠKA ČÍSLO 3 KM - IT PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ ÚVODNÍ INFORMACE Struktura zkouškového zadání: testové otázky,

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

ZÚČTOVACÍ VZTAHY Charakteristika zúčtovacích vztahů Pohledávky z obchodního styku Závazky z obchodního styku ZÚČTOVACÍ VZTAHY Charakteristika zúčtovacích vztahů Pohledávky a závazky - převážná zúčtovacích

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

1 Běžný účet, kontokorent

1 Běžný účet, kontokorent 1 Běžný účet, kontokorent Běžný účet je základním bankovním nástrojem pro správu klientových financí. Jeho primárním účelem je umožnit klientovi hospodařit s peněžní prostředky prostřednictvím některého

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Zaúčtujte jednotlivé operace Sestavte novou rozvahu a výsledovku. 1) 200 Nákup zboží na fakturu na sklad. 2) 20 Vyúčtování mezd pracovníků

Zaúčtujte jednotlivé operace Sestavte novou rozvahu a výsledovku. 1) 200 Nákup zboží na fakturu na sklad. 2) 20 Vyúčtování mezd pracovníků AKTIVA PASIVA Stroje 320 Základní kapitál 200 Oprávky 80 Rezervní fond 20 Stálá aktiva 240 Nerozdělený zisk 50 Vlastní kapitál 270 Peníze na BÚ 30 pokladna 0 Dluhy 0 Oběžná aktiva 30 Aktiva celkem 270

Více

3 Rozvahové změny ovlivňující výsledek hospodaření

3 Rozvahové změny ovlivňující výsledek hospodaření 3 Rozvahové změny ovlivňující výsledek hospodaření Cíl kapitoly Pochopením a procvičením úloh z této kapitoly by se měl student seznámit s: podstatou výsledku hospodaření a transakcemi, které vedou k jeho

Více

ANOTACE K VÝUKOVÉ SADĚ

ANOTACE K VÝUKOVÉ SADĚ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast (předmět) Autor ANOTACE K VÝUKOVÉ SADĚ CZ.1.07/1.5.00/34.0705 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy účtování

Více

Příklad č. 1 Dlouhodobý majetek

Příklad č. 1 Dlouhodobý majetek Příklad č. 1 Dlouhodobý majetek Počet bodů 20 b. Dosaženo Úloha 1.1 (8 bodů) Firma PŘEPRAVNÍ SPOLEČNOST ZNOJMO, s.r.o. (plátce DPH), koupila v březnu 2011 autobus KAROSA za 3 600 000 Kč. Na nákup autobusu

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Struktura

Více

5) FAP stavební práce na výrobní hale smluvní cena... Kč 1 680 000,-

5) FAP stavební práce na výrobní hale smluvní cena... Kč 1 680 000,- PŘÍKLAD Č. 1 Akciová společnost PRODŘEVO, plátce DPH, se zabývá výrobou dřevěného nábytku a v roce 200x proběhly následující účetní operace: 1) VBÚ převod peněz z poskytnutého dlouhodobého úvěru... Kč

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Kapitola 1 - Základy účetnictví Výsledky testů

Kapitola 1 - Základy účetnictví Výsledky testů Kapitola 1 Základy účetnictví Výsledky testů 1 B, C, D 2 C, D 3 B, D 4 D 5 A, C 6 C, D 7 D 8 B, D 9 B 10 B, C 11 C, D 12 C, D 70 Úloha 1. 1 Určení aktiv a pasiv Zařaďte níže uvedené položky do tabulky,

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

DAŇOVÝ KALENDÁŘ PRO ROK 2013 Yveta Novotná vedení účetnictví

DAŇOVÝ KALENDÁŘ PRO ROK 2013 Yveta Novotná vedení účetnictví DAŇOVÝ KALENDÁŘ PRO ROK 2013 Yveta Novotná vedení účetnictví LEDEN út 8. pojištění OSVČ zdravotní - záloha 12/2012 po 9. splatnost (bez daně z lihu) 11/2012 po 21. pojištění OSVČ sociální - záloha 12/2012

Více

4.3 B strana 1. 4.3 Vyúčtování zálohových plateb ve vazbě na zvýšení snížené sazby daně v roce 2012

4.3 B strana 1. 4.3 Vyúčtování zálohových plateb ve vazbě na zvýšení snížené sazby daně v roce 2012 strana 10 Vznik povinnosti přiznat DPH Charakteristika plátce Plátce, který vede účetnictví. Plátce, který nevede účetnictví a před DUZP přijímá úplatu na zdanitelné plnění. Den přijetí úplaty, pokud je

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015 Ekonomika 1. Management 2. Oběžný majetek 3. Finanční trh 4. Bankovní soustava ČR 5. Marketing 6. Podnikání základ tržní ekonomiky

Více

III. Příklady účtování příspěvkových organizací. 1 Dlouhodobý majetek

III. Příklady účtování příspěvkových organizací. 1 Dlouhodobý majetek III. Příklady účtování příspěvkových organizací 1 Dlouhodobý majetek Postupy účtování, způsoby oceňování a odpisování dlouhodobého nehmotného a hmotného majetku jsou uvedeny v Českém účetním stanardu č.

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více