V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více"

Transkript

1 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně více náhodnými veličinami. V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více hodnot bez uspořádání), ordinálními (nabývají více hodnot s uspořádáním) a kardinálními (nabývají více hodnot s uspořádáním a lze měřit rozdíly mezi hodnotami). Pro různé typy dat je třeba používat různé matematické postupy vhodné pro zjišt ování souvislostí a závislostí. Úkolem statistiky je stanovit sílu a druh sledovaných závislostí. Sílu závislosti vyjadřujeme podle různých měr statistických závislostí. Statistická závislost však nevypovídá přímo o kauzalitě. Vysoký stupeň závislosti může ale nemusí odrážet příčinný vztah mezi sledovanými statistickými veličinami. Příčinné souvislosti čistě empirickými prostředky neodhalíme. Ke statistickým výsledkům je třeba přidat odborné znalosti, praktické zkušenosti a účelně kombinovat deduktivní a induktivní způsob uvažování. Existují i jednoznačné funkční závislosti mezi náhodnými veličinami, ty však obvykle nejsou hlavním cílem našeho statistického šetření (např. závislosti založené na fyzikálních zákonech - dodávané teplo zvyšuje energii). Druh statistické závislosti odhadujeme obvykle na základě grafické reprezentace dat. V případě závislosti dvou náhodných proměnných je vyjádřením druhu závislosti křivka, které se nejvíce hodí k napozorovaným hodnotám. Podle typu křivky pak mluvíme o závislosti lineární, logaritmické, exponenciální a podobně. Typ Nominální Ordinální Kardinální proměnné Nominální kontingenční tabulky kontingenční tabulky, probitová, logitová regrese, 2x2, nezávislost, homogenita loglineární modely kontingenční tab- výběru, ulky, kontingenční koefi- symetrie, rezidua, cienty grafická reprezentace, znaménková schémata, míry asociace Ordinální Spearmanův korelační analýza rozptylu koeficient, Kendallovo τ Kardinální korelace, korelační koeficienty, regresní analýza 10.2 Kontingenční tabulky Kontingenční tabulka se užívá k přehledné vizualizaci vzájemného vztahu dvou statistických znaků. V praxi vzniká kontingenční tabulka tak, že se na statistických jednotkách sledují dva znaky. Řádky kontingenční tabulky odpovídají možným hodnotám prvního znaku, sloupce pak možným hodnotám druhého znaku. V příslušné buňce kontingenční tabulky je pak zařazen počet případů, kdy zároveň měl první znak hodnotu odpovídající příslušnému řádku a druhý znak hodnotu odpovídající příslušnému sloupci. 1

2 Je možné, aby jeden řádek či sloupec odpovídal více možným hodnotám znaku. To se děje v případě, kdy znak nabývá některých hodnot příliš zřídka, takže je vhodné spojit více možných hodnot. Součty (mezisoučty) všech hodnot v každém řádku, resp. sloupci nesou informaci o počtu výskytů jevů, při nichž nabyl první (resp. druhý znak) příslušné hodnoty bez ohledu na hodnotu druhého (resp. prvního) znaku. Kromě prostého popisu četností kombinací hodnot dvou znaků nabízí kontingenční tabulka možnost testovat, zda mezi oběma znaky existuje nějaký vztah. K tomu lze užít např. test dobré shody. Znaky užité k zobrazení v kontingenční tabulce pak musí představovat diskrétní hodnoty (je možné tedy využít kvalitativní, diskrétně kvantitativní či spojitě kvantitativní znaky, v posledním případě však pouze s rozdělením jednotlivých znaků do skupin tzv. skupinové třídění). Teoretickým základem kontingenčních tabulek jsou matice pravděpodobností pro dvourozměrné náhodné vektory. Kontingenční tabulka 1... c Σ 1 n n 1c n 1 2 n n 2c n r n r1... n rc n r Σ n 1 n 2 n c n Matice pravděpodobností 1... c Σ 1 p p 1c p 1 2 p p 2c p r p r1... p rc p r Σ p 1 p 2 p c 1 Necht náhodný vektor X = (X 1, X 2 ) má diskrétní rozdělení, přičemž veličina X 1 nabývá hodnot i = 1, 2,..., r a veličina X 2 nabývá hodnot j = 1, 2,..., s. Označme p ij = P (X 1 = i, X 2 = j) ; p i = j p ij ; p j = i p ij. Předpokládejme, že se uskutečnil náhodný výběr rozsahu n z tohoto rozdělení. Necht n ij je počet těch případů, kdy se ve výběru vyskytla dvojice (i, j). Náhodné veličiny n ij mají pak sdružené multinomické rozdělení s parametrem n a s pravděpodobnostmi p ij. Matice (p ij ),2,...,r;j=1,2,...,s se nazývá matice pravděpodobností a matice (n ij ),2,...,r;j=1,2,...,s tvoří základ kontingenční tabulky. Označme n i = n ij ; j n j = n ij. i Číslům p i a p j se říká marginální pravděpodobnosti a hodnotám n i a n j marginální četnosti. Namísto dvou znaků lze sledovat obecně libovolné množství znaků. Kontingenční tabulka se pak tvoří pomocí stejného principu (v každém políčku je počet výskytů kombinací určitých hodnot jednotlivých 2

3 znaků), avšak není již možné ji tak snadno znázornit. Ve vícerozměrné tabulce lze testovat mnohem víc typů závislostí mezi jednotlivými znaky, testování je však technicky mnohem komplikovanější než u dvojrozměrné tabulky V programu Excel máme možnost vytvořit kontingenční tabulku pomocí příkazu COUNTIFS(oblast1;podminka1;obl Testy nezávislosti Nejčastější úlohou při analýze kontingenčních tabulek, je problém testování nezávislosti. Vzhledem k tomu, že dvě veličiny X, Y jsou nezávislé právě tehdy, když platí p ij = p i p j pro všechna i, j, formulujeme nulovou hypotézy testu nezávislosti v kontingenční tabulce ve tvaru H 0 : p ij = p i p j, i = 1, 2,..., r, j = 1, 2,..., s Testovací kritérium má tvar χ 2 = r ( s nij n in j j=1 a při platnosti nulové hypotézy ma asymptoticky rozdělení χ 2, jehož počet stupňů volnosti je roven ν = rs (r + s 2) = (r 1)(s 1). Pokud hodnota testovacího kritéria χ 2 χ 2 (r 1)(s 1)(α). zamítáme hypotézu o nezávislosti veličin X a Y. Ke shodě s limitním rozdělením se požaduje, aby teoretické četnosti n in j byly větší než 5. Není-li n tato podmínka splněna, je nutno sloučit některé sloupce, případně řádky v kontingenční tabulce. Analogicky postupu pro test nezávislosti v kontingenční lze postupovat v případě testování homogenity multinomického rozdělení. Tento přístup uplatníme v okamžiku, kdy marginální řádkové četnosti jsou pevně stanoveny a i t řádek v kontingenční tabulce má multinomické rozdělení s parametry n i, q i1, q i2,..., q is, kde q i1, q i2,... jsou nějaké pravděpodobnosti splňující podmínku q i1 +q i2 + +q is = 1. Hypotéza homogenity pak říká, že pravděpodobnosti q i1, q i2,... nezávisí na řádkovém indexu i. Testovací kritérium a kritické hodnoty jsou pro tento test identické s veličinami pro test nezávislosti Korelační koeficienty Korelační koeficienty se nejčastěji používají k měření síly (těsnosti) závislosti dvou číselných proměnných. Pearsonův korelační koeficient r xy je definován vztahem Spearmanův korelační koeficient rs měří závislost dvou pořadí Regresní analýza Regrese je snad nejčastěji používaná statistická metoda. Regrese se zabývá problémem vysvětlení změn jedné náhodné veličiny (vysvětlovaná, závislá, endogenní proměnná, regresand) na jedné nebo více jiných veličinách (regresory, vysvětlující proměnné, exogenní proměnné). V případě, že závislost je popsána lineárními vztahy, mluvíme o lineárním regresním modelu. Pokud modelujeme chování n i n j n n ) 2 3

4 vysvětlované proměnné pomocí jedné vysvětlující proměnné, mluvíme o jednoduché regresi, v opačném případě se jedná o regresi vícenásobnou. Označme X nezávisle proměnné a Y závislou proměnnou. Regresní funkcí se pak rozumí µ(x) = E (Y X = x). Regresní funkce tedy udává, jaká je střední hodnota náhodné veličiny Y při dané hodnotě x Jednorozměrný lineární regresní model y = β 0 + β 1 x + ε Předpokládejme, že máme k dispozici x i, i = 1, 2,..., n pevných (nenáhodných) hodnot proměnné X. Předpokládejme, že platí y i = f(x i, β 0, β 1,..., β k ) + ε i kde β 0, β 1..., β k jsou neznámé parametry modelu; ε i jsou náhodné veličiny, který modelují nesystematické chyby měření; y i jsou realizace náhodné veličiny Y s podmínkami X = x i. Cílem regresní analýzy je odhadnout parametry β 0, β 1..., β k tak, aby f(x i, β 0, β 1,..., β k ) co nejvíce odpovídala k empiricky naměřeným hodnotám y i. Funkce y i = f(x i, β 0, β 1,..., β k ) se nazývá teoretická regresní funkce závislosti proměnné y na x, její grafické vyjádření se nazývá teoretická regresní křivka. Regresní funkce, v níž jsou nahrazeny neznámé parametry β jejich odhady β (resp. b) se nazývá empirická regresní funkce a její grafické obraz je empirická regresní křivka. Pro hodnoty x i můžeme na základě empirické regresní křivky určit hodnotu ŷ i = f(x i, β 0, β 1,..., β k ), tyto hodnoty nazýváme vyrovnanými hodnotami y i a rozdíl mezi y i ŷ i nazýváme rezidua (značíme e i ). Regresní funkce se nazývá lineární, je-li lineární funkcí neznámých parametrů, tj. pokud y i = β 0 + β 1 ϕ 1 (x) + β 2 ϕ 2 (x) + + β k ϕ k (x) kde ϕ 1 (x), ϕ 2 (x),..., ϕ k (x) jsou funkce proměnné x. Příkladem lineárních regresních modelů jsou přímková regrese tvaru y i = β 0 + β 1 x i + ε i kvadratická regrese tvaru y i = β 0 + β 1 x i + β 2 x 2 i + ε i polynomická regrese tvaru y i = β 0 + β 1 x i + β 2 x 2 i + + β k x k i + ε i hyperbolická regrese tvaru y i = β 0 + β 1 1 x i + ε i 4

5 Metoda nejmenších čtverců Princip metody nejmenších čtverců je založen na jednoduchém volbě optimalizačního kritéria, kdy minimalizuji kvadrát odchylek naměřených y i a vyrovnaných hodnot ŷ i. Y (x i, y i ) (x i, ŷ i ) X Označme funkci Q(β 0, β 1, β 2,..., β k ) = (y i f(x i, β 0, β 1, β 2,..., β k )) 2. Při metodě nejmenších čtverců (MNČ, LSQ) hledáme hodnoty b 0, b 1, b 2,..., b k, ve kterých je funkce Q minimální, tj. b 0, b 1,..., b k = argmin Q (β 0, β 1,..., β k ). β 0,β 1,...,β k V případě lineární regresní funkce má kriteriální funkce Q tvar Q(β 0, β 1,..., β k ) = (y i β 0 β 1 ϕ 1 (x i )... β k ϕ k (x i )) 2 a tato funkce nabývá svého minima v bodech, kdy derivace je rovna nule, tj. při hledání minima řešíme soustavu k + 1 lineárních rovnic tvaru Q β j = 0 pro j = 0, 1, 2,..., k βj =b j Soustava normálních rovnic má tedy tvar b 0 n +b 1 ϕ 1 (x i ) + + b k b 0 ϕ 1 (x i ) +b 1 ϕ 1 (x i )ϕ 1 (x i ) + + b k... ϕ k (x i ) = y i ϕ 1 (x i )ϕ k (x i ) = ϕ 1 (x i )y i b 0 ϕ k (x i ) +b 1 ϕ k (x i )ϕ 1 (x i ) + + b k ϕ k (x i )ϕ k (x i ) = ϕ k (x i )y i 5

6 Přímková regrese Uvažujme tento základní jednoduchý model Y i = β 0 + β 1 x i + ε i. Derivace funkce Q(β 0, β 1 ) (y i β 0 β 1 x i ) 2 mají tvar b 0 n +b 1 b 0 x i +b 1 a řešením výše uvedených soustav dostáváme x i = (x i ) 2 = y i x i y i b 0 = y i b 1 = (x i ) 2 n x i ( n n (x i ) 2 n n n x i y i n ) 2 x i x i y i ( n n (x i ) 2 n x i y i ) 2. x i Vícerozměrný lineární regresní model y = β 0 + β 1 x 1 + β 2 x β k x k + ε a jeho maticový zápis Pro vícerozměrný lineární model je vhodné použít maticový zápis modelu y 1 x (0)1 x (1)1... x (k)1 β 0 y 2. = x (0)2 x (1)2... x (k)2 β ɛ 2. y n x (0)n x (1)n... x (k)n β k ɛ 1 ɛ n y = (y 1, y 2,..., y n ) T je vektor naměřených hodnot vysvětlované proměnné je matice typu n (k + 1) naměřených hodnot vysvětlujících proměn- X = [ x (i)j ]j=1,...,n; i=0,...,k ných β = (β 0, β 2,..., β k ) T je vektor hledaných k + 1 neznámých parametrů ɛ = (ɛ 1, ɛ 2,..., ɛ n ) T je vektor náhodné složky Stejně jako v jednorozměrném případě musíme specifikovat předpoklady řešení modelu pomocí metody nejmenších čtverců E (ɛ) = 0 6

7 E ( ɛɛ T ) = σ 2 I n X je nestochastická matice, takže E ( X T ɛ ) = 0 X má plnou hodnost k + 1 = p Za výše uvedených předpokladů pak neznámé parametry modelu β 0, β 1,..., β k, σ 2 odhadneme následovně b = ( X T X ) 1 X T y ( e T e ) s 2 = n p = (y Xb)T (y Xb) n p Kvalita regresní funkce a intenzita závislosti Jedním z důležitých kroků v regresní analýze je tzv. regresní diagnostika. Ta slouží k hodnocení kvality regresní funkce a k ověřování splnění předpokladů použité metody nejmenších čtverců. V rámci metody nejmenších čtverců pracujeme s následujícími součty čtverců, resp. rozptyly, které v sobě zahrnují variabilitu empirických hodnot, odhadnutých teoretických hodnot a residuí. celkový součet čtverců S 2 T = (y i y) 2 rozptyl empirických (skutečně zjištěných) hodnot s 2 y = vysvětlený součet čtverců S 2 V = (ŷ i y) 2 rozptyl vyrovnaných (teoretických) hodnot s 2 ŷ = residuální součet čtverců RSS = e T e = e 2 = S2 V n 1 rozptyl skutečně zjištěných hodnot kolem regresní čáry, residuální rozptyl s 2 R = RSS n p, kde p = k + 1 Při použití metody nejmenších čtverců platí S 2 T = S 2 V + RSS. Při přímkové regresi (k = 1) platí s 2 y = s 2 ŷ + s 2 R Graficky jsou jednotlivé odchylky znázorněny na obrázku S2 T n 1 (y i ŷ i ) 2 7

8 Y ŷ y ŷ y y i ŷ y i y x Koeficient (index) determinace pro vícenásobnou regresi s absolutním členem Ze vztahu jednotlivých součtů čtverců je odvozen koeficient R 2. Tento koeficient vyjadřuje z kolika procent se nám podařilo vysvětlit veličinu y pomocí veličin x 1, x 2,.... R 2 = S2 V S 2 T = 1 RSS S 2 T Pro koeficient determinace platí následující vlastnosti R 2 0; 1 = 1 (n p) s2 R (n 1) s 2 y pokud x a y jsou deterministicky závislé, pak y i = ŷ i a s 2 R = 0, s 2 y = s 2 ŷ, tedy R 2 = 1 pokud x a y jsou nezávislé, pak s 2 V = 0, s 2 y = s 2 R, tedy R 2 = 0 koeficient (index) korelace R = R 2 pro přímkovou regresi platí ŷ i = y + b 1 (x i x), kde b 1 = s xy, pak s 2 x 1 (ŷ R 2 = s2 n 1 i y) 2 1 b 1 (x n 1 i x) 2 ŷ = = = s2 xy s 2 x = s2 xy s 2 y s 2 y s 2 y s 2 x s 2 x s 2 y s 2 x s 2 y tedy koeficient korelace R = r x y odpovídá výběrovému korelačnímu koeficientu náhodného vektoru (x, y) X Regresní analýza v Excelu 8

9 funkce LINREGRESE (DATA-Y;DATA-X1-DATA-X2-...-DATA-XN;B;STAT), kde DATA-Y je závislá proměnná DATA-X1;DATA-X2;... ;DATA-XN jsou nezávislé proměnné, B =PRAVDA - parametr β 0 se odhaduje, NEPRAVDA - parametr β 0 se neodhaduje (rovnice prochází nulou), STAT=PRAVDA - počítají se doplňující charakteristiky modelu (SE i ;R 2 ;SE y ;F;df;ss(reg);ss(resid)) funkce LINTREND (DATA-Y;DATA-X;DATA-X-NOVA;B), kde DATA-Y je závislá proměnná, DATA- X jsou nezávislé proměnné, DATA-X-NOVA je nezávislá proměnná, nová ( například pokračování data-x) B =PRAVDA - parametr β 0 se odhaduje, NEPRAVDA - parametr β 0 se neodhaduje funkce FORECAST (X;DATA-Y;DATA-X) pro odhad y(x) na základě znalostí DATA-X a DATA-Y funkce INTERCEPT (DATA-Y;DATA-X) pro odhad β 0 na základě znalostí DATA-X a DATA-Y funkce SLOPE (DATA-Y;DATA-X) pro odhad parametru beta 1 lineární regrese funkce STEYX (DATA-Y;DATA-X) pro standardní chybu odhadu y funkce LOGLINREGRESE (DATA-Y;DATA-X1-DATA-X2-...-DATA-XN;B;STAT) pro logaritmický regresní model z grafu : vytvořit XY graf a přidat spojnici trendu pomocí NÁSTROJE=>ANALÝZA DAT=>REGRESE Další vícerozměrné metody a grafy lze v Excelu naprogramovat Zpracování vícerozměrných statistických dat v MATLABu Grafické zpracování a základní deskriptivní statistiky boxplot vícerozměrný histogram hist3 plotmatrix gscatter gplotmatrix souhrnné statistiky [means,sem,counts,name]=grpstats(data,data(:,2)) korelace a kovariance corr, corrcoef, cov Regresní analýza maticově b = ( X T X ) 1 X T y, atd funkce [b,bint,r,rint,stats] = regress(y,x,alpha) regresní diagnostika a grafy - rcoplot robusní odhady - robustfit 9

10 Lze využít též další nástroje pro vícerozměrnou analýzu -ANOVA, MANOVA, shluková analýza - cluster analysis, metoda hlavních komponent, faktorová analýza atd Upravený koeficient determinace (adjusted R 2 ) definice R 2 a = 1 s2 R s 2 T pro běžné situace platí R 2 a R 2 pro přímkovou regresi (resp. pro regresi se dvěma neznámými koeficienty) platí R 2 = R 2 a pro hodnoty R 2 < 10.5 Příklady k n 1 vyjde hodnota R2 a < 0 1. Chceme testovat, zda hrací kostka je korektní. Provedli jsme 600x hod kostkou a získali jsme následující četnosti: Číslo n i Pokud je kostka korektní, měly by se očekávané četnosti řídit diskrétním rovnoměrným rozdělením. Budeme tedy testovat shodu získaných hodnot s diskrétním rovnoměrným rozdělením na hladině významnosti 5%. Řešení: H 0 : Kostka je korektní H 1 : Kostka není korektní Budeme se řídit postupem uvedeným v první části tohoto cvičení: Obor hodnot je již rozdělen na 6 nepřekrývajících se tříd, tedy k = 6. Počty prvků n i jsou uvedeny již v zadání. Není potřeba odhadovat parametry, tj. m = 0. Spočteme očekávané hodnoty v jednotlivých třídách o i = np i = , 2,..., 6 V žádné třídě není o i < 5, nebudeme tedy žádné třídy slučovat. Vypočteme hodnotu testovací statistiky: = 100 pro i = χ 2 = k (n i o i ) 2 = χ 2 = o i 6 (n i 100) = 33 10

11 Kritický obor je dán χ 2 -rozdělením s ν = k 1 = 5 stupni volnosti: W = (χ (5), + ) = (11.1, + ) Jelikož χ 2 W, tak hypotézu o tom, že kostka je korektní zamítáme (na hladině významnosti α = 5%. 2. Po provedení 60 pokusů s diskrétní náhodnou veličinou X, která může nabývat hodnot 0 až 4 (tj. v každém z pokusů nastane bud 0, 1, 2, 3 nebo 4krát sledovaný jev) jsou získány následující četnosti. Hodnota n i Tedy například hodnota 12 znamená, že při 12 pokusech z 60 nabyla náhodná veličina X hodnoty 1. Otestujte na hladině významnosti α = 2.5%, zda se náhodná veličina X řídí binomickým rozdělením. Řešení: H 0 : Náhodná veličina se řídí binomickým rozdělením H 1 : Náhodná veličina se neřídí binomickým rozdělením Budeme se řídit postupem uvedeným v první části tohoto cvičení: Obor hodnot je již rozdělen na 5 nepřekrývajících se tříd, tedy k = 5. Počty prvků n i jsou uvedeny již v zadání. Ze zadání víme, že parametr n binomického rozdělení je 4, ten tedy odhadovat nemusíme. Je ale potřeba odhadnout parametr p binomického rozdělení. Ten lze odhadnout přes střední hodnotu. U binomického rozdělení víme, že E(X) = np. n známe, střední hodnotu lze odhadnout pomocí průměru a pak již jen vyjádříme neznámý parametr p: Dosadíme: A odtud: x = = 4 ˆp ˆp = = Předpokládáme, že náhodná veličina se řídí rozdělením Bi(4, ). Odhadovali jsme jeden parametr, takže m = 1. Spočteme očekávané pravděpodobnosti p i a následně očekávané hodnoty v jednotlivých třídách o i = np i pro i = 0, 1,..., 4: Hodnota p i o i

12 V první třídě je o i < 5, sloučíme tedy tuto třídu se sousední. V poslední třídě je sice n i < 5, ale očekávaná hodnota splňuje podmínku a slučovat tedy nebudeme. Po sloučení obdržíme: Hodnota 0 a n i o i Stejným způsobem musí být sloučeny i naměřené hodnoty. Vypočteme hodnotu testovací statistiky: χ 2 = k (n i o i ) 2 = o i Kritický obor je dán χ 2 -rozdělením s ν = k 1 m = 2 stupni volnosti: W = (χ (2), + ) = (7.38, + ) Jelikož χ 2 W, tak hypotézu o tom, že náhodná veličina se řídí rozdělením Bi(4, ) (na hladině významnosti α = 2.5%) nezamítáme. 3. Z průzkumu provedeného u osob, který měl zjistit efektivnost očkování proti chřipce, byly získány tyto výsledky: Bez očkování Jedno očkování Dvě očkování Celkem Chřipka Bez chřipky Celkem Na hladině významnosti α = 5% testujte, zda má očkování vliv na výskyt chřipky. Řešení: H 0 : Očkování vliv nemá (veličiny jsou nezávislé) H 1 : Očkování vliv má (mezi veličinami existuje závislost) Použijeme tedy test nezávislosti: Hodnoty n, n i. a n.j jsou uvedeny již v tabulce. Pomocí těchto hodnot vypočteme očekávané hodnoty: Např.: o 12 = n 1.n.2 = n Celá tabulka s očekávanými hodnotami: o ij = n i.n.j n = Bez očkování Jedno očkování Dvě očkování Chřipka Bez chřipky

13 Ve všech kategoriích platí o ij 5. Testovací statistika: Obor kritických hodnot W : χ 2 = 2 3 (n ij o ij ) 2 = o ij j=1 W = (χ (1 2), + ) = (5.99; + ) Protože χ 2 W, tak hypotézu o nezávislosti (na hladině významnosti α = 5%) zamítáme a očkování má tedy vliv. 4. Chceme otestovat vliv nové technologie. Máme k dispozici následující výsledky: I. jakost II. jakost III. jakost Zmetek Celkem Stará technologie Nová technologie Celkem Na hladině významnosti α = 5% testujte, zda má nová technologie vliv na výrobu. Řešení: H 0 : Technologie nemá vliv (veličiny jsou nezávislé) H 1 : Technologie má vliv (mezi veličinami existuje závislost) Použijeme tedy test nezávislosti v dvourozměrné kontingenční tabulce: Hodnoty n, n i. a n.j jsou uvedeny již v tabulce. Pomocí těchto hodnot vypočteme očekávané hodnoty: I. jakost II. jakost III. jakost Zmetek Stará technologie Nová technologie Jelikož o 14 < 5, tak musíme sloučit poslední dva sloupce (řádky slučovat nemůžeme, musí platit I, J 2). Máme tedy: I. jakost II. jakost III. jakost + Zmetek Stará technologie Nová technologie Stejným způsobem musí být sloučeny i naměřené hodnoty. Testovací statistika: 2 3 χ 2 (n ij o ij ) 2 = = 1.84 o ij j=1 13

14 Obor kritických hodnot W : W = (χ (1 2), + ) = (5.99; + ) Protože χ 2 W, tak hypotézu o nezávislosti (na hladině významnosti α = 5%) nezamítáme a nová technologie tedy nemá vliv. 5. U 5 lidí byla zjišt ována váha (ozn. X) a výška (ozn. Y ). Výsledky jsou následující: Výška Váha Předpokládáme, že dvourozměrná náhodná veličina (X, Y ) má dvourozměrné normální rozdělení. Otestujte na hladině významnosti α = 10%, zda jsou X a Y nezávislé. Řešení: Jelikož se jedná o dvourozměrné normální rozdělení, tak stačí testovat nulovost korelačního koeficientu. Testujeme tedy: H 0 : ρ = 0 H 1 : ρ 0 Musíme vypočítat průměry, výběrové rozptyly, hodnotu výběrové kovariance a následně výběrové korelace: S XY = 1 n 1 r XY = S 2 x = S 2 y = x = 1 n ȳ = 1 n x i = 181 y i = 74.4 (x i x) 2 = 190 (y i ȳ) 2 = x i y i n n 1 xȳ = = S XY S2 (X) S 2 (Y ) = 138 = Testovací statistika má tvar: r T = n 2 = 5 2 = r Obor kritických hodnot pro test na hladině významnosti α = 10% je: W = (, 2.353) (2.353, + ) Hypotézu o nezávislosti lze zamítnout na hladině významnosti α = 10%, protože T W. Přijmeme tedy alternativní hypotézu, že veličiny jsou závislé. 14

15 6. Pro následující data odhadněte koeficienty regresní přímky y = β 0 +β 1 x, vypočtěte přes soustavu normálních rovnic. x y Pro následující data odhadněte koeficienty regresní funkce y = β 0 +β 1, vypočtěte přes soustavu x normálních rovnic. x y

16 8. Pro data z předchozího příkladu odhadněte koeficienty regresní funkce y = β 0 + β 1 x + β 2 x 2 16

17 9. Pro předchozí příklady spočtěte S 2 V, S 2 T, SSE a R 2. Získané výsledky interpretujte. 17

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Statistika v příkladech

Statistika v příkladech Verlag Dashöfer Statistika v příkladech Praktické aplikace řešené v MS Ecel Ukázkové tety z připravované učebnice Doc. Ing. Jan Kožíšek, CSc. Ing. Barbora Stieberová, Ph.D. Praha 0 Obsah Obsah. Předmluva

Více

Ω = 6 6 3 = 1 36 = 0.0277,

Ω = 6 6 3 = 1 36 = 0.0277, Příklad : Házíme třemi kostkami. Jaká je pravděpodobnost, že součet bude roven 5? Jev A značí příznivé možnosti: {,, 3}; {,, }; {, 3, }; {,, }; {,, }; {3,, }; P (A) = A Ω = 6 6 3 = 36 = 0.077, kde. značí

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová Texty k přednáškám Matematická Statistika Ivan Nagy, Jitka Kratochvílová Obsah 1 Náhodný výběr 4 1.1 Pojem náhodného výběru (Sripta str. 68).................... 4 1.2 Charakteristiky výběru (Sripta str.

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více