V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více"

Transkript

1 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně více náhodnými veličinami. V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více hodnot bez uspořádání), ordinálními (nabývají více hodnot s uspořádáním) a kardinálními (nabývají více hodnot s uspořádáním a lze měřit rozdíly mezi hodnotami). Pro různé typy dat je třeba používat různé matematické postupy vhodné pro zjišt ování souvislostí a závislostí. Úkolem statistiky je stanovit sílu a druh sledovaných závislostí. Sílu závislosti vyjadřujeme podle různých měr statistických závislostí. Statistická závislost však nevypovídá přímo o kauzalitě. Vysoký stupeň závislosti může ale nemusí odrážet příčinný vztah mezi sledovanými statistickými veličinami. Příčinné souvislosti čistě empirickými prostředky neodhalíme. Ke statistickým výsledkům je třeba přidat odborné znalosti, praktické zkušenosti a účelně kombinovat deduktivní a induktivní způsob uvažování. Existují i jednoznačné funkční závislosti mezi náhodnými veličinami, ty však obvykle nejsou hlavním cílem našeho statistického šetření (např. závislosti založené na fyzikálních zákonech - dodávané teplo zvyšuje energii). Druh statistické závislosti odhadujeme obvykle na základě grafické reprezentace dat. V případě závislosti dvou náhodných proměnných je vyjádřením druhu závislosti křivka, které se nejvíce hodí k napozorovaným hodnotám. Podle typu křivky pak mluvíme o závislosti lineární, logaritmické, exponenciální a podobně. Typ Nominální Ordinální Kardinální proměnné Nominální kontingenční tabulky kontingenční tabulky, probitová, logitová regrese, 2x2, nezávislost, homogenita loglineární modely kontingenční tab- výběru, ulky, kontingenční koefi- symetrie, rezidua, cienty grafická reprezentace, znaménková schémata, míry asociace Ordinální Spearmanův korelační analýza rozptylu koeficient, Kendallovo τ Kardinální korelace, korelační koeficienty, regresní analýza 10.2 Kontingenční tabulky Kontingenční tabulka se užívá k přehledné vizualizaci vzájemného vztahu dvou statistických znaků. V praxi vzniká kontingenční tabulka tak, že se na statistických jednotkách sledují dva znaky. Řádky kontingenční tabulky odpovídají možným hodnotám prvního znaku, sloupce pak možným hodnotám druhého znaku. V příslušné buňce kontingenční tabulky je pak zařazen počet případů, kdy zároveň měl první znak hodnotu odpovídající příslušnému řádku a druhý znak hodnotu odpovídající příslušnému sloupci. 1

2 Je možné, aby jeden řádek či sloupec odpovídal více možným hodnotám znaku. To se děje v případě, kdy znak nabývá některých hodnot příliš zřídka, takže je vhodné spojit více možných hodnot. Součty (mezisoučty) všech hodnot v každém řádku, resp. sloupci nesou informaci o počtu výskytů jevů, při nichž nabyl první (resp. druhý znak) příslušné hodnoty bez ohledu na hodnotu druhého (resp. prvního) znaku. Kromě prostého popisu četností kombinací hodnot dvou znaků nabízí kontingenční tabulka možnost testovat, zda mezi oběma znaky existuje nějaký vztah. K tomu lze užít např. test dobré shody. Znaky užité k zobrazení v kontingenční tabulce pak musí představovat diskrétní hodnoty (je možné tedy využít kvalitativní, diskrétně kvantitativní či spojitě kvantitativní znaky, v posledním případě však pouze s rozdělením jednotlivých znaků do skupin tzv. skupinové třídění). Teoretickým základem kontingenčních tabulek jsou matice pravděpodobností pro dvourozměrné náhodné vektory. Kontingenční tabulka 1... c Σ 1 n n 1c n 1 2 n n 2c n r n r1... n rc n r Σ n 1 n 2 n c n Matice pravděpodobností 1... c Σ 1 p p 1c p 1 2 p p 2c p r p r1... p rc p r Σ p 1 p 2 p c 1 Necht náhodný vektor X = (X 1, X 2 ) má diskrétní rozdělení, přičemž veličina X 1 nabývá hodnot i = 1, 2,..., r a veličina X 2 nabývá hodnot j = 1, 2,..., s. Označme p ij = P (X 1 = i, X 2 = j) ; p i = j p ij ; p j = i p ij. Předpokládejme, že se uskutečnil náhodný výběr rozsahu n z tohoto rozdělení. Necht n ij je počet těch případů, kdy se ve výběru vyskytla dvojice (i, j). Náhodné veličiny n ij mají pak sdružené multinomické rozdělení s parametrem n a s pravděpodobnostmi p ij. Matice (p ij ),2,...,r;j=1,2,...,s se nazývá matice pravděpodobností a matice (n ij ),2,...,r;j=1,2,...,s tvoří základ kontingenční tabulky. Označme n i = n ij ; j n j = n ij. i Číslům p i a p j se říká marginální pravděpodobnosti a hodnotám n i a n j marginální četnosti. Namísto dvou znaků lze sledovat obecně libovolné množství znaků. Kontingenční tabulka se pak tvoří pomocí stejného principu (v každém políčku je počet výskytů kombinací určitých hodnot jednotlivých 2

3 znaků), avšak není již možné ji tak snadno znázornit. Ve vícerozměrné tabulce lze testovat mnohem víc typů závislostí mezi jednotlivými znaky, testování je však technicky mnohem komplikovanější než u dvojrozměrné tabulky V programu Excel máme možnost vytvořit kontingenční tabulku pomocí příkazu COUNTIFS(oblast1;podminka1;obl Testy nezávislosti Nejčastější úlohou při analýze kontingenčních tabulek, je problém testování nezávislosti. Vzhledem k tomu, že dvě veličiny X, Y jsou nezávislé právě tehdy, když platí p ij = p i p j pro všechna i, j, formulujeme nulovou hypotézy testu nezávislosti v kontingenční tabulce ve tvaru H 0 : p ij = p i p j, i = 1, 2,..., r, j = 1, 2,..., s Testovací kritérium má tvar χ 2 = r ( s nij n in j j=1 a při platnosti nulové hypotézy ma asymptoticky rozdělení χ 2, jehož počet stupňů volnosti je roven ν = rs (r + s 2) = (r 1)(s 1). Pokud hodnota testovacího kritéria χ 2 χ 2 (r 1)(s 1)(α). zamítáme hypotézu o nezávislosti veličin X a Y. Ke shodě s limitním rozdělením se požaduje, aby teoretické četnosti n in j byly větší než 5. Není-li n tato podmínka splněna, je nutno sloučit některé sloupce, případně řádky v kontingenční tabulce. Analogicky postupu pro test nezávislosti v kontingenční lze postupovat v případě testování homogenity multinomického rozdělení. Tento přístup uplatníme v okamžiku, kdy marginální řádkové četnosti jsou pevně stanoveny a i t řádek v kontingenční tabulce má multinomické rozdělení s parametry n i, q i1, q i2,..., q is, kde q i1, q i2,... jsou nějaké pravděpodobnosti splňující podmínku q i1 +q i2 + +q is = 1. Hypotéza homogenity pak říká, že pravděpodobnosti q i1, q i2,... nezávisí na řádkovém indexu i. Testovací kritérium a kritické hodnoty jsou pro tento test identické s veličinami pro test nezávislosti Korelační koeficienty Korelační koeficienty se nejčastěji používají k měření síly (těsnosti) závislosti dvou číselných proměnných. Pearsonův korelační koeficient r xy je definován vztahem Spearmanův korelační koeficient rs měří závislost dvou pořadí Regresní analýza Regrese je snad nejčastěji používaná statistická metoda. Regrese se zabývá problémem vysvětlení změn jedné náhodné veličiny (vysvětlovaná, závislá, endogenní proměnná, regresand) na jedné nebo více jiných veličinách (regresory, vysvětlující proměnné, exogenní proměnné). V případě, že závislost je popsána lineárními vztahy, mluvíme o lineárním regresním modelu. Pokud modelujeme chování n i n j n n ) 2 3

4 vysvětlované proměnné pomocí jedné vysvětlující proměnné, mluvíme o jednoduché regresi, v opačném případě se jedná o regresi vícenásobnou. Označme X nezávisle proměnné a Y závislou proměnnou. Regresní funkcí se pak rozumí µ(x) = E (Y X = x). Regresní funkce tedy udává, jaká je střední hodnota náhodné veličiny Y při dané hodnotě x Jednorozměrný lineární regresní model y = β 0 + β 1 x + ε Předpokládejme, že máme k dispozici x i, i = 1, 2,..., n pevných (nenáhodných) hodnot proměnné X. Předpokládejme, že platí y i = f(x i, β 0, β 1,..., β k ) + ε i kde β 0, β 1..., β k jsou neznámé parametry modelu; ε i jsou náhodné veličiny, který modelují nesystematické chyby měření; y i jsou realizace náhodné veličiny Y s podmínkami X = x i. Cílem regresní analýzy je odhadnout parametry β 0, β 1..., β k tak, aby f(x i, β 0, β 1,..., β k ) co nejvíce odpovídala k empiricky naměřeným hodnotám y i. Funkce y i = f(x i, β 0, β 1,..., β k ) se nazývá teoretická regresní funkce závislosti proměnné y na x, její grafické vyjádření se nazývá teoretická regresní křivka. Regresní funkce, v níž jsou nahrazeny neznámé parametry β jejich odhady β (resp. b) se nazývá empirická regresní funkce a její grafické obraz je empirická regresní křivka. Pro hodnoty x i můžeme na základě empirické regresní křivky určit hodnotu ŷ i = f(x i, β 0, β 1,..., β k ), tyto hodnoty nazýváme vyrovnanými hodnotami y i a rozdíl mezi y i ŷ i nazýváme rezidua (značíme e i ). Regresní funkce se nazývá lineární, je-li lineární funkcí neznámých parametrů, tj. pokud y i = β 0 + β 1 ϕ 1 (x) + β 2 ϕ 2 (x) + + β k ϕ k (x) kde ϕ 1 (x), ϕ 2 (x),..., ϕ k (x) jsou funkce proměnné x. Příkladem lineárních regresních modelů jsou přímková regrese tvaru y i = β 0 + β 1 x i + ε i kvadratická regrese tvaru y i = β 0 + β 1 x i + β 2 x 2 i + ε i polynomická regrese tvaru y i = β 0 + β 1 x i + β 2 x 2 i + + β k x k i + ε i hyperbolická regrese tvaru y i = β 0 + β 1 1 x i + ε i 4

5 Metoda nejmenších čtverců Princip metody nejmenších čtverců je založen na jednoduchém volbě optimalizačního kritéria, kdy minimalizuji kvadrát odchylek naměřených y i a vyrovnaných hodnot ŷ i. Y (x i, y i ) (x i, ŷ i ) X Označme funkci Q(β 0, β 1, β 2,..., β k ) = (y i f(x i, β 0, β 1, β 2,..., β k )) 2. Při metodě nejmenších čtverců (MNČ, LSQ) hledáme hodnoty b 0, b 1, b 2,..., b k, ve kterých je funkce Q minimální, tj. b 0, b 1,..., b k = argmin Q (β 0, β 1,..., β k ). β 0,β 1,...,β k V případě lineární regresní funkce má kriteriální funkce Q tvar Q(β 0, β 1,..., β k ) = (y i β 0 β 1 ϕ 1 (x i )... β k ϕ k (x i )) 2 a tato funkce nabývá svého minima v bodech, kdy derivace je rovna nule, tj. při hledání minima řešíme soustavu k + 1 lineárních rovnic tvaru Q β j = 0 pro j = 0, 1, 2,..., k βj =b j Soustava normálních rovnic má tedy tvar b 0 n +b 1 ϕ 1 (x i ) + + b k b 0 ϕ 1 (x i ) +b 1 ϕ 1 (x i )ϕ 1 (x i ) + + b k... ϕ k (x i ) = y i ϕ 1 (x i )ϕ k (x i ) = ϕ 1 (x i )y i b 0 ϕ k (x i ) +b 1 ϕ k (x i )ϕ 1 (x i ) + + b k ϕ k (x i )ϕ k (x i ) = ϕ k (x i )y i 5

6 Přímková regrese Uvažujme tento základní jednoduchý model Y i = β 0 + β 1 x i + ε i. Derivace funkce Q(β 0, β 1 ) (y i β 0 β 1 x i ) 2 mají tvar b 0 n +b 1 b 0 x i +b 1 a řešením výše uvedených soustav dostáváme x i = (x i ) 2 = y i x i y i b 0 = y i b 1 = (x i ) 2 n x i ( n n (x i ) 2 n n n x i y i n ) 2 x i x i y i ( n n (x i ) 2 n x i y i ) 2. x i Vícerozměrný lineární regresní model y = β 0 + β 1 x 1 + β 2 x β k x k + ε a jeho maticový zápis Pro vícerozměrný lineární model je vhodné použít maticový zápis modelu y 1 x (0)1 x (1)1... x (k)1 β 0 y 2. = x (0)2 x (1)2... x (k)2 β ɛ 2. y n x (0)n x (1)n... x (k)n β k ɛ 1 ɛ n y = (y 1, y 2,..., y n ) T je vektor naměřených hodnot vysvětlované proměnné je matice typu n (k + 1) naměřených hodnot vysvětlujících proměn- X = [ x (i)j ]j=1,...,n; i=0,...,k ných β = (β 0, β 2,..., β k ) T je vektor hledaných k + 1 neznámých parametrů ɛ = (ɛ 1, ɛ 2,..., ɛ n ) T je vektor náhodné složky Stejně jako v jednorozměrném případě musíme specifikovat předpoklady řešení modelu pomocí metody nejmenších čtverců E (ɛ) = 0 6

7 E ( ɛɛ T ) = σ 2 I n X je nestochastická matice, takže E ( X T ɛ ) = 0 X má plnou hodnost k + 1 = p Za výše uvedených předpokladů pak neznámé parametry modelu β 0, β 1,..., β k, σ 2 odhadneme následovně b = ( X T X ) 1 X T y ( e T e ) s 2 = n p = (y Xb)T (y Xb) n p Kvalita regresní funkce a intenzita závislosti Jedním z důležitých kroků v regresní analýze je tzv. regresní diagnostika. Ta slouží k hodnocení kvality regresní funkce a k ověřování splnění předpokladů použité metody nejmenších čtverců. V rámci metody nejmenších čtverců pracujeme s následujícími součty čtverců, resp. rozptyly, které v sobě zahrnují variabilitu empirických hodnot, odhadnutých teoretických hodnot a residuí. celkový součet čtverců S 2 T = (y i y) 2 rozptyl empirických (skutečně zjištěných) hodnot s 2 y = vysvětlený součet čtverců S 2 V = (ŷ i y) 2 rozptyl vyrovnaných (teoretických) hodnot s 2 ŷ = residuální součet čtverců RSS = e T e = e 2 = S2 V n 1 rozptyl skutečně zjištěných hodnot kolem regresní čáry, residuální rozptyl s 2 R = RSS n p, kde p = k + 1 Při použití metody nejmenších čtverců platí S 2 T = S 2 V + RSS. Při přímkové regresi (k = 1) platí s 2 y = s 2 ŷ + s 2 R Graficky jsou jednotlivé odchylky znázorněny na obrázku S2 T n 1 (y i ŷ i ) 2 7

8 Y ŷ y ŷ y y i ŷ y i y x Koeficient (index) determinace pro vícenásobnou regresi s absolutním členem Ze vztahu jednotlivých součtů čtverců je odvozen koeficient R 2. Tento koeficient vyjadřuje z kolika procent se nám podařilo vysvětlit veličinu y pomocí veličin x 1, x 2,.... R 2 = S2 V S 2 T = 1 RSS S 2 T Pro koeficient determinace platí následující vlastnosti R 2 0; 1 = 1 (n p) s2 R (n 1) s 2 y pokud x a y jsou deterministicky závislé, pak y i = ŷ i a s 2 R = 0, s 2 y = s 2 ŷ, tedy R 2 = 1 pokud x a y jsou nezávislé, pak s 2 V = 0, s 2 y = s 2 R, tedy R 2 = 0 koeficient (index) korelace R = R 2 pro přímkovou regresi platí ŷ i = y + b 1 (x i x), kde b 1 = s xy, pak s 2 x 1 (ŷ R 2 = s2 n 1 i y) 2 1 b 1 (x n 1 i x) 2 ŷ = = = s2 xy s 2 x = s2 xy s 2 y s 2 y s 2 y s 2 x s 2 x s 2 y s 2 x s 2 y tedy koeficient korelace R = r x y odpovídá výběrovému korelačnímu koeficientu náhodného vektoru (x, y) X Regresní analýza v Excelu 8

9 funkce LINREGRESE (DATA-Y;DATA-X1-DATA-X2-...-DATA-XN;B;STAT), kde DATA-Y je závislá proměnná DATA-X1;DATA-X2;... ;DATA-XN jsou nezávislé proměnné, B =PRAVDA - parametr β 0 se odhaduje, NEPRAVDA - parametr β 0 se neodhaduje (rovnice prochází nulou), STAT=PRAVDA - počítají se doplňující charakteristiky modelu (SE i ;R 2 ;SE y ;F;df;ss(reg);ss(resid)) funkce LINTREND (DATA-Y;DATA-X;DATA-X-NOVA;B), kde DATA-Y je závislá proměnná, DATA- X jsou nezávislé proměnné, DATA-X-NOVA je nezávislá proměnná, nová ( například pokračování data-x) B =PRAVDA - parametr β 0 se odhaduje, NEPRAVDA - parametr β 0 se neodhaduje funkce FORECAST (X;DATA-Y;DATA-X) pro odhad y(x) na základě znalostí DATA-X a DATA-Y funkce INTERCEPT (DATA-Y;DATA-X) pro odhad β 0 na základě znalostí DATA-X a DATA-Y funkce SLOPE (DATA-Y;DATA-X) pro odhad parametru beta 1 lineární regrese funkce STEYX (DATA-Y;DATA-X) pro standardní chybu odhadu y funkce LOGLINREGRESE (DATA-Y;DATA-X1-DATA-X2-...-DATA-XN;B;STAT) pro logaritmický regresní model z grafu : vytvořit XY graf a přidat spojnici trendu pomocí NÁSTROJE=>ANALÝZA DAT=>REGRESE Další vícerozměrné metody a grafy lze v Excelu naprogramovat Zpracování vícerozměrných statistických dat v MATLABu Grafické zpracování a základní deskriptivní statistiky boxplot vícerozměrný histogram hist3 plotmatrix gscatter gplotmatrix souhrnné statistiky [means,sem,counts,name]=grpstats(data,data(:,2)) korelace a kovariance corr, corrcoef, cov Regresní analýza maticově b = ( X T X ) 1 X T y, atd funkce [b,bint,r,rint,stats] = regress(y,x,alpha) regresní diagnostika a grafy - rcoplot robusní odhady - robustfit 9

10 Lze využít též další nástroje pro vícerozměrnou analýzu -ANOVA, MANOVA, shluková analýza - cluster analysis, metoda hlavních komponent, faktorová analýza atd Upravený koeficient determinace (adjusted R 2 ) definice R 2 a = 1 s2 R s 2 T pro běžné situace platí R 2 a R 2 pro přímkovou regresi (resp. pro regresi se dvěma neznámými koeficienty) platí R 2 = R 2 a pro hodnoty R 2 < 10.5 Příklady k n 1 vyjde hodnota R2 a < 0 1. Chceme testovat, zda hrací kostka je korektní. Provedli jsme 600x hod kostkou a získali jsme následující četnosti: Číslo n i Pokud je kostka korektní, měly by se očekávané četnosti řídit diskrétním rovnoměrným rozdělením. Budeme tedy testovat shodu získaných hodnot s diskrétním rovnoměrným rozdělením na hladině významnosti 5%. Řešení: H 0 : Kostka je korektní H 1 : Kostka není korektní Budeme se řídit postupem uvedeným v první části tohoto cvičení: Obor hodnot je již rozdělen na 6 nepřekrývajících se tříd, tedy k = 6. Počty prvků n i jsou uvedeny již v zadání. Není potřeba odhadovat parametry, tj. m = 0. Spočteme očekávané hodnoty v jednotlivých třídách o i = np i = , 2,..., 6 V žádné třídě není o i < 5, nebudeme tedy žádné třídy slučovat. Vypočteme hodnotu testovací statistiky: = 100 pro i = χ 2 = k (n i o i ) 2 = χ 2 = o i 6 (n i 100) = 33 10

11 Kritický obor je dán χ 2 -rozdělením s ν = k 1 = 5 stupni volnosti: W = (χ (5), + ) = (11.1, + ) Jelikož χ 2 W, tak hypotézu o tom, že kostka je korektní zamítáme (na hladině významnosti α = 5%. 2. Po provedení 60 pokusů s diskrétní náhodnou veličinou X, která může nabývat hodnot 0 až 4 (tj. v každém z pokusů nastane bud 0, 1, 2, 3 nebo 4krát sledovaný jev) jsou získány následující četnosti. Hodnota n i Tedy například hodnota 12 znamená, že při 12 pokusech z 60 nabyla náhodná veličina X hodnoty 1. Otestujte na hladině významnosti α = 2.5%, zda se náhodná veličina X řídí binomickým rozdělením. Řešení: H 0 : Náhodná veličina se řídí binomickým rozdělením H 1 : Náhodná veličina se neřídí binomickým rozdělením Budeme se řídit postupem uvedeným v první části tohoto cvičení: Obor hodnot je již rozdělen na 5 nepřekrývajících se tříd, tedy k = 5. Počty prvků n i jsou uvedeny již v zadání. Ze zadání víme, že parametr n binomického rozdělení je 4, ten tedy odhadovat nemusíme. Je ale potřeba odhadnout parametr p binomického rozdělení. Ten lze odhadnout přes střední hodnotu. U binomického rozdělení víme, že E(X) = np. n známe, střední hodnotu lze odhadnout pomocí průměru a pak již jen vyjádříme neznámý parametr p: Dosadíme: A odtud: x = = 4 ˆp ˆp = = Předpokládáme, že náhodná veličina se řídí rozdělením Bi(4, ). Odhadovali jsme jeden parametr, takže m = 1. Spočteme očekávané pravděpodobnosti p i a následně očekávané hodnoty v jednotlivých třídách o i = np i pro i = 0, 1,..., 4: Hodnota p i o i

12 V první třídě je o i < 5, sloučíme tedy tuto třídu se sousední. V poslední třídě je sice n i < 5, ale očekávaná hodnota splňuje podmínku a slučovat tedy nebudeme. Po sloučení obdržíme: Hodnota 0 a n i o i Stejným způsobem musí být sloučeny i naměřené hodnoty. Vypočteme hodnotu testovací statistiky: χ 2 = k (n i o i ) 2 = o i Kritický obor je dán χ 2 -rozdělením s ν = k 1 m = 2 stupni volnosti: W = (χ (2), + ) = (7.38, + ) Jelikož χ 2 W, tak hypotézu o tom, že náhodná veličina se řídí rozdělením Bi(4, ) (na hladině významnosti α = 2.5%) nezamítáme. 3. Z průzkumu provedeného u osob, který měl zjistit efektivnost očkování proti chřipce, byly získány tyto výsledky: Bez očkování Jedno očkování Dvě očkování Celkem Chřipka Bez chřipky Celkem Na hladině významnosti α = 5% testujte, zda má očkování vliv na výskyt chřipky. Řešení: H 0 : Očkování vliv nemá (veličiny jsou nezávislé) H 1 : Očkování vliv má (mezi veličinami existuje závislost) Použijeme tedy test nezávislosti: Hodnoty n, n i. a n.j jsou uvedeny již v tabulce. Pomocí těchto hodnot vypočteme očekávané hodnoty: Např.: o 12 = n 1.n.2 = n Celá tabulka s očekávanými hodnotami: o ij = n i.n.j n = Bez očkování Jedno očkování Dvě očkování Chřipka Bez chřipky

13 Ve všech kategoriích platí o ij 5. Testovací statistika: Obor kritických hodnot W : χ 2 = 2 3 (n ij o ij ) 2 = o ij j=1 W = (χ (1 2), + ) = (5.99; + ) Protože χ 2 W, tak hypotézu o nezávislosti (na hladině významnosti α = 5%) zamítáme a očkování má tedy vliv. 4. Chceme otestovat vliv nové technologie. Máme k dispozici následující výsledky: I. jakost II. jakost III. jakost Zmetek Celkem Stará technologie Nová technologie Celkem Na hladině významnosti α = 5% testujte, zda má nová technologie vliv na výrobu. Řešení: H 0 : Technologie nemá vliv (veličiny jsou nezávislé) H 1 : Technologie má vliv (mezi veličinami existuje závislost) Použijeme tedy test nezávislosti v dvourozměrné kontingenční tabulce: Hodnoty n, n i. a n.j jsou uvedeny již v tabulce. Pomocí těchto hodnot vypočteme očekávané hodnoty: I. jakost II. jakost III. jakost Zmetek Stará technologie Nová technologie Jelikož o 14 < 5, tak musíme sloučit poslední dva sloupce (řádky slučovat nemůžeme, musí platit I, J 2). Máme tedy: I. jakost II. jakost III. jakost + Zmetek Stará technologie Nová technologie Stejným způsobem musí být sloučeny i naměřené hodnoty. Testovací statistika: 2 3 χ 2 (n ij o ij ) 2 = = 1.84 o ij j=1 13

14 Obor kritických hodnot W : W = (χ (1 2), + ) = (5.99; + ) Protože χ 2 W, tak hypotézu o nezávislosti (na hladině významnosti α = 5%) nezamítáme a nová technologie tedy nemá vliv. 5. U 5 lidí byla zjišt ována váha (ozn. X) a výška (ozn. Y ). Výsledky jsou následující: Výška Váha Předpokládáme, že dvourozměrná náhodná veličina (X, Y ) má dvourozměrné normální rozdělení. Otestujte na hladině významnosti α = 10%, zda jsou X a Y nezávislé. Řešení: Jelikož se jedná o dvourozměrné normální rozdělení, tak stačí testovat nulovost korelačního koeficientu. Testujeme tedy: H 0 : ρ = 0 H 1 : ρ 0 Musíme vypočítat průměry, výběrové rozptyly, hodnotu výběrové kovariance a následně výběrové korelace: S XY = 1 n 1 r XY = S 2 x = S 2 y = x = 1 n ȳ = 1 n x i = 181 y i = 74.4 (x i x) 2 = 190 (y i ȳ) 2 = x i y i n n 1 xȳ = = S XY S2 (X) S 2 (Y ) = 138 = Testovací statistika má tvar: r T = n 2 = 5 2 = r Obor kritických hodnot pro test na hladině významnosti α = 10% je: W = (, 2.353) (2.353, + ) Hypotézu o nezávislosti lze zamítnout na hladině významnosti α = 10%, protože T W. Přijmeme tedy alternativní hypotézu, že veličiny jsou závislé. 14

15 6. Pro následující data odhadněte koeficienty regresní přímky y = β 0 +β 1 x, vypočtěte přes soustavu normálních rovnic. x y Pro následující data odhadněte koeficienty regresní funkce y = β 0 +β 1, vypočtěte přes soustavu x normálních rovnic. x y

16 8. Pro data z předchozího příkladu odhadněte koeficienty regresní funkce y = β 0 + β 1 x + β 2 x 2 16

17 9. Pro předchozí příklady spočtěte S 2 V, S 2 T, SSE a R 2. Získané výsledky interpretujte. 17

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10 MÍRY STATISTICKÉ VAZBY, VÝBĚROVÁ ŠETŘENÍ, STATISTICKÁ ANALÝZA DOTAZNÍKOVÝCH DAT Obsah 1 Statistická data 1 1.1 Úvod.......................................... 1 1. Data...........................................

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více