Závěrečná práce studentského projektu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Závěrečná práce studentského projektu"

Transkript

1 Gymnázium Jana Nerudy Závěrečná práce studentského projektu Studium deformace vláken Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti 214 Petr Krýda Petr Jaroš Petr Kolouch Matěj Seykora Tadeáš Trnka

2 Obsah Obsah 1 Anotace 1 1. Pružná deformace vlákna 2 2. Plastická deformace vlákna 6 3. Vliv rychlosti na průběh deformace 7 4. Závislost napětí vzorku na relativním prodloužení 8 5. Napěťová relaxace 8 6. Srovnání vlastnosti mědi a cínové pájky 9 7. Diskuse 1 8. Závěr 1 9. Poděkování 1. Zdroje Anotace: Experimentální měření deformačních křivek textilních, plastových a kovových vláken. Vyhodnocení elastických a plastických vlastností a pevnosti v tahu. 1

3 1. Pružná deformace vlákna Jistě všichni víme, jak se střílí z praku gumička se musí natáhnout a pak pustit. Jenomže aby šla natáhnout, tak musí být upevněna. To je jeden z mnoha závěrů, ke kterým se dá studiem deformace vláken dojít. Na obrázku 1 je kresba aparatury, kterou jsme k tomuto používali. siloměr vzorek motorek Obr. 1 Toto zařízení je připojeno ke školnímu systému ISES, kde z měření sil s určitou frekvencí počítač udělá graf. Ale siloměr je z výroby kalibrován jen pro jednu polohu působiště, kterou my potřebujeme změnit tak, že přesuneme siloměr, abychom zvětšili jeho rozsah. K tomu jsme potřebovali kalibrační křivku, která vyjadřuje závislost síla-údaj siloměru. Zatížení [g] Údaj siloměru [dílek] -1,944-1,889-1,761-1,633-1,55-1,383-1,237-1,127-1,6 Zatížení [g] Údaj siloměru [dílek] -,859 -,731,725,878 1,3 1,176 1,323 1,475 1,621 Abychom mohli popsat skok na pružném vzorku, tak musíme znát průběh začáteční fáze deformační křivky pružného vlákna, ale tu již proměříme v celém rozsahu. Počáteční délka vzorku byla 17 cm, průměr 1mm a rychlost natahování byla,157 m*s -1, teplota vzorku byla 25⁰C. Závislost prodloužení vzorku-tahová síla bude pochopitelně ovlivněna materiálem, délkou vzorku, plošným průřezem atd. Tyto všechny údaje musíme přepočítat tak, abychom mohli vzorky rozumně porovnávat vyjadřování pomocí poměru protažení - původní délka vzorku (=relativní protažení ε) a poměru napínaní: působící síla plošný obsah průřezu (=tahové napětí σ). Přepočítání prodloužení na relativní prodloužení je vskutku jednoduché: ε = S druhým poměrem už je to horší, jelikož jak se působící síla zvětšuje, tak se vlákno sužuje. Nicméně objem zůstává zachován, což by teda znamenalo, že platí L*S=L *S. Konečný vzorec je σ = 2

4 deformační napětí (PA) síla (N) V praxi se u méně elastických materiálů než pryž se tahové napětí počítá, jako kdyby se průřez neměnil. Tomu se říká smluvní napětí, ovšem tyto hodnoty jsou menší než skutečné hodnoty. Průběh deformace je zpočátku napínání lineární tomu se říká Hookův zákon: Konstantu E o hodnotě 2,5*1 6 N*m -2 nazýváme modul pružnosti v tahu zkoumané pryže. Pryžové vlákno se pružně deformuje téměř až do přetržení. 2,5 2 registrační křivka 1,5 1,5 1 2 čas 3 (s) ,E+6 6,E+6 4,E+6 2,E+6,E+,,5 1, 1,5 2, 2,5 3, Řady1 3

5 síla (N) deformační napětí (PA) síla (N) 4, 3,5 3, 2,5 2, 1,5 1,,5, -,5 registrační křivka SÍLA čas (s) 8,E+6 6,E+6 4,E+6 2,E+6 SKUTEČNÉ NAPĚTÍ,E+, 1, 2, 3, 4, 5, 6, -2,E+6 Pro srovnání tu máme ještě výsledky zkoumání deformace silonového vlákna vlasce: registrační křivka 1,6 1,4 1,2 1,,8,6,4,2, čas (s) 4

6 deformační napětí síla (1N) smluvní napětí (PA) deformační napětí (PA) deformační křivka 1E+9 5,2,4,6,8,1,12,14,16 1,5E+8 1,E+8 5,E+7,E+,,2,4,6,8,1,12,14,16 A ještě vlas:,6 registrační křivka,5,4,3,2 SÍLA,1,, 5, 1, 15, 2, čas 1,2E+2 1,E+2 8,E+1 6,E+1 4,E+1 2,E+1,E+,,5,1,15,2,25,3,35,4,45 5

7 síla (1N ) 2. Plastická deformace vlákna Zde se budeme zabývat deformací kovových vzorků, tj. Tenkých měděných drátků. K experimentům použijeme stejné zařízení, jež jsme používali při natahování pryžových a silových vláken a jehož obrázek a schéma je na předchozích stranách práce. Drátky zvolíme tenké, kvůli tomu aby nedocházelo k nepřesnostem měření např. z nějakého ohybu zařízení. Na následujícím grafu je registrační křivka pro měď. 14 registrační křivka pro CUS čas (s) Ve výše uvedeném grafu je zobrazena registrační křivka, kde je měřena síla, která působí na vzorek v závislosti na čase. Zde bychom se chtěli zabývat skutečným a smluvním napětím. Smluvní napětí je napětí, které bylo spočítáno pomocí výsledků měření a kde byl započítán průřez změřený v okamžiku, kdy na drátek nepůsobila žádná síla. Oproti tomu skutečné napětí je napětí, při kterém byl započítán průřez drátku v okamžiku, kdy na něj nepůsobila žádná síla. 6

8 deformační napětí (PA) deformační napětí (PA) K našemu měření ale také lze přistupovat kriticky: počáteční část křivky je velmi krátká (nejsou na ní vidět malé změny) a je silně ovlivňována podmínkami pokusu, tj. je pružná deformace silo-měrného čidla a tažného zařízení a zároveň pružné upevnění vzorku, což silně ovlivňuje přesnost měření. Dále také při měření předpokládáme, že se vzorek homogenně deformuje po celé délce, což ve skutečnosti nemusí být pravda. Na deformační křivce můžeme pozorovat, že při pokračování plastické deformace se zvyšuje napětí. Drátek se tak stává více a více odolnější vůči následující plastické deformaci. Tento jev je označován jako zpevnění, a proto je někdy deformační křivka nazývána křivkou zpevnění. Pro kvantifikaci charakteristiku tohoto zpevnění se zde hodí sklon zpevnění. Zde popisované zpevňování alespoň do určité míry udržuje homogenitu deformace v celé délce vzorku. Různě zpevněné části vyvolávají různá přenesení deformace pro dosažení homogenity. Níže uvedený graf popisuje deformační napětí. 6E+9 5E+9 4E+9 3E+9 2E+9 1E+9,2,4,6,8,1,12,14 Vliv rychlosti na průběh deformace Je také možné očekávat, že rychlost natahování drátku a teplota bude mít vliv na průběh křivky zpevnění. Zkoušky s různou rychlostí deformace jsme prováděli pomocí tažných os, u nichž byly průměry odstupňovány geometrickou řadou. Průběhy jsou prakticky shodné. 6E+9 5E+9 Chart Title 4E+9 3E+9 2E+9 1E+9,2,4,6,8,1,12,14 7

9 Závislost napětí vzorku na relativním prodloužení Vrátíme se zpět ke křivce zpevnění. Z počátečních elastických částí deformačních křivek je zřejmé, že u polykrystalických měděných drátků existuje krátká oblast pružné tzv. Hookovské deformace lineárně probíhající. Na základě měření tedy můžeme průběh křivky zpevnění popsat Hookovým zákonem Sloupec C Řady3 Napěťová relaxace Dalším zajímavým námětem pro experiment je pozorování při přerušování deformace, tj. vzorek byl zpočátku deformován a po dosažení určité deformace (napětí) jsme deformaci zastavili a dále sledovali jen průběh napětí s časem. 1,6 1,4 1,2 1,8,6,4,2 -,

10 ,2,4,6,8,1 Srovnání vlastnosti mědi a cínové pájky Na konec provedeme krom deformačních zkoušek i nějaké analogické zkoušky s cínovou pájkou. Tento materiál jsme zvolili zejména proto, že jeho plastická deformace je na napětí nenáročná my můžeme použít stejné pomůcky i přes to, že jeho průřez je několikrát větší. Princip měření je zde stejný jako u mědi. Průměr drátku: 1 mm Průměr osy: 12 mm Délka drátu: 1,25 m Jednotka síly B:,1 N Vzorkovací frekvence: 2 Hz 9

11 smaluvní napětí (PA) 2,5E+7 2,E+7 1,5E+7 Řady1 1,E+7 5,E+6,E+,E+2,E-24,E-26,E-28,E-21,E-1 Průměr drátku: 1 mm Průměr osy: 3,15 mm Délka drátku: 1,25 m Jednotka síly B:,1 N Vzorkovací frekvence: 2 Hz Perioda otáček T = 1 s Diskuse Přesnost měření může být narušena špatným uchycením zkoumaného vzorku na siloměr, dále pak skutečností, že navzdory našemu předpokladu, že se vzorek homogenně deformuje po celé délce to tak nemusí být. Závěr Zkoumané vzorky sestupně seřazené podle pevnosti: CuS1 Vlas CuS2 Cu Niť2 Vlasec Niť3 Niť1 Pryž1 Pryž2 5*1 9 2,5*1 8 2,4*1 8 2,3*1 8 1,4*1 8 1,2*1 8 6,1*1 7 4*1 7 7*1 6 7*1 6 Poděkování Chtěli bychom poděkovat Doc.Rojkovi za čas, který nám věnoval při konzultacích a poskytnuté prostředky. We would like to thank to Doc.Rojko for his time and for funds provided by him. 1

12 Zdroje Habilitační práce Doc.Rojka (Metoda reprezentativního příkladu ve vyučování fyziky, Praha, 1994) Internet (různě, 214) 11

Fyzikální experimenty podporované počítačem

Fyzikální experimenty podporované počítačem Fyzikální experimenty podporované počítačem František Lustig, Milan Rojko, ČR Abstrakt Příspěvek popisuje jednoduché školní fyzikální deformační experimenty ve spojení s počítačem při použití školního

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon Výstup RVP: Klíčová slova: pracovní list studenta Struktura a vlastnosti pevných látek, Mirek Kubera žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, analyzuje průběh

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z MECHANIKY A TERMIKY Ústav fyziky a biofyziky Školitelka: Studentka: Ing. Helena Poláková, PhD. Bc. Lenka Kadlecová AKTUÁLNOST ZPRACOVÁNÍ TÉMATU Původně

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

6. Měření Youngova modulu pružnosti v tahu a ve smyku

6. Měření Youngova modulu pružnosti v tahu a ve smyku 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..

Více

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU Pomůcky: čidlo polohy Go!Motion, čidlo magnetického pole MG-BTA, magnet, provázek (gumička, izolepa), vhodný stativ na magnet, LabQuest, program LoggerPro Postup:

Více

Hodnocení vlastností folií z polyethylenu (PE)

Hodnocení vlastností folií z polyethylenu (PE) Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN

Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN Karel Mikeš České vysoké učení technické v Praze Fakulta stavební

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

6 ZKOUŠENÍ STAVEBNÍ OCELI

6 ZKOUŠENÍ STAVEBNÍ OCELI 6 ZKOUŠENÍ TAVEBNÍ OCELI 6.1 URČENÍ DRUHU BETONÁŘKÉ VÝZTUŽE DLE POVRCHOVÝCH ÚPRAV 6.1.1 Podstata zkoušky Různé typy betonářské výztuže se liší nejen povrchovou úpravou, ale i různými pevnostmi a charakteristickými

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

Název: Studium kmitů hudebních nástrojů, barva zvuku

Název: Studium kmitů hudebních nástrojů, barva zvuku Název: Studium kmitů hudebních nástrojů, barva zvuku Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Hudební výchova) Tematický

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

DEFORMACE PEVNÉHO TĚLESA DEFORMACE PRUŽNÁ (ELASTICKÁ) DEFORMACE TVÁRNÁ (PLASTICKÁ)

DEFORMACE PEVNÉHO TĚLESA DEFORMACE PRUŽNÁ (ELASTICKÁ) DEFORMACE TVÁRNÁ (PLASTICKÁ) Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D14_Z_MOLFYZ_Deformace pevného tělesa, normálové napětí, hookův zákon_pl Člověk a příroda

Více

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak. Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

Martin Feigl Matematicko-Fyzikální soustředění v Nekoři, 2005. Dopplerův jev

Martin Feigl Matematicko-Fyzikální soustředění v Nekoři, 2005. Dopplerův jev 1. Prolog 2. Dopplerův efekt & teorie relativity 3. Náš pokus 4. Teorie 5. Vzorečky 6. Závěr 7. Epilog Dopplerův jev 1. Prolog Pokud se zdroj a přijímač akustického či elektromagnetického vlnění pohybují

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Vypracovali: Štěpán Roučka, Jan Klusoň, Vratislav Krupař Zadání Seznámit se s obsluhou vysokovakuové aparatury čerpané rotační a difúznívývěvouauvéstjidochodu.

Více

STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ

STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ 1. Úvod Pevnost v tahu je jednou ze základních mechanických vlastností obalových materiálů, charakterizujících jejich odolnost vůči mechanickému namáhání,

Více

Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly:

Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 4 Jméno: Třída:

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými

TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými TENZOMETRY V současnosti obvyklý elektrický tenzometr je pasivní elektrotechnická součástka používaná k nepřímému měření mechanického napětí na povrchu součásti prostřednictvím měření její deformace. Souvislost

Více

VÝTAHOVÁ LANA GUSTAV WOLF ŽIVOTNOST, MONTÁŽ, MAZÁNÍ A ÚDRŽBA LAN

VÝTAHOVÁ LANA GUSTAV WOLF ŽIVOTNOST, MONTÁŽ, MAZÁNÍ A ÚDRŽBA LAN ŽIVOTNOST, MONTÁŽ, MAZÁNÍ A ÚDRŽBA LAN Faktory ovlivňující životnost lana Pro ekonomické využití výtahových lan je velmi důležitá instalační přístupnost, stejně jako životnost lan. Co se týká faktorů ovlivňujících

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Matematická a experimentální analýza namáhání rotujícího prstence ovinovacího balicího stroje

Matematická a experimentální analýza namáhání rotujícího prstence ovinovacího balicího stroje Matematická a experimentální analýza namáhání rotujícího prstence ovinovacího balicího stroje Bc. Josef Kamenický Vedoucí práce: Ing. Jiří Mrázek, Ph.D.; Ing. František Starý Abstrakt Tématem této práce

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

TRHACÍ PŘÍSTROJ LABTEST 2.05

TRHACÍ PŘÍSTROJ LABTEST 2.05 TRHACÍ PŘÍSTROJ LABTEST 2.05 Přístroj: 1 8 7 6 2 3 4 1 horní příčník 2 pohyblivý příčník 3 siloměrný snímač 4 bezpečnostní STOP tlačítko 5 kontrolka napájení 6 modul řízení 7 spodní zarážka 8 horní zarážka

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 14.10.2012

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 14.10.2012 Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_17 Název materiálu: Mechanické vlastnosti materiálů Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí mechanické vlastnosti

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

Měření magnetické indukce elektromagnetu

Měření magnetické indukce elektromagnetu Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí

Více

Úloha I.E... tři šedé vlasy dědy Aleše

Úloha I.E... tři šedé vlasy dědy Aleše Úloha I.E... tři šedé vlasy dědy Aleše 8 bodů; průměr 4,28; řešilo 50 studentů Pokuste se určit některé napěťové charakteristiky v tahu u lidského vlasu. Z vašeho pokusu sestavte co nejpodrobnější graf

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úlohač.8 Název: Kalibrace odporového teploměru a termočlánku- fázové přechody Pracoval: Lukáš Ledvina stud.skup.17 24.3.2009

Více

Novostavba zámečnické dílny v Polánce. Dodávka vybavení

Novostavba zámečnické dílny v Polánce. Dodávka vybavení Novostavba zámečnické dílny v Polánce Tento projekt je spolufinancován Evropskou unií TECHNICKÉ PODMÍNKY NABÍDKY pro nabídku na část 2 veřejné zakázky Novostavba zámečnické dílny v Polánce Dodávka vybavení

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

Netlumené kmitání tělesa zavěšeného na pružině

Netlumené kmitání tělesa zavěšeného na pružině Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: A) Měření převodní charakteristiky snímače typu S 1. Změřte převodní charakteristiku deformačního snímače síly při zatížení v rozsahu 0 10 kg v zapojení

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17.

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17. Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek 1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu.

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. 3. Tenkostěnné za studena tvarované O Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. Tloušťka plechu 0,45-15 mm (ČSN EN 1993-1-3, 2007) Profily: otevřené uzavřené

Více

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA FUNKCE ŠLACH A VAZŮ Šlachy: spojují sval a kost přenos svalové síly na kost nebo chrupavku uložení elastické energie Vazy: spojují kosti stabilizace kloubu vymezení

Více

Kapitola 13. Kalibrace termočlánku. 13.1 Úvod

Kapitola 13. Kalibrace termočlánku. 13.1 Úvod 77 Kapitola 13 Kalibrace termočlánku 13.1 Úvod Termoelektrické teploměry (termočlánky, tepelné články) měří teplotu na základě termoelektrického jevu: Ve vodivém okruhu tvořeném dvěma vodivě spojenými

Více

Řemenové převody Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Hynek Palát

Řemenové převody Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Hynek Palát Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

Experimenty s textilem ve výuce fyziky

Experimenty s textilem ve výuce fyziky Experimenty s textilem ve výuce fyziky LADISLAV DVOŘÁK, PETR NOVÁK katedra fyziky PdF MU, Brno Příspěvek popisuje experimenty s využitím různých vlastností textilií a jejich využití ve fyzice na ZŠ. Soubor

Více

1.3.5 Siloměr a Newtony

1.3.5 Siloměr a Newtony 1.3.5 Siloměr a Newtony Předpoklady: 010305 Pomůcky: siloměry, Vernier měřič tlakové síly rukou, Př. 1: Na obrázku je nakreslen kvádřík, který rovnoměrně táhneme po stole. Zakresli do obrázku síly, které

Více

1.1.13 Poskakující míč

1.1.13 Poskakující míč 1.1.13 Poskakující míč Předpoklady: 1103, 1106 Pedagogická poznámka: Tato hodina je zvláštní tím, že si na začátku nepíšeme její název. Nový druh pohybu potřebujeme nový pokus Zatím jsme stále na začátku

Více

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!!

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!! Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci jméno: stud. skupina: příjmení: pořadové číslo: datum: Materiály: Lepené lamelové dřevo třídy GL 36h : norma ČSN EN 1194 (najít si hodnotu modulu

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Název: Měření vlnové délky světla pomocí interference a difrakce

Název: Měření vlnové délky světla pomocí interference a difrakce Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky

Více

Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce)

Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce) Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce) foliove (kovova folie na podlozce) Ad a) Odporove dratky

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 8: Měření zatížení protéz dolních končetin tenzometrickou soupravou Metodický pokyn pro vyučující se vzorovým protokolem

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh Ocelobetonové stropní konstrukce vystavené požáru požární návrh Cíl návrhové metody požární návrh 2 požární návrh 3 Obsah prezentace za požáru ocelobetonových desek za běžné Model stropní desky Druhy porušení

Více

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011 ODPOR TERMISTORU Pomůcky: voltmetr DVP-BTA, ampérmetr DCP-BTA, teplotní čidlo STS-BTA, LabQuest, zdroj napětí, termistor, reostat, horká voda, led (resp. ledová tříšť), svíčka, sirky, program LoggerPro

Více

Název: Studium kmitání matematického kyvadla

Název: Studium kmitání matematického kyvadla Název: Studium kmitání matematického kyvada Autor: Doc. RNDr. Mian Rojko, CSc. Název škoy: Gymnázium Jana Nerudy, škoa h. města Prahy Předmět, mezipředmětové vztahy: fyzika, biooie Ročník: 3. (1. ročník

Více

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2 EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU A.Mikš, V.Obr Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Rezonanční elektromotor II

Rezonanční elektromotor II - 1 - Rezonanční elektromotor II Ing. Ladislav Kopecký, 2002 V tomto článku dále rozvineme a zpřesníme myšlenku rezonančního elektromotoru. Nejdříve se zamyslíme nad vhodnou konstrukcí elektromotoru. Z

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM I Úloha číslo: X Název: Rychlost šíření zvuku Vypracoval: Ondřej Hlaváč stud. skup.: F dne: 7. 3. 00 Odevzdal dne:

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Ing. Kubíček Miroslav. Autor: Číslo: VY_32_INOVACE_20 13 Anotace:

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Ing. Kubíček Miroslav. Autor: Číslo: VY_32_INOVACE_20 13 Anotace: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Tváření Ohýbání Ing. Kubíček Miroslav Číslo: VY_32_INOVACE_20

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

Příloha č. 3. Specifikace požadavků na Univerzální trhací stroj s teplotní komorou a pecí. Univerzální trhací stroj s teplotní komorou a pecí

Příloha č. 3. Specifikace požadavků na Univerzální trhací stroj s teplotní komorou a pecí. Univerzální trhací stroj s teplotní komorou a pecí Příloha č. 3 Specifikace požadavků na Dodávka mechanického zkušebního trhacího stroje představuje plně funkční zařízení v nejpreciznějším možném provedení a s nejlepšími dosažitelnými parametry pro provádění

Více

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM

9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM 9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit

Více