Dynamika hmotného bodu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamika hmotného bodu"

Transkript

1 Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg, v0 = 0 ms-1, v1 = 20 ms-1, t = 10 s. Určit: Sílu F. Příklad 2: Blok o hmotnosti 90kg leží na vodorovné podložce, působí na něho síla dle obrázku. Zadání a): Předpokládáme, že povrch je hladký, blok se pohybuje s konstantním zrychlením a. Dáno: m = 90 kg, α = 34º, f = 0, a = 5 ms-2. Určit: Velikost síly F. Zadání b): Předpokládáme drsný povrch a známou velikost síly F. Dáno: m = 90 kg, α = 34º, f = 0,25, F = 1,5 kn. Určit: Velikost zrychlení a.

2 Příklad 3: Blok o hmotnosti 20 kg leží na nakloněné rovině o elevačním úhlu 20º. Na blok působí síla 250 N v naznačeném směru. V čase t = 0 s předpokládáme nulové hodnoty polohy a rychlosti. Vypočtěte rychlost a polohu bloku v čase t = 5 s. Zadání a): Předpokládáme, že povrch je hladký. Dáno: m = 20 kg, α = 20º, f = 0, F = 250 N, v(0) = 0 ms-1, x(0) = 0 m. Určit: v(5 s), x(5 s). Zadání b): Předpokládáme, že povrch je drsný. Dáno: m = 20 kg, α = 20º, f = 0,2, F = 250 N, v(0) = 0 ms-1, x(0) = 0 m. Určit: v(5 s), x(5 s). Příklad 4: Balík o hmotnosti 15 kg se pohybuje po skluzu o délce 5 m a sklonu 30º. Počáteční rychlost balíku jsou 3 ms-1, koeficient tření mezi balíkem a skluzem je f1 = 0,15. Určete rychlost balíku na konci skluzu a dráhu d, na které balík zastaví na vodorovné podložce, která má koeficient tření f2 = 0,30. Dáno: m = 15 kg, l = 5 m, α = 30º, v0 = 3 ms-1, f1 = 0,15, f2 = 0,30. Určit: v1 (na konci skluzu), d (dráha pro zastavení na vodorovné podložce). Příklad 5: Nákladní automobil o hmotnosti ma = 5400 kg veze náklad o hmotnosti mn = 2200 kg. Jestliže automobil rovnoměrně zrychlí ze 40 km/h na 80 km/h na dráze 60 m, vypočtěte celkovou sílu, kterou při zrychlování přenášela kola na vozovku. Dále vypočtěte nejmenší možný koeficient smykového tření f min mezi nákladem a korbou, takový, aby při tomto zrychlení nedošlo k posunu nákladu. Dáno: ma = 5400 kg, mn= 2200 kg, v0 = 40 kmh-1, v1 = 80 kmh-1, l = 60 m. Určit: F (mezi automobilem a vozovkou), fmin.

3 Příklad 6: Závaží A a B jsou spojena dokonale ohebným lanem, které je vedeno přes ideální kladku, v uspořádání dle obrázku. Koeficient tření mezi závažím A a nakloněným povrchem je f = 0,15, hmotnost bloku A je ma = 25 kg. Na počátku děje je soustava v klidu, v naznačené poloze (závaží B ve výšce 3m). Jestliže po uvolnění soustavy narazí závaží B na vodorovný povrch za čas td = 3 s, určete zrychlení a hmotnost závaží B a sílu v laně v průběhu děje. Dáno: α = 40º, ma = 25 kg, f = 0,15, td = 3 s, h = 3 m. Určit: ab, mb, FL. Příklad 7: Na objímku o hmotnosti m = 20 kg působí vodorovná síla P, která se mění s časem dle naznačeného průběhu. Objímka je na počátku děje v klidu. Koeficient smykového tření za klidu je fs = 0,35, koeficient smykového tření za pohybu je fd = 0,30. Určete čas t1, ve kterém se objímka začne pohybovat, rychlost objímky v čase 5 s a dráhu, kterou objímka urazila během 5s. Dáno: m = 20 kg, fs = 0,35, fd = 0,30, v(0) = 0 ms-1, x(0) = 0 m, průběh síly P v čase. Určit: t1 (čas, ve kterém dojde k pohybu), v(5 s), x(5 s).

4 Příklad 8: Blok o hmotnosti m = 20 kg je spojen s pružinou o zanedbatelné hmotnosti. Pružina je svým působením lineární, její tuhost je k = 100 N/m. Jestliže je blok posunut o 200 mm směrem doprava z rovnovážné polohy a poté uvolněn (z klidu), vypočtěte rychlost jeho pohybu v místě, kde je síla pružiny nulová, tj. pružina je nedeformovaná. Třecí síly zanedbáváme. Dáno: m = 20 kg, k = 100 N/m, x(0) = 200 mm, v(0) = 0 m/s. Určit: vn (rychlost v bodě x = 0 mm). Příklad 9: Kulička o hmotnosti m = 0,15 kg je vystřelena pružinou ze šikmé roury (sklon 30º). Konstanta tuhosti pružiny je k = 5 N/cm. Volná délka pružiny je lv = 20 cm. Na obrázku je znázorněn výchozí stav, kdy kulička byla v klidu (Pružina je tedy na počátku děje stlačena o 10 cm). Vypočtěte rychlost kuličky na konci roury, jestliže zanedbáme veškeré pasivní odpory. Dáno: α = 30º, m = 0,15 kg, k = 5 N/cm, lv = 20 cm, v(0) = 0 m/s, rozměry z obrázku. Určit: v1 (rychlost na konci roury). Příklad 10: Závaží A o hmotnosti m = 10 kg je na počátku děje v klidu. Na počátku děje je též lineární pružina o tuhosti k = 25 N/m nedeformovaná. V čase t = 0 s dojde k uvolnění soustavy. Určete rychlost a zrychlení závaží a sílu v laně v okamžiku, kdy závaží A klesne o 10 cm oproti své původní poloze. Pasivní odpory zanedbáváme. Dáno: m = 10 kg, k = 25 N/m, v(0) = 0 m/s. Určit: v(0,1 m), a(0,1 m), FL(0,1 m).

5 Příklad 11: Objímka o hmotnosti m = 2 kg se pohybuje po hladké vodorovné tyči s rychlostí v0 = 3 m/s, v okamžiku, kdy se dotkne pružiny. Pružina je nelineární, vztah mezi silou pružiny F a deformací x je kvadratický, F = cx2, kde c je konstanta o fyzikálním rozměru [kg m-1 s-2]. Jestliže objímka zastaví na dráze l = 10 cm, určete konstantu c pružiny. Dáno: m = 2 kg, v0 = 3 m/s, l = 10 cm. Určit: c. Příklad 12: Dragster o hmotnosti m = 550 kg se v okamžiku, kdy řidič vystřelí brzdící padák, pohybuje rychlostí v0 = 160 km/h. Brzdná síla padáku je úměrná druhé mocnině rychlosti dle vztahu Fp = 0,25 v2, kde Fp je v Newtonech a v v metrech za sekundu. Určete zpomalení dragsteru v okamžiku vyhození padáku a vzdálenost l12, kterou dragster ujel mezi vyhozením padáku a okamžikem, kdy dosáhl rychlosti v1 = 40 km/h. Dáno: m = 550 kg, v0 = 160 km/h, Fp = 0,25 v2, v1 = 40 km/h. Určit: a(0 s), l12. Příklad 13: Projektil o hmotnosti m = 5 kg je vystřelen kolmo vzhůru počáteční rychlostí v0 = 300 m/s. a): Vypočtěte výšku výstupu hb, pokud zanedbáme odpor vzduchu. b): Pokud je odpor vzduchu úměrný druhé mocnině rychlosti dle vztahu Fo = v2, kde F je v Newtonech a v v metrech za sekundu, vypočtěte výšku výstupu h a rychlost dopadu vd. Dáno: m = 5 kg, v0 = 300 m/s, Fo = v2. Určit: hb, h, vd.

6 Příklad 14: Letadlo se v okamžiku vypuštění bomby pohybuje rychlostí v0 = 750 km/h a letí pod úhlem 20º směrem k zemi. Bomba byla vypuštěna ve výšce h = 5000 m. Při zanedbání odporu vzduchu určete vodorovnou vzdálenost R mezi místem vypuštění bomby a místem jejího dopadu. Dáno: v0 = 750 km/h, α = 20º, h = 5000 m. Určit: vzdálenost R. Příklad 15: Automobil se pohybuje konstantní rychlostí v = 100 km/h po stoupající a klesající silnici. Vypočtěte sílu přenášenou mezi řidičem o hmotnosti m = 80 kg a sedačkou v nejnižším a nejvyšším bodě cesty, nakreslené na obrázku. Poloměry oblouků klesání a stoupání jsou shodně r = 90 m. Dáno: v = 100 km/h, m = 80 kg, r = 90 m. Určit: FD, FH.

7 Příklad 16: Kruhový disk se otáčí ve vodorovné rovině. Hmotný bod o hmotnosti m = 1,5 kg leží ve vzdálenosti r = 8 cm od osy rotace. Koeficient smykového tření (statický) mezi hmotným bodem a diskem je f = 0,5. Na počátku děje je disk v klidu. V čase t = 0 s se začne roztáčet s konstantním úhlovým zrychlením ε = 0.5 rad s-2. Určete čas t1, ve kterém se hmotný bod začne smýkat po disku. Dáno: m = 1,5 kg, r = 8 cm, f = 0,5, ε = 0.5 rad s-2. Určit: t1 ( čas, ve kterém se hmotný bod začne smýkat). Příklad 17: Kuličky jsou uvolňovány po jedné ze zásobníku na hladkou kruhovou dráhu o poloměru r = 1,5 m. Na počátku dráhy, v bodě A mají nulovou rychlost. Kuličky dráhu opouštějí v bodě C ve vodorovném směru a jsou chytány v bodě B. Určete velikost rychlosti kuličky jako funkci úhlu θ, rychlost kuličky v bodě C a vzdálenost xb. Dáno: r = 1,5 m, va = 0 m/s, h = 50 cm. Určit: v(θ), vc, xb.

8 Příklad 18: Hmotný bod o hmotnosti m = 0,5 kg se pohybuje po hladké vodorovné dráze rychlostí v0 = 1,8 m/s. Poté se dostane na čtvrtkruhovou rampu o poloměru r = 40 cm. Určete úhel θ, kde dojde k oddělení hmotného bodu od povrchu. Dáno: m = 0,5 kg, v0 = 1,8 m/s, r = 40 cm. Určit: θ. Příklad 19: Hmotný bod o hmotnosti m = 3 kg je spojena s tyčí o zanedbatelné hmotnosti a provázkem. Délka tyče l = 2 m. Na počátku děje je vše v klidu, tyč svírá se svislým směrem úhel α = 45º. V čase t = 0 je provázek přestřižen. Určete sílu T v tyči v těchto okamžicích: a) v pozici nakreslené na obrázku před přestřižením provázku, b) v téže pozici těsně po přestřižení provázku, c) v nejnižším bodě dráhy kuličky ( α = 0º). Dáno: m = 3 kg, l = 2 m, α0 = 45º, v(0) = 0 m/s. Určit: T0-, T0+, T90.

9 Příklad 20: Hmotný bod o hmotnosti m se pohybuje po drsné nakloněné rovině (koef. smykového tření f, úhel α) směrem vzhůru. Na počátku děje, v bodě A, má nulovou rychlost. V tomto bodě začne na hmotný bod působit pružina s volnou délkou l0 a tuhostí k. V bodě B přestane pružina působit a hmotný bod se začne pohybovat šikmým vrhem, v bodě C dopadne na podložku. Odpor prostředí zanedbáváme. Určete rychlost vb hmotného bodu v bodě B a délku vrhu d, je-li počáteční natažení pružiny lab. Dáno: α = 25º, m = 0,1 kg, f = 0,15, k = 500 N/m, l0 = 20 cm, lab = 8 cm. Určit: vb, d. Poznámka o autorských právech: Všechny zde uvedené příklady a obrázky (vyjma příkladu 20) byly převzaty z knihy Riley W.F. Sturges L.D.: Engineering mechanics Dynamics, second edition, John Wiley & sons, Tento dokument slouží pouze pro potřeby výuky předmětu Mechanika pro 2. ročník FM TU Liberec.

10 Výsledky (bez záruky :-): Příklad 1: F = 2000 N. Příklad 2: a: F = 542,80 N, b: a = 9,035 ms-2. Příklad 3: a: v(5) = 45,724 ms-1, x(5) =114,31 m. b: v(5) = 36,506 ms-1, x(5) =91,264 m. Příklad 4: v1 = 6,731 ms-1, d = 7,697 m. Příklad 5: F = 23,456 kn, fmin = 0,315. Příklad 6: ab = 0,6667 ms-2, mb = 22,146 kg, FL = 202,49 N. Příklad 7: t1 = 1,867 s, v(5) = 1,066 ms-1, x(5) = 0,3885 m. Příklad 8: vn = 0,4472 ms-1. Příklad 9: v1 = ms-1. Příklad 10: v(0,1 m) = ms-1, a(0,1 m) = 8,81 ms-2, FL(0,1 m) = 5 N. Příklad 11: c = kg m-1 s-2. Příklad 12: a(0 s) = 0,8979 ms-2, l12 = 3049,8 m. Příklad 13: hb = 4587,2 m, h = 1035,7 m, vd = 86,57 ms-1. Příklad 14: R = 4988,2 m. Příklad 15: FD = 1470,7 N, FH = 98,93 N. Příklad 16: t1 = s. Příklad 17: v = 2 g r sin, vc = ms-1, xb = 1,732 m. Příklad 18: θ = 19,628º. Příklad 19: T0- = 41,620 N, T0+ = 20,810 N, T90 = 46,670 N. Příklad 20: vb = 14,064 ms-1, d = 15,446 m.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D01_Z_MECH_Uvod_PL Člověk a příroda Fyzika Mechanika Úvod Fyzika, SI, násobky a

Více

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM ČOS 235003 1. vydání ČESKÝ OBRANNÝ STANDARD ČOS GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM Praha ČOS 235003 1. vydání (VOLNÁ STRANA) 2 Český obranný standard květen 2003 Geometrie styčné plochy mezi

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: 39_základní zásady kótování Téma: Základy normalizace v

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

POKUSY S PRAKEM Václav Piskač, Brno 2014

POKUSY S PRAKEM Václav Piskač, Brno 2014 POKUSY S PRAKEM Václav Piskač, Brno 2014 V předchozím článku jsem popsal stavbu praku střílejícího tenisové míčky. Nyní se chci zabývat jeho využitím ve výuce. Prak umožňuje střílet míčky prakticky stálým

Více

POROZUMĚNÍ POJMU SÍLA

POROZUMĚNÍ POJMU SÍLA TEST POROZUMĚNÍ POJMU SÍLA original Force Concept Inventory 1992 D. Hestenes, M. Wells, G. Swackhamer In: Phys. Teach. 30 (3), 141-158 (1992) Revised 1995: I. Halloun, R. Hake, E. Mosca Department of Physics

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Návod k měření na modernizovaném dílenském mikroskopu Zeiss

Návod k měření na modernizovaném dílenském mikroskopu Zeiss Návod k měření na modernizovaném dílenském mikroskopu Zeiss Dílenský mikroskop je v různém provedení jedním z důležitých přístrojů pro měření v kontrolních laboratořích. Je to velmi univerzální přístroj

Více

Stručný návod k obsluze programu Vlaková dynamika verze 3.4

Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Program pracuje pod Windows 2000, spouští se příkazem Dynamika.exe resp. příslušnou ikonou na pracovní ploše a obsluhuje se pomocí dále popsaných

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANTONÍNSKÁ 1 601 90 BRNO

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANTONÍNSKÁ 1 601 90 BRNO List: 1 Zkušebna: Zkušebna letecké techniky, Letecký ústav Fakulta strojního inženýrství, Technická 2896/2 616 69 Brno tel. (+42) 54114 2228, fax (+42) 54114 2879 Zadavatel: TeST spol. s.r.o., Tišnov,

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Technologie III - OBRÁBĚNÍ

Technologie III - OBRÁBĚNÍ 1 EduCom Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. NAVRHOVÁNÍ HOSPODÁRNÝCH ŘEZNÝCH PODMÍNEK PŘI P I OBRÁBĚNÍ 1) CO

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU : Ing.Bohuslav Tikal CSc, ZČU v Plzni, tikal@civ.zcu.cz Ing.František Valeš CSc, ÚT AVČR, v.v.i., vales@cdm.cas.cz Anotace Výpočtová simulace slouží k

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.759 Název DUM: Skládání sil Název

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

Lehký tank vz.35 (Š-IIa ) (Škoda) - 1936-37:

Lehký tank vz.35 (Š-IIa ) (Škoda) - 1936-37: Lehký tank vz.35 (Š-IIa ) (Škoda) - 1936-37: Výzbroj kanon s kulometem ve věži kulomet mohl fungovat jako spřažený, nebo i samostatně. Druhý kulomet v levé přední části korby. Osádka velitel, řidič a radiotelegrafista.

Více

Kola. Konstrukce kola (jen kovové části)

Kola. Konstrukce kola (jen kovové části) Kola Účel: (kolo včetně pneumatiky): Umístění: - nese hmotnost vozidla - kola jsou umístěna na koncích náprav - přenáší síly mezi vozovkou a vozidlem - doplňuje pružící systém vozidla Složení kola: kovové

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 11 ks. 3G modem TP-LINK M5350

Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 11 ks. 3G modem TP-LINK M5350 Specifikace VT 11 ks. Ultrabook dle specifikace v příloze č. 1 Prodloužená záruka 3 roky 11 ks. 3G modem TP-LINK M5350 11 ks. MS Office 2013 pro podnikatele CZ 11 ks. brašna 11 ks. bezdrátová myš 5 ks.

Více

Robustní provedení Robustní vodicí sloupec i měřicí hlava Vysoce přesný měřicí systém s kontrolní měřicí hlavou, systém není citlivý na nečistoty

Robustní provedení Robustní vodicí sloupec i měřicí hlava Vysoce přesný měřicí systém s kontrolní měřicí hlavou, systém není citlivý na nečistoty - 2-16 Nový výškoměr Chcete-li dosáhnout přesných výsledků jednoduše a rychleji, je zde nový výškoměr. Výškoměr je použitelný v dílně i ve výrobě. Přesně jak to od našich měřidel očekáváte. Uživatelsky

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Kovaná hliníková kola Alcoa. Fakta a čísla

Kovaná hliníková kola Alcoa. Fakta a čísla Kovaná hliníková kola Alcoa Fakta a čísla VÍTE, ŽE? Kola Alcoa jsou nejpevnější Každé z těchto kol vzniká z jednoho kusu nerezavějící hliníkové slitiny o vysoké pevnosti. Pomocí lisu o síle 8000 tun je

Více

3. Mechanická převodná ústrojí

3. Mechanická převodná ústrojí 1M6840770002 Str. 1 Vysoká škola báňská Technická univerzita Ostrava 3.3 Výzkum metod pro simulaci zatížení dílů převodů automobilů 3.3.1 Realizace modelu jízdy osobního vozidla a uložení hnacího agregátu

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km Téma: Převody jednotek fyzikálních veličin A. Pravidla pro převody jednotek v desítkové soustavě převádíme-li z jednotky větší na menší číslo bude větší násobíme 10, 100, 1 000, 1 000 000 posuneme desetinou

Více

Celostátní kolo soutěže Mladý programátor 2013, kategorie C, D

Celostátní kolo soutěže Mladý programátor 2013, kategorie C, D Pokyny: 1. Kategorie C i D řeší úlohy 1, 2, 3. 2. Řešení úloh ukládejte do složky, která se nachází na pracovní ploše počítače. Její název je stejný, jako je kód, který váš tým dostal přidělený (C05, D10

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Fyzikální korespondenční škola 2. dopis: experimentální úloha

Fyzikální korespondenční škola 2. dopis: experimentální úloha Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela

Více

Servopohony vzduchotechnických klapek pro obytné

Servopohony vzduchotechnických klapek pro obytné 4 622 Servopohony vzduchotechnických klapek pro obytné prostory GXD..31.1 Rotační provedení, 2- nebo 3-bodové řízení Elektrické servopohony s 3-polohovým řízením Jmenovitý kroutící moment 1.5 Nm Napájecí

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru:

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: KATEGORIE D Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie: D Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Legislativa a zimní pneumatiky

Legislativa a zimní pneumatiky Legislativa a zimní pneumatiky Zimní pneumatiky dle Evropské unie Na území Evropské unie je platná definice zimních pneumatik dle Směrnice rady 92/23/EHS přílohy II v článcích 2.2 a 3.1.5. 2.2 (Specifikace

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5 PŘEDNÁŠKA 5 π n * ρvk * d 4 n [ ] 6 d + s *0 v m [ mg] [ m] Metody stanovení jemnosti (délkové hmotnosti) vláken: Mikroskopická metoda s výpočtem jemnosti z průměru (tloušťky) vlákna u vláken kruhového

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0230 šablona III / 2 č. materiálu VY_32_INOVACE_399 Jméno autora : Ing. Stanislav Skalický Třída

Více

REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013

REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013 REDOMA s.r.o., 17. listopadu 338, Děčín, Telefon 412 513 460, www.redoma.cz, redoma@redoma.cz KOMPLETNÍ MALOOBCHODNÍ CENÍK (bez DPH), LEDEN 2013 # Obj.číslo Název zboží Cena MJ Sortiment LTD 1 D408215

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Referenční příručka o čárovém kódu

Referenční příručka o čárovém kódu Referenční příručka o čárovém kódu Verze 0 CZE 1 Úvod 1 Přehled 1 1 V této referenční příručce naleznete informace o tisku čárových kódů, který využívá příkazy pro ovládání zasílané přímo na tiskové zařízení

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

PROGRAM RP45. Vytyčení podrobných bodů pokrytí. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014

PROGRAM RP45. Vytyčení podrobných bodů pokrytí. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014 ROADPAC 14 RP45 PROGRAM RP45 Příručka uživatele Revize 05. 05. 2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 RP45 1. Úvod. Program VÝŠKY A SOUŘADNICE PODROBNÝCH BODŮ

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014

Více