Problematika zavádění statistických metod
|
|
- Tadeáš Bílek
- před 2 lety
- Počet zobrazení:
Transkript
1 Problematika zavádění statistických metod Petra HALFAROVÁ, Milan HUTYRA Abstrakt: Dnes si již bez použití jednoduchých statistických veličin nedokážeme představit řízení podniku. Ovšem pokročilejší tatistické metody mnohdy zůstávají neoprávněně na okraji zájmu. U mnohých statistických metod nejsou plně využívány jejich veškeré možnosti nebo jsou tyto statistické metody aplikovány nesprávným způsobem, což většinou vede k předčasnému rozhodnutí o ukončení využívání těchto metod, případně špatné interpretaci výsledků. Při vyslovení slova statistika mnohým naskočí husí kůže. Cokoliv, co se týká matematiky je pro mnohé obestřeno tajemstvím a vystačí si s poznáním pojmu průměr. Ovšem mnozí tuto prvotní nechuť již překonali a věřím, že malé procento z nich objevilo krásu matematiky a jejich aplikací. V oblasti řízení jakosti hrají statistické metody neopomenutelnou úlohu. Prvotní rozmach zavádění statistických metod, který se týkal především velkých firem mnohdy se zahraničním kapitálem, je již určitě za námi. A tyto firmy také většinou úspěšně užívají výsledky a vyhodnocení, které jim používání statistických metod přináší. Pochopili, že nutnost, s kterou je zaváděli přešla v užitečnost. Oblast statistických metod potkává některé zaměstnance každodenně a již si nedokážou představit svou práci bez jejich využívání. V malých a středních firmách je situace o něco složitější. Mnohé menší firmy statistické metody míjejí úplně, některé se pokoušejí něco měřit a případně i vyhodnocovat, jiní již za sebou mají úspěšnou prvotní zkušenost a pokračují dále. Každá z firem si ale prošla všemi fázemi, které jsou obvyklé při prosazování jakékoliv změny či novinky. Některé firmy jsou stále ještě na cestě, jiné už u pomyslného konce. Pro většinu malých a středních firem je zavádění statistických metod nelehkou cestou. Mnozí ji naštěstí berou jako výzvu a nenechají se odradit prvním neúspěchem či problémem a každý, byť i
2 sebemenší krůček je žene dopředu. I oni ale narážejí v jakékoliv fázi zavádění těchto metod na problémy a bariéry. A je to na nich jak se s nimi vypořádají. Tab.1: Fáze prosazování statistických metod Stav Charakteristika stavu K čemu nám to bude? My to určitě nevyužijeme. Odmítavý postoj Stálo by nás to značné úsilí a peníze, které se nám určitě nevrátí. Možná bychom to i využili. Tání ledu - Když to mají oni. Taky by nám to mohlo pochybnosti pomoci. Tak, už to měříme. Začínáme a měříme Měříme a uvidíme co s těmi daty budeme provádět dál. Měříme a vyhodnocujeme Vyhodnocujeme a využíváme vyhodnocení Měření je pro nás samozřejmostí a data se pokoušíme snad správně vyhodnotit. Měříme a vyhodnocujeme. Měříme, vyhodnocuje a výsledky plně využíváme První problém - finance Prvním výrazných problémem, který napadne téměř každého jsou finance. Zvláště menší firmy pociťují tento problém jako významný, a jen velmi těžko jej překonávají. Uvědomují si, že tak jako všechno, i zavádění statistických metod, je bude stát nemalé finanční prostředky. To samozřejmě ano - nákup techniky, zaškolení pracovníků či případné zakoupení vhodného software, to vše jsou pro firmy náklady. Jsou to ale náklady, které se firmě vrátí zpět. Je to investice do budoucna. Pro podniky střední velikosti je finanční hledisko také důležité, ale dokáží ho překonat daleko rychleji, především díky svému kapitálovému zázemí. Jindy na podniky tlačí zákazníci a odběratelé, či obchodní partneři. Finanční stránku řeší podniky nejenom při zavádění statistických metod, ale také ve fázi již probíhajících měření a vyhodnocování. Nejčastěji je to v souvislosti dalšího vzdělávání a školení
3 zaměstnanců, nebo při zakoupení nového softwaru na analýzu a zpracovávání dat. To jsou jistě nemalé finanční položky, které firma ráda investuje, za předpokladu viditelných výsledků. Pokud si management firmy uvědomí, že výsledky statistického zpracování jsou nápomocny v dalším řízení a rozhodování, jistě tuto investici schválí i v budoucnosti. To samozřejmě zvyšuje šance na vynaložení dalších finančních prostředků týkajících se oblasti zavádění a využívání statistických metod. Tab.2: První problém finance nákup techniky počítače, monitory FINANCE školení zaměstnanců odborná školení či intenzivní kurzy pro zaměstnance týkající se statistických metod software zakoupení vhodného software na statistické vyhodnocování dat Ačkoliv by se na první pohled mohlo zdát, že jedinou a také největší bariérou jsou finance, není tomu tak. Hraji bezesporu významnou roli, avšak častokrát významnější úlohu hraje samotný lidský faktor. Druhý problém lidský faktor Primární příčinou, která ovlivňuje významnou měrou statistické výsledky jsou samotní lidé, tedy zaměstnanci. První skupinu tvoří především zaměstnanci, kteří mají na starosti samotné měření dat. Jsou to právě oni, na nichž závisí zda následný výsledek statistického zpracování, bude přesný a použitelný. Jedno ze základních pravidel statistiky hovoří právě o tom, že statistický výsledek bude vypovídající, pokud pracuji s přesnými a skutečnými vstupními daty. Pokud tedy při měření selže konkrétní pracovník a jeho lajdácky vyplněné záznamy budeme zpracovávat, dopustíme se chyb a nepřesností, aniž to tušíme. Nezodpovědným přístupem můžeme rozumět např. samotný špatný odečet z měřidla, měření s nedostatečnou přesností, nedodržování časových harmonogramů stanovených pro měření, nečitelný záznam, případně neprovedení
4 samotného měření vůbec a následné doplnění záznamů smyšlenými hodnotami. Druhou skupinou tvoří lidé, kteří již naměřená data zpracovávají. Měli by to být lidé s odpovídajícími znalostmi a dovednostmi, lidé, kteří zvládají danou oblast statistiky na určité úrovni. Pokud bude data zpracovávat někdo, kdo si není jistý v základních principech matematické statistiky, může dojít k nesprávnému použití některých statistických metod či nesprávné interpretaci příslušného statistického postupu. Tab.3: Druhý problém lidský faktor lajdácký a špatný odečet z měřidla měření s nedostatečnou přesností LIDSKÝ FAKTOR Lidé měřící data Lidé zpracovávající data nedodržení časového harmonogramu nečitelný záznam nevyplnění záznamu vůbec a následné vyplnění záznamu smyšlenými hodnotami nesprávné použití statistických metod nesprávná interpretace výsledků Existuje mnoho oblastí statistiky, kde se nezkušený zaměstnanec může potýkat s problémy. Jedná se o nevhodné použití příslušných nástrojů matematické statistiky většinou plynoucí z nedostatečné či povrchní znalosti dané problematiky. Uvedu zde jen některé problémy, na které může dotyčný při zpracování dat narazit. Jedním ze sedmi základních nástrojů managementu jakosti je histogram, který je velmi častým používaných grafických nástrojem pro zobrazení naměřených dat. Ovšem nesprávně zvolená šířka třídy, může snížit informace, kterou nám histogram může poskytnout. V případě, že vytvoříme příliš málo intervalů, tak nám získaný histogram neposkytne očekávanou informaci o charakteru rozdě-
5 lených dat, naopak pokud vytvoříme zbytečně mnoho tříd, bude histogram příliš členitý a jeho využitelnost bude taktéž malá. Také vybočující měření mohou značně zkreslit výsledky ať už u výpočtu rozptylu či nám mohou způsobit nemalé problému u regulačních diagramů. Přitom prokazatelně odlehlou hodnotu můžeme ze souboru dat vyřadit. Je ovšem nutné vždy brát v úvahu skutečnost, za které nám odlehlá hodnota vznikla. Někdy omylem můžeme vyřadit hodnoty, které se nám zdají být odlehlé, ovšem ve skutečnosti nám poskytnou důležitou informaci. Velmi často mohou odlehlé hodnoty vzniknout omylem například špatným zapsáním desetinné čárky či odhadem nečitelného zápisu. Bodový odhad střední hodnoty nebo rozptylu velmi málo vypoví o množství dat, které se zpracovávají. Vhodnější je využití intervalu spolehlivosti, v němž skutečná hodnota leží s velkou pravděpodobností. Málo využívané bývají i robustní charakteristiky. V případech, kdy máme podezření, že v datech jsou odlehlé nebo chybné hodnoty, je medián daleko vhodnější pro popis daného souboru než běžně používaná střední hodnota. Stejně dobře nám poslouží i uřezaný průměr, který se počítá jako běžný průměr, v němž nejsou brány v úvahu okrajové hodnoty. S výše uvedenými oblastmi statistiky se potká každý, kdo se rozhodne zpracovávat data a využívat statistický software. Každý software mu poskytne hromadu výsledků, ovšem je na samotném pracovníkovi, aby se sám rozhodnul, zda právě tento výsledek je ten nejvhodnější a zda technika, kterou zvolil je právě ta jediná nejlepší. Třetí problém volba softwaru Dalším úskalím, které vstupuje do problematiky zpracování dat je volba vhodného softwarového produktu na zpracovávání naměřených dat. Statistický software k zpracovávání dat rozdělit na dvě základní skupiny. Prvním je běžně dostupný komerční software v kancelářských aplikacích, např. MS Office. Jedná se především o aplikace tabulkových procesorů jako např. nejznámější MS Excel. Druhou skupinu tvoří úzce specializované produkty na zpracování dat jako Statgraphics, Statistica, QC Expert nebo SPSS, nebo komplexní produkty pro řízení jakosti obsahující i nástroje pro analýzu dat (Palstat caq).
6 Mezi výše uvedenými dvěmi skupinami je však podstatný rozdíl. Začíná-li někdo zpracovávat data, nejjednodušší a nejdostupnější nabízející se volbou je využití zmíněného tabulkového procesoru MS Excel. Prvotní nadšení opadá, jakmile uživatel zjistí, že veškeré algoritmy pro výpočty je nucen si sám vytvořit a to za použití funkcí nebo za pomoci implementovaného makro jazyka. Uživatel může rovněž využít standardně implementované nástroje pro analýzu dat, avšak jejich nabídka je omezená. Pro firmy začínající se zaváděním statistických metod se může zdát MS Excel jako velmi vhodný nástroj, ale časem dojdou ke zjištění, že na složitější statistické metody je třeba mít značné znalosti obecné teorie příslušné problematiky. Na základě těchto skutečností dojdou k závěru, že tabulkový procesor je pro ně nedostačující a jsou nuceni sáhnout ke specializovaným programům. V současné době je k dispozici poměrné široká nabídka statistických aplikací se zaměřením na oblast řízení jakosti. Mezi nimi lze najít i kvalitní produkty v češtině. Úskalím se může jevit ovládání programu, které se však stane jasným a srozumitelným po vhodném proškolení. Daleko obtížnějším úkolem je správně porozumět výstupům programu a následně je správně interpretovat. Tab.4: Třetí problém volba softwaru na zpracování dat Běžně dostupný komerční software MS Excel VOLBA SOFTWARU Specializovaný statistický software Statistica QC Expert Statgraphics SPSS Palstat caq
7 S výše nastíněnými problémy se může podnik setkat jak při zavádění, tak i při každodenním užívání statistických metod. Chceme-li minimalizovat výše uvedené úskalí při zavádění statistických metod, měli bychom apelovat na etiku a znalosti konkrétních zaměstnanců, a v neposlední řadě přesvědčit vedení o tom, že investice do statistických metod je rentabilní. Literatura: [1] Hendl, J.: Přehled statistických metod zpracování dat : analýza a metaanalýza dat. 1. vydání. Praha: Portál s. ISBN [2] Kupka, K.: Statistické řízení jakosti. Pardubice: TriloByte. 191s. ISBN X [3] Plura, J.: Plánování a nestálé zlepšování jakosti. 1. vydání. Praha: Computer Press s. ISBN Adresy autorů: Ing. Petra Halfarová, Vysoká škola báňská Technická univerzita Ostrava, Fakulta metalurgie a materiálového inženýrství, katedra kontroly a řízení jakosti, Tř.17.listopadu 15, Ostrava-Poruba. Doc. Ing. Milan Hutyra, CSc., Vysoká škola báňská Technická univerzita Ostrava, Fakulta metalurgie a materiálového inženýrství, katedra kontroly a řízení jakosti, Tř.17.listopadu 15, Ostrava-Poruba. Tato práce byla vytvořena v rámci projektu MŠMT 1M CQR.
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních
Vybrané praktické aplikace statistické regulace procesu
ČSJ, OSSM Praha, 19. 4. 2012 Vybrané praktické aplikace statistické regulace procesu Prof. Ing. Darja Noskievičová, CSc. Katedra kontroly a řízení jakosti Fakulta metalurgie a materiálového inženýrství
8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ
MANAGEMENT PROCESŮ Systémy managementu měření se obecně v podnicích používají ke kontrole vlastní produkce, ať už ve fázi vstupní, mezioperační nebo výstupní. Procesy měření v sobě zahrnují nemalé úsilí
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Využití tabulkového procesoru MS Excel
Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
MSA-Analýza systému měření
MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu
Statistické zpracování naměřených experimentálních dat za rok 2012
Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící
Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny
Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost
Stanovení nejistot při výpočtu kontaminace zasaženého území
Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních
Sedm základních nástrojů řízení jakosti
Sedm základních nástrojů řízení jakosti Není nic tak naprosto zbytečného, jako když se dobře dělá něco, co by se nemělo dělat vůbec. Peter Drucker Kontrolní tabulky Vývojové diagramy Histogramy Diagramy
SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ
SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní
Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?
Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/
ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI
ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI SPŠ na Proseku 4-1 Ing. A. Styblíková, Ing. L. Procházka - pevně stanovený soubor grafických technik napomáhajících při řešení problémů s kvalitou - jedná se o 7 nástrojů
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Fyzikální laboratoř. Kamil Mudruňka. Gymnázium, Pardubice, Dašická /8
Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Fyzikální laboratoř Kamil Mudruňka Gymnázium, Pardubice, Dašická 1083 1/8 O projektu Cílem projektu bylo vytvořit
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly
a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ ÚSTAV APLIKOVANÉ MATEMATIKY STATISTIKA Průzkum skladby cestujících v městské hromadné dopravě a jejich preferencích při volbě dopravního prostředku
Proces P9 Metrologie
Účinnost dokumentu od: 13.6.2007 Proces P9 Metrologie Řízená kopie č.: Razítko: Není-li výtisk tohoto dokumentu na první straně opatřen originálem razítka 1/17 Proces: P9 Metrologie Garant procesu: Účel:
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Metoda EVM. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Ing. Martin Půlpitel, 2011
Projektové řízení (BI-PRR) Metoda EVM Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Ing. Martin Půlpitel, 2011 Projektové řízení ZS 2011/12, cvičení
WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý
WAMS - zdroj kvalitní ch dat pro analý zý stavu sí tí a pro nové éxpértní sýsté mý Daniel Juřík, Antonín Popelka, Petr Marvan AIS spol. s r.o. Brno Wide Area Monitoring Systémy (WAMS) umožňují realizovat
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
Dynamické ověřování nákupních podmínek v systému PROe.biz
Dynamické ověřování nákupních podmínek v systému PROe.biz Ing. Zbyněk Dohnal DONASY s.r.o. Sídlo: 787 01 Šumperk, Nezvalova20 Poštovní adresa: 623 00 Brno, Chopinova 13 GSM: +420 602 730 976 email: dohnal@donasy.cz
Úvod do potravinářské legislativy Lekce 8: kritické body ve výrobě potravin, systémy HACCP a managementu bezpečnosti
Úvod do potravinářské legislativy Lekce 8: kritické body ve výrobě potravin, systémy HACCP a managementu bezpečnosti Ústav analýzy potravin a výživy prof. ing. Vladimír Kocourek, CSc. a doc. ing. Kamila
NĚKTERÉ ZÁVĚRY Z ÚVODNÍ NÁKLADOVÉ ANALÝZY VÝROBY TEKUTÉHO KOVU V ŠESTI SLÉVÁRNÁCH. Václav Figala a Sylvie Žitníková b Václav Kafka c
NĚKTERÉ ZÁVĚRY Z ÚVODNÍ NÁKLADOVÉ ANALÝZY VÝROBY TEKUTÉHO KOVU V ŠESTI SLÉVÁRNÁCH Václav Figala a Sylvie Žitníková b Václav Kafka c a) VŠB-TU Ostrava, FMMI, Katedra slévárenství, 17. listopadu 15, 708
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Metrologický řád FMMI
Účinnost dokumentu od: 29.8.2007 Metrologický řád FMMI Řízená kopie č.: Razítko: Není-li výtisk tohoto dokumentu na první straně opatřen originálem razítka 1/12 Obsah 1 Obecná část 3 1.1 Seznam zkratek
3. Očekávání a efektivnost aplikací
VYUŽÍVANÍ INFORMAČNÍCH SYSTÉMŮ V ŘÍZENÍ FIREM Ota Formánek 1 1. Úvod Informační systémy (IS) jsou v současnosti naprosto nezbytné pro úspěšné řízení firem. Informačním ním systémem rozumíme ucelené softwarové
PALSTAT s.r.o. systémy řízení jakosti PALSTAT CAQ verze. 3.00.01.16 Výstupní kontrola 07.1/2009. 1 Obsah
1 Obsah 1 Obsah... 1 2 Úvod... 2 2.1 Výhody... 2 2.2 Základní ovládání... 2 3 Menu... 3 3.1 Menu Soubor... 3 3.1.1 Menu Soubor/Filtr... 3 3.1.2 Menu Soubor/Tisk vybraného záznamu... 3 3.1.3 Menu Soubor/Tisk
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář
Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru
VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý
Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Ing. Jiří Fejfar, Ph.D. Geo-informační systémy
Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Definice, budování a život GIS Kapitola 1: Vztahy strana 2 Data, informace, IS, GIS Kapitola 1: Vztahy strana 3 Rozhodnutí Znalosti Znalostní systémy. Informace
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013
2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky
Co musí zahrnovat dokumentace systému managementu kvality? 1 / 5
ISO 9000:2005 definuje třídu jako 1) kategorie nebo pořadí dané různým požadavkem na kvalitu produktů, procesů nebo systémů, které mají stejné funkční použití 2) kategorie nebo pořadí dané různým požadavkům
Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_02_ACCESS_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
FORMÁTOVÁNÍ 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika
Autor: Mgr. Dana Kaprálová FORMÁTOVÁNÍ 3 Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_143_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
PALSTAT s.r.o. systémy řízení jakosti PALSTAT CAQ verze Mezioperační kontrola 07.1/ Obsah
1 Obsah 1 Obsah... 1 2 Úvod... 2 2.1 Výhody... 2 2.2 Základní ovládání... 2 3 Menu... 3 3.1 Menu Soubor... 3 3.1.1 Menu Soubor/Filtr... 3 3.1.2 Menu Soubor/Tisk vybraného záznamu... 3 3.1.3 Menu Soubor/Tisk
Ing. Ondřej Audolenský
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1
Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát
Řízení vztahů se zákazníky
Řízení vztahů se zákazníky Řízení vztahů se zákazníky Vychází z představy, že podnik je řízen zákazníkem Používanými nástroji jsou: Call Centra Customer Relationship Management (CRM) Základní vazby v řízení
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 1. Úvod, základní pojmy Mgr. David Fiedor 16. února 2015 Osnova 1 Úvod - organizace výuky 2 3 Struktura přednášek Úvod, základní pojmy Popisná statistika Teoretická rozdělení
Katalog vzdělávání 2016 Obsah
Katalog vzdělávání 2016 Obsah Osobnostní rozvoj... 2 1. Prezentační dovednosti... 2 2. Komunikační dovednosti... 2 3. Lektorské dovednosti a kompetence... 2 4. Myšlenkové mapy... 3 IT kurzy... 4 1. Adobe
Management kvality, environmentu a bezpečnosti práce
Jaromír Veber a kol. Management kvality, environmentu a bezpečnosti práce Legislativa, systémy, metody, praxe Management Press, Praha 2006 Autorský kolektiv: Ing. Marie Hůlová, CSc. subkapitola 6.6 Ing.
Obchodní akademie, Náchod, Denisovo nábřeží 673
Název vyučovacího předmětu: ÚČETNICTVÍ na PC (UPC) Obor vzdělání: 18 20 M/01 Informační technologie Forma studia: denní Celkový počet vyučovacích hodin za studium: 64 (2 hodiny týdně) Platnost: 1. 9. 2009
SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404
SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Úprava naměřených stavů
Návod na používání autorizovaného software Úprava naměřených stavů V Ústí nad Labem 8. 10. 2010 Vytvořil: doc. Ing., Ph.D. Návod pro úpravu stavů_v1 1 z 9 8.10.2010 Obsah 1Úvod...3 2Instalace...4 3Spuštění
Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I.
Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I. pro kombinované a distanční studium Radim Briš Martina Litschmannová
Souběžná validita testů SAT a OSP
Souběžná validita testů SAT a OSP www.scio.cz 15. ledna 2013 Souběžná validita testů SAT a OSP Abstrakt Pro testování obecných studijních dovedností existuje mnoho testů. Některé jsou všeobecně známé a
BI-TIS Případová studie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti BI-TIS Případová Cvičení č. 2 Ing. Pavel Náplava naplava@fel.cvut.cz Katedra softwarového inženýrství, ČVUT FIT, 18102 Centrum znalostního
STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč
STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu
Statistické zpracování výsledků
Statistické zpracování výsledků Výpočet se skládá ze dvou částí. Vztažná hodnota a také hodnota směrodatné odchylky jednotlivých porovnání se určuje z výsledků dodaných účastníky MPZ. V první části je
Měření zrychlení volného pádu
Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny
Ing. Pavel Rosenlacher
Marketing v sociálních sítích Webová analytika Ing. Pavel Rosenlacher pavel.rosenlacher@vsfs.cz Krátké shrnutí SEO spočívá v lepším zobrazování stránek ve výsledcích vyhledávání na vyhledávačích Souhrnně
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
1.2.9 Usměrňování zlomků
9 Usměrňování zlomků Předpoklady: 0008 Pedagogická poznámka: Celá hodina by měla být naplňováním jediné myšlenky Při usměrňování rozšiřujeme zlomek tím, co potřebujeme Fakt, že si příklad upravíme, jak
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Aproximace a vyhlazování křivek
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI
Metodická instrukce. Možnosti využití inspekčních nástrojů ke gramotnostem v práci školy
Praha, říjen 2015 Obsah 1 Cíl a určení dokumentu... 3 2 Inspekční nástroje ke gramotnostem... 3 3 ke sledování podpory gramotností... 3 4 Obecný postup pro sledování podpory rozvoje gramotností... 4 5
Doplňování chybějících hodnot v kategoriálních datech 2.00
Doplňování chybějících hodnot v kategoriálních datech 2.00 1. Cíle programu Účelem programu je umožnit uživateli doplnění chybějících hodnot v kategoriálních datech. Pro doplnění chybějících hodnot je
Opravář zemědělských strojů
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Integrovaná střední škola Cheb Opravář zemědělských strojů 41-55-H/01 Verze: v1.1 Obsah 2 Profil absolventa... 3 2.1 Úvodní identifikační údaje... 3 2.2 Popis uplatnění absolventa...
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3 Technická měření v MS Excel Pracovní list 8 Měření na ventilátoru - graf Ing. Jiří Chobot VY_32_INOVACE_323_8
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.. Technická měření v MS Excel Pracovní list Délková měření. Ing. Jiří Chobot VY INOVACE Anotace Inovace
Práce v textovém editoru
Práce v textovém editoru 0) Otevřete NOTEPAD a okopírujte celý tento článek do NOTEPADu. [Můžete použít zkratky Ctrl-A (označit vše) Ctrl+C(kopírovat), Ctrl+V (vložit)] 1) Najděte v tomto textu slovo "myš"
MATEMATIKA. Statistika
MATEMATIKA Statistika Během těchto vyučovacích hodin změří žáci pomocí senzorů Pasco svoji klidovou tepovou frekvenci a tepovou frekvenci po námaze. Získané výsledky budou v další hodině zpracovávat do
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. FAKULTA PROVOZNĚ EKONOMICKÁ Obor Provoz a ekonomie Katedra ekonomických teorií
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA PROVOZNĚ EKONOMICKÁ Obor Provoz a ekonomie Katedra ekonomických teorií TEZE K DIPLOMOVÉ PRÁCI Téma: Charakteristika konkurenceschopnosti podniků ČR v souvislosti
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Recenzovaly: Ing. Hana Štverková, PhD. Ing. Dagmar Zindulková. Vydání knihy bylo schváleno vědeckou radou nakladatelství.
Recenzovaly: Ing. Hana Štverková, PhD. Ing. Dagmar Zindulková Vydání knihy bylo schváleno vědeckou radou nakladatelství. Všechna práva vyhrazena. Žádná část této knihy nesmí být reprodukována žádnou formou,
Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely
Testování a spolehlivost ZS 2011/2012 6. Laboratoř Ostatní spolehlivostní modely Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu Informatika
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Jak používat statistiky položkové v systému WinShop Std.
Jak používat statistiky položkové v systému WinShop Std. Systém WinShop Std. využívá k zápisům jednotlivých realizovaných pohybů (příjem zboží, dodací listy, výdejky, převodky, prodej zboží na pokladně..)
Univerzální prohlížeč naměřených hodnot
Návod na používání autorizovaného software Univerzální prohlížeč naměřených hodnot V Ústí nad Labem 14. 8. 2009 Vytvořil: doc. Ing., Ph.D. 1 z 10 Obsah 1Úvod...3 2Instalace...3 3Spuštění programu...3 3.1Popis
Manažerská ekonomika
PODNIKOVÝ MANAGEMENT (zkouška č. 12) Cíl předmětu Získat znalosti zákonitostí úspěšného řízení organizace a přehled o současné teorii a praxi managementu. Seznámit se s moderními manažerskými metodami
1. ZÁVAZNÉ PŘEDMĚTY. Ekonomická teorie. Matematicko statistické metody v ekonomii 2. POVINNĚ VOLITELNÉ PŘEDMĚTY
SLEZSKÁ UNIVERZITA V OPAVĚ OBCHODNĚ PODNIKATELSKÁ FAKULTA V KARVINÉ ÚSTAV DOKTORSKÝCH STUDIÍ 1. ZÁVAZNÉ PŘEDMĚTY Ekonomická teorie Matematicko statistické metody v ekonomii 2. POVINNĚ VOLITELNÉ PŘEDMĚTY
Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek
Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.
PROJEKT BAKALÁŘSKÉ PRÁCE
PROJEKT BAKALÁŘSKÉ PRÁCE KOMUNIKACE A LIDSKÉ ZDROJE NÁZEV BAKALÁŘSKÉ PRÁCE Systém řízení kvality v praxi konkrétní organizace v oblasti zaměřené na zákazníka TERMÍN UKONČENÍ STUDIA A OBHAJOBA (MĚSÍC/ROK)
LabMeredian Plus základní kurz
LabMeredian Plus základní kurz Program LabMeredian Plus 2 je součástí projektu LabMeredian. Může však být provozován i zcela samostatně. LabMeredian Plus je určen pro napojení k různým typům laboratorních
Autorizovaný software
Popis a informace o podmínkách získání a používání autorizovaného softwaru, který je součástí výsledku řešení projekt MŠMT ČR čís. 1M06047. Autorizovaný software Autorizovaný software pro PC byl vyvinut
Informace o studijním oboru 23-41-M/01 Strojírenství
Informace o studijním oboru 23-41-M/01 Strojírenství Název ŠVP: 23 41 M/01 Strojírenství Zaměření: Řízení kvality Základní údaje Stupeň poskytovaného vzdělání: střední vzdělání s maturitní zkouškou Délka
VY_32_INOVACE_PEL-3.EI-05-PROCESNI PRISTUP A ROLE VEDNI. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_PEL-3.EI-05-PROCESNI PRISTUP A ROLE VEDNI Střední odborná škola a Střední odborné učiliště,
L A TEX Barevné profily tiskových zařízení (tiskárny, plotry)
Semestrální práce z předmětu Kartografická polygrafie a reprografie L A TEX Barevné profily tiskových zařízení (tiskárny, plotry) Autor: Petr Douša, Jan Antropius Editor: Ivana Řezníková Praha, duben 2011
Manažerská ekonomika KM IT
KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout
Rusko, Ukrajina...Kanada, USA...jiné
Úvodní dotazník Klastru českých nábytkářů Vážená paní, vážený pane, rádi bychom Vás požádali o vyplnění krátkého dotazníku. Tento dotazník nám pomůže určit bližší zaměření klastru podle Vašich preferencí,
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59