VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

Rozměr: px
Začít zobrazení ze stránky:

Download "VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách"

Transkript

1 ROZKLAD ROZPTYLU

2 ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže jsou k dispozici údaje o skupinách (průměry, rozptyly, četnosti)

3 VNITROSKUPINOVÝ ROZPTYL Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

4 MEZISKUPINOVÝ ROZPTYL Je mírou odlišnosti poloh (průměrů) skupin Jiný název: rozptyl průměrů Vypočítává se jako rozptyl z průměrů jednotlivých skupin vůči celkovému rozptylu. Užívá se definiční výpočet rozptylu (průměrná čtvercová odchylka)

5 PŘÍKLAD 1 Na základě výsledků z 1. příkladu minulého bloku vypočítejte vnitroskupinový, meziskupinový a celkový rozptyl. Četnosti Průměry Rozptyly W X 10 9,4 185,24 Y 10 9,4 16,44 Z 10 31,9 398,89

6 ŘEŠENÍ 1 n i x i s 2 i n i x i s i2 n i (x i -x) (x i -x) 2 (x i -x) 2 n i W ,925 79, ,55625 X 10 9,4 185, ,4-4,525 20, ,75625 Y 10 9,4 16, ,4-4,525 20, ,75625 Z 10 31,9 398, ,9 17, ,1 3231,00625 Celkem 40 XX XX ,7 0 XX 4437,075 Průměr: 13,925 Vnitroskupinový rozptyl: 150,1425 Meziskupinový rozptyl 110,9269 Rozptyl 261,0694

7 PŘÍKLAD 2 Na základě následující tabulky vypočítejte meziskupinový, vnitroskupinový a celkový rozptyl. Dětinské kolegium Varianta Adámek Barunka Jiříček počet průměr 15 13,88 12,71 12,75 minimum maximum medián Směrodatná odchylka 4,655 5,85 3,438 5,337

8 ŘEŠENÍ 2 Průměr = (15*30+13,88*17+12,71*31+12,75*20)/98 = 13,62 n i s 2 i n i *s 2 i x i (x i -x) 2 (x i -x) 2 *n i Adámek 30 21, , , ,132 Barunka 17 34, ,791 13,88 0,0676 1,1492 Jiříček 31 11,82 366,42 12,71 0, ,6711 Dětinské kolegium 20 28, ,68 12,75 0, ,138 Celkem 98 XXX 2167,961 13,62 XXX 99,090

9 ŘEŠENÍ 2 s x 2 = 22,12 + 1,01 = 23,13

10 PŘÍKLAD 3 Na základě následující tabulky vypočítejte meziskupinový, vnitroskupinový a celkový rozptyl. Skupina Podíly Průměry Rozptyly A 0,2 1,75 0,25 B 0,3 2,5 0,2 C 0,5 3,8 0,5

11 ŘEŠENÍ 3 Skupina p i xi s i 2 s i2 p i x i p i (x i -x) 2 p i A 0,2 1,75 0,25 0,05 0,35 0,3125 B 0,3 2,5 0,2 0,06 0,75 0,075 C 0,5 3,8 0,5 0,25 1,9 0,32 Celkem 1 XX XX 0,36 3 0,7075

12 MÍRY ŠIKMOSTI Rozdělení s nulovou šikmostí je takové, ve kterém se medián rovná průměru Rozdělení s kladnou šikmostí je takové, ve kterém je medián menší než průměr Rozdělení se zápornou šikmostí je takové, ve kterém je medián větší než průměr Měr šikmosti je mnoho, nejpoužívanější je tzv. třetí normovaný moment

13 MÍRY ŠPIČATOSTI Čím více hodnot je kolem středu, tím je rozdělení špičatější. Nejpoužívanější míra špičatosti vychází ze čtvrtého normovaného momentu a srovnává se se špičatostí normovaného normálního rozdělení.

14 STATISTICKÝ UKAZATEL Je funkcí hodnot znaků (proměnných) Primární ukazatele jsou ukazatele přímo zjišťované (tržba) Sekundární ukazatele jsou ukazatele odvozené z primárních a to jako: Funkce různých primárních ukazatelů (zisk) Funkce různých hodnot téhož ukazatele (průměrný zisk) Funkce různých hodnot různých ukazatelů (průměrný podíl marže A na zisku)

15 STATISTICKÝ UKAZATEL Absolutní vyjadřuje velikost určitého jevu bez vztahu k jiným (např. zisk) Relativní vyjadřuje velikost určitého jevu vztaženou k jinému (např. podíl marže A na zisku) Extenzitní ukazatel je ukazatelem množství Intenzitní ukazatel je ukazatelem úrovně (např. ceny) Okamžikový je daný k určitému časovému bodu Intervalový je daný za určité časové období

16 SHRNOVATELNOST UKAZATELŮ Přímo shrnovatelné jejich souhrnnou hodnotu lze určit z dílčích hodnot (např. roční zisk z dílčích zisků za jednotlivé měsíce; součet) Nepřímo shrnovatelné jejich souhrnnou hodnotu můžeme zjistit pouze tehdy, když známe nejen dílčí hodnoty, ale ještě hodnoty jiného znaku (např. marže z prodeje A za rok z měsíčních průměrných zisků a objemů prodeje; průměr) Neshrnovatelné jejich souhrnnou hodnotu lze určit pouze se znalostí všech hodnot (např. medián)

17 INDEXY Absolutní rozdíl je rozdílem dvou hodnot Index je podílem dvou hodnot. Je to číslo udávající kolikrát je hodnota v čitateli větší než hodnota ve jmenovateli. Prostorový index srovnává jeden ukazatel na dvou různých místech (zisk firmy A vs. zisk firmy B) Druhový index srovnává jeden ukazatel u dvou různých věcí (zisk z výrobku A vs. zisk z výrobku B) Časový index srovnává jeden ukazatel ve dvou různých okamžicích (zisk v roce 0 vs. zisk v roce 1)

18 DĚLENÍ INDEXŮ Množství a úrovně (extenzitní a intenzitní) Individuální indexy jsou indexy stejnorodých ukazatelů Jednoduché indexy jsou takové, ve kterých neprovádíme shrnování Složené indexy jsou takové, ve kterých provádíme shrnování Souhrnné indexy jsou indexy nestejnorodých ukazatelů

19 UKAZATELE Obecně se používají tři ukazatele p, q, Q p = Q/q Tradiční význam: p cena q - množství Q tržba

20 JEDNODUCHÉ INDEXY Jednoduché indexy srovnávají dvě hodnoty téhož ukazatele. Nejsou nijak shrnovány. Index úrovně (ceny): Index množství: Index tržeb: Vztah:

21 ABSOLUTNÍ PŘÍRŮSTKY Změna ceny: Změna množství: Změna tržeb:

22 PŘÍKLAD Pan Bakala objevil na zahrádce uhlí a rozhodl se ho prodávat. V prvním roce prodal 200 tun uhlí za cenu 2000,- Kč/t. Ve druhém roce se rozhodl zvýšit cenu na 2200,-Kč/t a prodal takto 180 tun. Porovnejte změnu cen, prodaného množství a tržeb ve druhém roce oproti prvnímu.

23 ŘEŠENÍ Jelikož se jedná o jednu veličinu a jedno pozorování (uhlí a jedno prodejní místo), použijí se jednoduché indexy (nic se neshrnuje). Ip = 2200/2000 = 1,1 (cena vzrostla o 10%) Δp = = 200 (cena vzrostla o 200 Kč/t) Iq = 180/200 = 0,9 (objem klesl o 10%) Δq = = -20 (objem klesl o 20 tun) IQ = (2200*180)/(200*2000) = / = 0,99 (tržby klesly o cca. 1%) ΔQ = 2200*180 - (2000*200) = = (tržby klesly o 4000,- Kč)

24 BAZICKÉ A ŘETĚZOVÉ INDEXY Bazické indexy se vztahují vždy ke stejnému základu (srovnávají hodnotu vždy se stejným číslem - bází). Často se udávají v procentech (po vynásobení stem) Řetězové indexy srovnávají dvě po sobě jdoucí hodnoty v časové řadě. Mají tudíž smysl pouze pro časové indexy.

25 VZTAH INDEXŮ Platí, že násobením řetězových indexů dostáváme bazické. Opačně řetězový index získáme dělením dvou po sobě jdoucích bazických indexů.

26 PŘÍKLAD V tabulce je časová rada ukazující vývoj počtu zjištěních trestných činů v letech Charakterizujte tento vývoj pomocí absolutních přírůstku, řetězových a dvou bazických indexů (bází je rok 1991 a poté rok 1995) t Yt

27 ŘEŠENÍ t Yt I t/91 I t/95 Přírůstky I t/t , ,91 93, , ,81 108, , ,07 99, , , , ,88 105, , ,58 107, ,7

28 ,6 PŘÍKLAD V tabulce jsou bazické indexy počtu dokončených bytů v ČR v letech se základem v roce 1997, a dále bazické indexy počtu dokončených bytů v letech 2000 až 2003 se základem v roce Dopočítejte chybějící bazické indexy v obou řadách. Rok I (i/97) I (i/00) , , , ,4 100, , ,3

29 ŘEŠENÍ Rok I (i/97) I (i/00) I t/t ,49 XXX ,4 88,03 1, ,6 94,15 1, , , ,69 98,2 0, ,88 108,3 1, ,83 107,6 0,993

Indexy Jednoduché indexy Složené individuální indexy Souhrnné indexy Ze souhrnných indexů Laspeyresův index Paascheho index

Indexy Jednoduché indexy Složené individuální indexy Souhrnné indexy Ze souhrnných indexů Laspeyresův index Paascheho index Indexy (motto: It is commonly believed that anyone who tabulates numbers is a statistician. This is like believing that anyone who owns a scalpel is a surgeon. Hooke R.) Jednoduché indexy srovnávají bezprostředně

Více

IV. Indexy a diference

IV. Indexy a diference IV. Indexy a diference Ukazatel specifická statistická veličina popisující určitou sociálně ekonomiclou skutečnost. Ekonomická teorie definuje své pojmy a jejich vztahy často bez ohledu, zda jde o pojmy

Více

1 Indexy a časové řady. 1.1 Srovnávání ukazatelů, indexy

1 Indexy a časové řady. 1.1 Srovnávání ukazatelů, indexy 1 Indexy a časové řady 1.1 Srovnávání ukazatelů, indexy Pojem statistický ukazatel se používá zejména v ekonomické statistice jako synonymum pro statistický znak. Tento pojem je používán jak pro statistické

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Téma 2. Řešené příklady

Téma 2. Řešené příklady Téma. Řešené příklady 1. V tabulce č. 1. jsou uvedeny údaje o spotřebě polotučného sušeného a polotučného tekutého mléka v jednotlivých létech. Tab. 1. (mil. l) \ rok 1998 1999 000 001 00 003 004 005 Polotučné

Více

Poměrní ukazatelé. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí

Poměrní ukazatelé. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Poměrní ukazatelé Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Poměrný ukazatel Poměrný ukazatel znázorňuje výsledek, který získáme

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Souvislý příklad na poměrná čísla Aleš Drobník strana 1 5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Poměrná čísla se hojně užívají v ekonomické praxi. Všechny druhy poměrných čísel si shrneme

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1 Srovnání údajů. Poměrná čísla Aleš Drobník strana 4. SROVNÁVÁNÍ ÚDAJŮ Statistika mj. zpracovává údaje (viz definice statistiky). Důležitou součástí zpracování údajů je srovnávání údajů (statistických znaků

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Analýza současného systému financování vysokých škol v ČR Aleš Bartušek Praha 19. 5. 2015

Analýza současného systému financování vysokých škol v ČR Aleš Bartušek Praha 19. 5. 2015 Analýza současného systému financování vysokých škol v ČR Aleš Bartušek Praha 19. 5. 2015 www.kredo.reformy-msmt.cz OBSAH 1. Úvod do problematiky/kontextu financování VVŠ ČR 2. Hlavní momenty v historickém

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/00 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 76/004 Sb. kterou se mění vyhláška č. 343/00 Sb., o postupu a podmínkách

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Veličiny užívané ve statistice Aleš Drobník strana 1 3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech). Statistika jako

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. 1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pracovní list č. 4 Poměrní ukazatelé

Pracovní list č. 4 Poměrní ukazatelé 1. Kapitál podnikatele zahrnoval na počátku období v Kč: pokladní hotovost 25 000,-; běžný účet 354 130,-; pohledávky 235 600,-; zásoby materiálu 158 510,-; zásoby výrobků 158 640,-; drobný hmotný majetek

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I.

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I. Matematická vsuvka I. trojčlenka Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle necháme čerpadlo čerpat,

Více

Řízení zdrojů v ozbrojených silách

Řízení zdrojů v ozbrojených silách Řízení zdrojů v ozbrojených silách Praktické postupy vojensko-ekonomické analýzy při řešení úkolu hodnocení dosažení plánovaných cílů Operační program Vzdělávání pro konkurenceschopnost Název projektu:

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

BOD ZVRATU (Break Even Point)

BOD ZVRATU (Break Even Point) BOD ZVRATU (Break Even Point) Bod zvratu patří mezi důležité ekonomické veličiny. Jeho výpočet je jedním z předpokladů uplatňování nákladového controllingu v podniku. Jedná se o klíčový ukazatel pro řízení

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Qopt. = (2 x C x D) / S

Qopt. = (2 x C x D) / S Příklad 1 Standartní výpočet Firma Trikot vyrábí oděvy a spotřebovává ročně 25 000 m látky. Variabilní na skladování 1 m látky jsou 22,50 Kč. Cena za 1 m látky je 80,- Kč. Variabilní na zajištění jedné

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Druhy poměrných čísel Aleš Drobník strana 1 5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Poměrná čísla neboli poměrní ukazatelé : Získáme srovnáním (podílem) 2 veličin stejnorodých. Srovnávaná veličina (čitatel)

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení

EXPLORATORNÍ ANALÝZA DAT. 7. cvičení EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Obor účetnictví a finanční řízení podniku

Obor účetnictví a finanční řízení podniku Obor účetnictví a finanční řízení podniku TEST Z FINANČNÍHO ÚČETNICTVÍ celkem 40 bodů Zvolte nejvhodnější odpověď na následující otázky (otázky se nevztahují k žádnému z početních příkladů a nijak na sebe

Více

Stanovení bodů zvratu při plánování výrobních kapacit

Stanovení bodů zvratu při plánování výrobních kapacit Stanovení bodů zvratu při plánování výrobních kapacit Bod zvratu definujeme jako minimální množství výrobků, které potřebuje společnost vyrobit, aby pokryla své fixní a variabilní náklady, tj. aby nebyla

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Rozvrhování nákladů pomocných činností a režijních nákladů na výkony rostlinné a živočišné výroby

Rozvrhování nákladů pomocných činností a režijních nákladů na výkony rostlinné a živočišné výroby IVP 1275 Rozvrhování nákladů pomocných činností a režijních nákladů na výkony rostlinné a živočišné výroby Prezentace k oponentuře konané dne 27. 1. 2015 v Praze Ing. Jana Poláčková, CSc. odpovědný řešitel

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Pokyny k hodnocení MATEMATIKA

Pokyny k hodnocení MATEMATIKA ILUSTRAČNÍ TEST MAIZD4C0T0 Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení úlohy Vyznačte na číselné ose obraz čísla 0,6. 0,6 3 apod. NEDOSTATEČNÉ ŘEŠENÍ Chybně vyznačený obraz, resp. není zřejmé, kde

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku:

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku: Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru září 2013 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Podmíněné formátování,

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více