Laboratorní cvičení z obecné mikrobiologie

Rozměr: px
Začít zobrazení ze stránky:

Download "Laboratorní cvičení z obecné mikrobiologie"

Transkript

1 MIKROSKOPY Mikroskopická technika je neodmyslitelnou součástí praktické mikrobiologie a mikroskop patří k základnímu vybavení každé laboratoře. 1. Popis zařízení Mikroskop je vlastně soustava čoček o jedné optické ose. Skládá se z části mechanické a optické (obr. 1). K mechanické části náleží: stativ noha mikroskopu a nosič tubusu tubus stolek se svorkami na přichycení preparátu dva šrouby na nosiči tubusu mikrometrický a makrometrický, které umožňují posun stolku ve směru optické osy revolverové zařízení (revolverový měnič) umožňuje výměnu objektivů Obr. 1 Hlavní části mikroskopu se zdrojem světla Optická část má zajistit nejen zvětšení, ale hlavně rozlišení jemných detailů objektu. Tento úkol je realizován třemi soustavami čoček: objektivem zajišťujícím zvětšení a rozlišení, okulárem zajišťujícím zvětšení, kondenzorem zajišťujícím maximální osvětlení objektu. Optická část je dále doplněna osvětlovacím zařízením (světelný zdroj, zrcátko)

2 Objektiv Závisí na něm jakost obrazu a je pro rozlišovací schopnost mikroskopu nejdůležitější. Jednotlivé typy objektivů se liší uspořádáním čoček (mohou být z různého materiálu a jsou kombinovány tak, aby korigovaly vady jednotlivých čoček, ze kterých jsou sestaveny tj. vady sférické a chromatické). Podle toho, jaké vady mají korigovat, rozeznáváme objektivy: achromatické (achromáty), apochromatické (apochromáty), planachromatické, planapochromatické. Na plášti objektivu jsou uvedeny parametry objektivu: zvětšení / numerická apertura (např. 100/1,4) korekce na délku tubusu mikroskopu / hodnota pro přípustnou tloušťku skla (např. 160/0,1) Schopnost rozlišit co největší detaily závisí na schopnosti objektivu zachytit co nejširší kužel paprsků, které procházejí objektem. Tuto vlastnost vyjadřuje numerická apertura A (obr.2). Vztah mezi numerickou aperturou a indexem lomu lze vyjádřit následujícím vzorcem: A = n * sin α/2 α... úhel svíraný paprsky vycházejícími z objektu, které jsou zachyceny objektivem n... index lomu prostředí Obr. 2 Numerická apertura U většiny objektivů hodnoty numerické apertury nepřesahují 1. Jsou to tzv. objektivy suché (kde mezi objektivem a preparátem je vzduch). Jelikož numerickou aperturu ovlivňuje prostředí mezi objektivem a preparátem a u vzduchu je n = 1, numerická apertura nemůže přesáhnout teoreticky hodnotu 1 (prakticky 0,96). Zvýšit numerickou aperturu lze pouze tím, že se zvýší index lomu prostředí mezi objektivem a preparátem použitím tekutého prostředí, jehož index lomu je přibližně stejný jako index lomu skla (podložního, krycího i čoček). Touto imerzí může být voda, parafínový olej, glycerol, kanadský balzám, ale nejčastěji cedrový olej (n = 1,51). Numerická apertura se pak teoreticky může zvýšit na 1,52 (prakticky na 1,4). Takové objektivy pak nazýváme imerzní. Imerzní objektivy mají zvětšení 100x. Numerická apertura spolu s vlnovou délkou světla určuje rozlišovací schopnost objektivu: a = λ/a a... nejmenší rozměr, který lze rozlišit λ... vlnová délka zdroje A... numerická apertura Pomocí numerické apertury lze vypočítat tzv. užitečné zvětšení mikroskopu. Je rovno 1000 násobné hodnotě apertury

3 Rozlišovací schopnost mikroskopu lze tedy zvětšit užitím světla o kratší vlnové délce a zvýšením indexu lomu prostředí mezi objektivem a preparátem (použitím imerze). Při konstantní vlnové délce denního světla dosáhneme maximální rozlišovací schopnosti tím, že použijeme objektiv s vysokou numerickou aperturou. Okuláry Jejich úkolem je zvětšit obraz vytvořený objektivem pro subjektivní pozorování okem. Skládají se ze dvou nebo více čoček a podle konstrukce rozlišujeme různé typy okulárů. Na plášti okuláru bývá uvedeno zvětšení (5x až 20x), index zorného pole S a typ okuláru. Objektivy vždy používáme s odpovídajícími okuláry. Při volbě okuláru bereme v úvahu pravidlo o užitečném zvětšení. Celkové zvětšení mikroskopu vypočteme, vynásobíme-li zvětšení objektivu zvětšením okuláru. Z toho vyplývá, že podle požadovaného zvětšení lze k danému objektivu vybrat vhodný okulár tak, aby nedošlo k překročení užitečného zvětšení. Pro imerzní objektiv (zvětšení 100x) s A = 1,25 je užitečné zvětšení 1250x. Doplňkový okulár tedy bude 12,5x. Slabší okulár nedovolí plně využít rozlišovací schopnost objektivu, silnější okuláry dávají prázdné zvětšení, které nezobrazí více detailů a spíše snižuje ostrost obrazu. Kondenzor Je to soustava dvou nebo tří čoček (s A = 1,2-1,4). Úkolem kondenzoru je soustředit co největší část světelných paprsků ze světelného zdroje na preparát. Kromě toho lze pohybem kondenzoru upravit numerickou aperturu kondenzoru. Při mikroskopování by hodnota numerické apertury objektivu měla být stejná s numerickou aperturou kondenzoru. Numerickou aperturu objektivu měnit nelze. Obecně platí, že při použití slabších objektivů je kondenzor snížen a irisová clonka stažena. Čím jsou silnější objektivy, tím má kondenzor vyšší polohu a clona je více rozevřena. Při práci s imerzními systémy je v některých případech třeba dát imerzi také mezi kondenzor a podložní sklo, neboť bez imerze nemá žádný kondenzor hodnotu numerické apertury větší než 0,9. 2. Osvětlení a seřízení mikroskopu Světelným zdrojem je zpravidla nízkovoltová žárovka s transformátorem pro regulaci intenzity osvětlení (zabudovaná do mikroskopu nebo umístěná v samostatné lampě). Světlo je kolektorem a kolektorovou clonou usměrňováno na zrcadlo mikroskopu nebo přímo na kondenzor. Dnešní mikroskopy mají osvětlovací soustavu splňující podmínky, stanovené německým fyzikem A. Köhlerem na sklonku 19. století. Tomuto optickému sytému se říká běžně Köhlerovo osvětlení. Köhlerovo osvětlení Osvětlovací zdroj ani kondenzor se přímo nezúčastní tvorby obrazu, mají však na jeho vlastnosti (ostrost, jas, kontrast) podstatný vliv. Proto jim musíme věnovat dostatečnou pozornost, chceme-li využít všech možností mikroskopu. Základní podmínkou pro správnou funkci osvětlovací soustavy je, že musí splňovat podmínku centrovaných systémů. Středy všech optických členů včetně zdroje světla - 3 -

4 musí ležet v optické ose mikroskopu. Pokud tato podmínka není splněna ve výrobě tím, že optické členy jsou pevně uloženy v optické ose, musíme toho dosáhnout centrováním. To znamená, že musíme nastavit polohu optického prvku tak, aby podmínka centrování byla splněna. To se týká jak světleného zdroje a jeho částí, tak kondenzoru. Nastavení KÖHLEROVA osvětlení: Umístíme preparát na stolek mikroskopu a zaostříme s objektivem 20x. Uzavřeme polní clonu světelného pole. Kondenzor zvyšujeme nebo snižujeme tak dlouho, až vidíme obraz clony světelného pole ostře ohraničený. To nastává většinou v případě, když je kondenzor značně vysoko. Clonu světelného pole pak otevřeme co nejvíc, aby se okraje jejího obrazu dotýkaly okraje zorného pole. Pokud obraz clony neleží uprostřed světelného pole, posunujeme jej (centrovacími šrouby kondenzoru) do středu zorného pole tak dlouho, až se všemi svými vrcholy dotýká obvodu. Vyjmeme z tubusu okulár. V otvoru vidíme osvětlenou výstupní pupilu objektivu. Uzavíráme aperturní clonu kondenzoru, aby zůstalo osvětleno ještě 2/3 průměru výstupní pupily objektivu. Má-li kondenzor stupnici numerické apertury, nastavíme na ní hodnotu přibližně ¾ numerické apertury objektivu. Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího v předmětové rovině. Současně by měla být dosažena nejlepší kombinace mezi rozlišovací schopností a kontrastem. V každém případě doporučujeme ještě vyzkoušet optimální nastavení aperturní clony kondenzoru. 3. Práce s mikroskopem Postup při práci se suchým objektivem preparát uložíme tak, aby prohlížená část byla ve středu kondenzor snížíme dle použitého objektivu (čím je zvětšení menší, tím je kondenzor níže), irisovou clonu otevřeme (na velikost numerické apertury objektivu) makrošroubem snižujeme tubus a v okuláru sledujeme, kdy se objeví záblesk obrazu a doostříme mikrošroubem Postup při práci s imerzním objektivem preparát uložíme tak, aby prohlížená část byla ve středu kondenzor zvedneme úplně nahoru, irisovou clonu otevřeme (na velikost numerické apertury objektivu) na preparát kápneme imerzní olej (pokud pracujeme s dvojitou imerzí, kápneme olej také na čočku kondenzoru ještě než ho zvedneme nahoru) makrošroubem snižujeme tubus a pozorováním ze strany sledujeme, kdy se čočka objektivu spojí s olejovou kapkou (záblesk na hraně podložního skla), dále objektiv nesnižujeme - 4 -

5 díváme se do okulárů a jemným otáčením makrošroubu zvedáme tubus, jakmile se objeví preparát, doostříme mikrošroubem po skončení pozorování zvedneme tubus, preparát odsuneme a pokud nepokračujeme v práci s imerzí, ihned řádně očistíme objektiv (i kondenzor, pokud pracujeme s dvojitou imerzí). Nejčastější závady nedostatečně osvětlené zorné pole špatně seřízené světlo, snížený kondenzor, zúžená clona přesvětlené zorné pole zvýšený kondenzor, příliš otevřená clona a intenzivní světlo objektiv není přetočen přesně do optické osy čočky objektivu nebo okuláru jsou znečištěny preparát není zcela suchý i malé zbytky vody vytvářejí s imerzním olejem neprůhlednou emulzi. 4. Udržování a čištění mikroskopu Mikroskop udržujeme v čistotě, chráníme jej před prachem, před působením škodlivých výparů a chemických činidel a před nárazy a poškozením. Prach odstraňujeme čistým měkkým štětcem, k čištění kovových částí používáme jemný hadřík, imerzní látky odstraňujeme hadříkem namočeným v xylolu (nikdy nepoužíváme přebytek rozpouštědla mohlo by dojít k uvolnění balzámu, kterým jsou čočky tmeleny) nebo v méně agresivnějším benzínu. Po odstranění mechanických nečistot se k vlastnímu čištění čoček používá ether. Horní konec tubus nesmí zůstat otevřený, aby dovnitř nevnikl prach. Proto do tubusu vkládáme okulár nebo krycí destičku. Zaprášení čoček okuláru poznáme, otáčíme-li okulárem při otevřené cloně kondenzoru (temné skvrny v zorném poli prach se současně otáčejí). Vnějšek okuláru oprašujeme štětcem nebo čistíme hadříkem (příp. navlhčeným xylolem), vnitřek okuláru lze vyčistit rozebráním na jednotlivé části (pozor na pořadí a polohu čoček při zpětném sestavování). Znečištění objektivu se projeví neostrým mlhavým obrazem. Vnější plochu čelní čočky čistíme hadříkem namočeným v xylolu, cedrový olej (nebo jiná imerzní látka) nesmí na objektivu zatvrdnout). Vnitřek objektivu můžeme zbavit prachu vyfouknutím, nikdy se však nesnažíme o rozebrání objektivu. Po skončené práci a dobrém očištění mikroskopu přikryjeme mikroskop ochranným obalem nebo ho uložíme do skříňky. 5. Speciální způsoby mikroskopování Pro speciální způsoby mikroskopování slouží různá pomocná zařízení, která umožňují používat např. zvláštní druh osvětlení (mikroskopie v zástinu neboli v temném poli), zvláštní druh světla (fluorescenční mikroskopie) nebo speciální zařízení (fázová kontrastní mikroskopie). Zcela zvláštní kapitolu pak tvoří mikroskopie elektronová. Fluorescenční mikroskopie Některé látky pod vlivem ultrafialového nebo modrého záření emitují část absorbované energie ve formě viditelného světla. Tento jev označujeme jako fluorescence a vzniká v důsledku - 5 -

6 intramolekulární přeměny energie. Jsou-li zmíněné látky přítomny v buňce (např. riboflavin, chlorofyl), mluvíme o primární fluorescenci (přirozené). Sekundární fluorescence je vyvolána zabarvením sledovaných částí fluoreskujícími barvivy tzv. fluorochromy. Nejčastěji se používá akridinová oranž, primulin apod. Sekundární fluorescenci lze využít pro detekci mikroorganismů, v diagnostice mykobakterií, při studiu povrchových struktur buněčných stěn hub apod. Fluorochromy lze též značit protilátky a používat je k lokalizaci antigenů v buňkách; na tomto principu je založena imunofluorescence. Ke značení protilátek se používá hlavně fluorescein a rhodamin. Funkce fluorescenčního mikroskopu je založena na následujících dvou principech (obr. 3): 1. Na vzorek se nechá dopadat pouze světlo v intervalu vlnových délek, které způsobují excitaci. 2. K vytvoření obrazu se použije pouze nezbytně nutná část fluorescenčního světla, které obsahuje i neabsorbovanou část excitačního světla. Obraz se buď pozoruje, nebo se zachytí na mikrofotografii. Volba vlnové délky je samozřejmě velmi podstatná. Proto je ve fluorescenční mikroskopii důležitá volba vhodných optických filtrů. Obr. 3 Principy a základní součásti fluorescenčního mikroskopu 1. Světelný zdroj: Ze světelného zdroje vychází světlo s různými vlnovými délkami od ultrafialové po infračervenou. 2. Excitační filtr: Tento filtr propouští pouze světlo, které je potřebné k fluorescenci vzorku, především obvykle s kratší vlnovou délkou. Ostatní světlo pohlcuje. 3. Fluorescenční preparát: Vzorky, které reagují na dopadající světlo fluorescencí (většinou po přidání barviva-fluorochromu). 4. Bariérový filtr: Tento filtr pohlcuje všechno excitační světlo, které nebylo použito k excitaci a propouští pouze fluorescenční světlo. Navíc je možné z fluorescenčního spektra nechat projít pouze jeho část. Tyto čtyři základní součásti jsou pro činnost fluorescenčního mikroskopu nezbytné. V praktických aplikacích se používá k implementaci fluorescenčního systému do mikroskopu různých doplňků. Pracujeme většinou s imerzí mezi kondenzorem a preparátem, popř. s dvojitou imerzí. Imerzní olej nesmí mít vlastní fluorescenci. Pozorování provádíme v temné místnosti

7 Nevýhodou metody je skutečnost, že fluorochromy jsou většinou mutageny, proto je nezbytné při práci s nimi zachovávat příslušná opatření (oddělený prostor, oddělený oběh laboratorního skla, speciální likvidace roztoků, nepipetovat ústy, při práci se substancí používat roušku, nepotřísnit si pokožku apod.). Mikroskopie v temném poli (v zástinu) Při pozorování v zástinu se předmět osvětlí paprsky pod takovým úhlem, aby žádný z nich nevnikal přímo do objektivu. Studovaný objekt je osvětlován obvodovými šikmými paprsky. Používá se speciálních kondenzorů (paraboloidních), nebo se pod kondenzor vloží clonka s neprostupným středem, takže nepropouští středové paprsky (obr. 4). To znamená, že do objektivu vstupuje jen světlo odražené nebo rozptýlené osvětleným mikroskopovaným objektem. V temném poli pak jednotlivé části preparátu intenzivně září. Kondenzor pro mikroskopování v zástinu se spojuje s podložním sklíčkem imerzí a apertura se nastaví na nejvyšší hodnotu. Speciální objektivy pro pozorování v zástinu jsou opatřeny irisovou clonkou. Tato metoda se v mikrobiologii často používá při studiu pohyblivosti bakterií a při pozorování mikroorganismů, které se nedají dobře barvit a jsou přitom malé, takže se spatně rozlišují normálním světleným mikroskopem (spirochety, velké viry). Při používání mikroskopie v temném poli je nutno zachovávat dokonalou čistotu optiky i krycích a podložních sklíček. Preparáty je nutno zhotovovat ve velmi tenké vrstvě. objektiv objekt kondenzor Obr. 4 Chod paprsků při mikroskopování v temném poli Fázová kontrastní mikroskopie Tento druh mikroskopie je vhodný zejména pro zkoumání struktury živých buněk. Pro pozorování kvasinkové buňky je nenahraditelnou metodou, neboť umožňuje studium jader, vakuol, mitochondrií a buněčných inkluzí bez obarvení a navíc posuzování celkového stavu buněk v průběhu růstu a množení. Metoda umožňuje vidět v buňkách struktury, které mají mírně odlišný index lomu, - 7 -

8 než je index lomu ostatních složek buňky. Stejně tak rozdíly v indexu lomu celé buňky a okolního prostředí umožňují zřetelněji vidět buňku. Světelná vlna procházející objektem je buď zpožděna nebo je v předstihu (dle refraktivních vlastností objektu) oproti původní vlně procházející okolím. To znamená, že mezi nimi existuje určitý fázový posun. Pro slabě lámové objekty, které se v mikroskopu nejčastěji sledují, je fázový posun 90 (tj. ¼ délky vlny). Fázový kontrastní mikroskop přeměňuje fázové rozdíly na rozdíly v intenzitě světla, takže v obraze vznikají tmavé a světlé kontrasty. Většina živých buněk je ve světleném mikroskopu téměř transparentní (nebarevná). I tyto nebarevné objekty projevují kontrast, pokud se u jednotlivých částí vyskytují rozdíly v indexu lomu a tloušťce (části buněk, organely). Mnohé struktury se takto stávají viditelnými (např. chromatinová tělíska v bakteriích). Zařízení pro fázový kontrast se skládá z fázového kondenzoru s fázovými clonami, pomocného mikroskopu, sady objektivů a sady filtrů (obr. 5). Obr. 5 Optické schéma fázového kontrastu Elektronová mikroskopie Novou část dějin mikroskopie otvírá německý vědec Ernst Ruska ( ), vynálezce elektronového mikroskopu, přesněji řečeno transmisního elektronového mikroskopu (TEM). Toto zařízení umožňuje zvětšení výrazně překročující možnosti optického mikroskopu, který je limitován délkou světelného paprsku ( nm). Princip elektronové mikroskopie spočívá v tom, že světelné paprsky jsou zde nahrazeny svazkem urychlených elektronů, jehož vlnová délka, výrazně nižší než vlnová délka světla, je závislá na urychlujícím napětí (lze dosáhnout 6 pm). Skleněné čočky, regulující sbíhavost a rozbíhavost paprsku světla u optického mikroskopu, jsou zde nahrazeny elektromagnetickými čočkami. Každý TEM se z tohoto důvodu skládá z osvětlovací a zobrazovací soustavy, ze zdrojové a ovládací soustavy, doplněné o vakuovou trubici. Zjednodušený popis činnosti transmisního elektronového mikroskopu pak vypadá takto: Zrychlený, usměrněný proud elektronů emitovaný zdrojem je veden vakuem a probíhá tenkým mikroskopovaným vzorkem - zde se využívá toho, že se část elektronů odráží od atomů a molekul tvořících hmotu vzorku. Jejich opětovným soustředěním pomocí magnetové čočky se vytváří stínový - 8 -

9 obraz mikroskopovaného vzorku. K jeho zviditelnění se u zdokonalených typů elektronových mikroskopů využívá stejného principu, na jehož základě vzniká obraz na monitoru počítače. První jednoduchý transmisní elektronový mikroskop zkonstruoval Ernst Ruska již v roce Výsledný obraz, jehož lze docílit transmisním elektronovým mikroskopem, může být až stotisíckrát větší než pozorovaný předmět. Podle způsobu zobrazování se elektronové mikroskopy dnes dělí na transmisní, emisní a odrazové (v praxi málo používané) a novější řádkovací (skenovací či rastrovací). Není jistě nutno zvlášť zdůrazňovat, že se elektronový mikroskop stal cenným nástrojem v řadě vědeckých odvětví, od mikrobiologie a medicíny po fyziku a technologii materiálů. Díky němu byly s vysokou rozlišovací schopností studovány jednotlivé části buňky i pochody, které v nich probíhají, stejně jako např. povrch a struktura krystalů řady materiálů. Na základě revolučních prací na poli elektronové mikroskopie vyvinuli Gerd Binning a Heinrich Rohrer ve švýcarském výzkumném pracoviště IBM v Zurichu skenovací tunelový mikroskop (scanning tunneling microscope, STM). Tato metoda, lety neustále vylepšovaná, umožnila lidskému oku nahlédnout na povrch hmoty v rozměru nanometru. Skenovací tunelové mikroskopie se začalo využívat nejen v mikroelektronice (zvláště ke studiu a konstrukci polovodičů), ale především připravila půdu pro rozvoj nanotechnologie. Vývoj elektronové mikroskopie ovšem nekončí. Mezi nejvýznamnější inovace patří dále především atomový silový mikroskop (atomic force microscope, AFM) a skenovací sondový mikroskop (scanning probe microscope, SPM), který kombinuje metody STM a AFM. Jednou z jeho modifikací je například chemický silový mikroskop (chemical force microscope, CFM), sloužící k pozorování vazeb mezi jednotlivými molekulami. Trojice vědců, Ruska, Binning a Rohrer, získala v roce 1986 Nobelovu cenu za fyziku. Polovina náležela Ernestu Ruskovi za fundamentální práce na poli elektronové optiky a za objev elektronového mikroskopu, o druhou polovinu se rozdělili Gerd Binning a Heinrich Rohrer - za konstrukci skenovacího tunelového mikroskopu

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze

Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ určeno pro studenty ČZU v Praze Mikroskop Nikon Eclipse E200 Světelný mikroskop značky Nikon (Eclipse E200) používaný v botanické cvičebně zvětšuje při

Více

Praktické cvičení č. 1.

Praktické cvičení č. 1. Praktické cvičení č. 1. Cvičení 1. 1. Všeobecné pokyny ke cvičení, zápočtu a zkoušce Bezpečnost práce 2. Mikroskopie - mikroskop a mikroskopická technika - převzetí pracovních pomůcek - pozorování trvalého

Více

Příloha C. zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013. TECHNICKÉ PODMÍNKY (technická specifikace)

Příloha C. zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013. TECHNICKÉ PODMÍNKY (technická specifikace) Příloha C zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013 TECHNICKÉ PODMÍNKY (technická specifikace) 1. část VZ: Laboratorní mikroskop s digitální kamerou a PC Položka č.1

Více

Technická specifikace předmětu veřejné zakázky

Technická specifikace předmětu veřejné zakázky předmětu veřejné zakázky Příloha č. 1c Zadavatel požaduje, aby předmět veřejné zakázky, resp. přístroje odpovídající jednotlivým částem veřejné zakázky splňovaly minimálně níže uvedené parametry. Část

Více

Základy mikroskopování

Základy mikroskopování Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

Téma: Světelná mikroskopie a preparáty v mikroskopii

Téma: Světelná mikroskopie a preparáty v mikroskopii LRR/BUBCV Cvičení z buněčné biologie Úloha č. 1 Téma: Světelná mikroskopie a preparáty v mikroskopii Úvod: Mikroskopie je základní metoda, která nám umoţňuje pozorovat velmi malé biologické objekty. Díky

Více

Optická (světelná) Mikroskopie pro TM I

Optická (světelná) Mikroskopie pro TM I Optická (světelná) Mikroskopie pro TM I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Typy klasických biologických a polarizačních mikroskopů Přehled součástí

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace)

příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace) příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace) Část 1 Stereomikroskop s digitální kamerou : - Konstrukce optiky CMO (Common

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

ECOVISION série BIOLOGICKÉ MIKROSKOPY

ECOVISION série BIOLOGICKÉ MIKROSKOPY ECOVISION série BIOLOGICKÉ MIKROSKOPY ECOVISION série OPTIKA MICROSCOPES je divize optických mikroskopů M.A.D. Apparecchiature Scientifiche, společnosti, která je již více než 30 roků klíčovým hráčem na

Více

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Základy světelné mikroskopie

Základy světelné mikroskopie Základy světelné mikroskopie Kotrba, Babůrek, Knejzlík: Návody ke cvičením z biologie, VŠCHT Praha, 2006. zvětšuje max. 2000 max. 1 000 000 cca 0,2 mm stovky nm až desetiny nm rozlišovací mez = nejmenší

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Základní pojmy. Je násobkem zvětšení objektivu a okuláru

Základní pojmy. Je násobkem zvětšení objektivu a okuláru Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

3.3. Mikroskopie. 3.3.1. Základní součásti světelného mikroskopu

3.3. Mikroskopie. 3.3.1. Základní součásti světelného mikroskopu 3.3. Mikroskopie Různé mikroskopické metody dosáhly obrovských možností při pozorování nejen biologických objektů. Na pozorování neživých struktur lze použít v podstatě jakoukoliv metodu, ovšem na pozorování

Více

Využití a princip fluorescenční mikroskopie

Využití a princip fluorescenční mikroskopie Využití a princip fluorescenční mikroskopie fyzikálně chemický děj Fluorescence typem luminiscence (elektroluminiscence, fotoluminiscence, radioluminiscence a chemiluminiscenci) patří mezi fotoluminiscenční

Více

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46). 4. cvičení Metody zvýšení kontrastu obrazu (1. část) 1. Přivření kondenzorové clony nebo snížení kondenzoru vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

Více

Fytopatologická praktika

Fytopatologická praktika Fytopatologická praktika 2 Mikroskopické metody Ing. Dagmar Palovčíková Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Historie mikroskopie

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Rostlinná buňka příprava mikroskopického preparátu (laboratorní práce)

Rostlinná buňka příprava mikroskopického preparátu (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Rostlinná buňka příprava mikroskopického preparátu (laboratorní práce) Označení: EU-Inovace-Př-6-02 Předmět: přírodopis

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

Jak pracovat s mikroskopy Olympus

Jak pracovat s mikroskopy Olympus Jak pracovat s mikroskopy Olympus V laboratoři lékařské mikrobiologie budete pracovat s těmito mikroskopy: Olympus CX-31 (bílé), které jsou zánovní a poměrně drahé Staré mikroskopy (černé), které nejsou

Více

PRÁCE S MIKROSKOPEM Praktická příprava mikroskopického preparátu

PRÁCE S MIKROSKOPEM Praktická příprava mikroskopického preparátu PRÁCE S MIKROSKOPEM 1. Praktická příprava mikroskopického preparátu 2. a) Z objektu, jehož část, chceme pozorovat pomocí mikroskopu, musíme nejprve vytvořit mikroskopický preparát. Obr. č. 1 b) Pozorovaný

Více

Využití zrcadel a čoček

Využití zrcadel a čoček Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Využití zrcadel a čoček V tomto článku uvádíme několik základních přístrojů, které vužívají spojných či rozptylných

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD

PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD Jan Hošek Ústav přístrojové a řídící techniky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, Česká republika Ústav termomechaniky AV ČR,

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

EM, aneb TEM nebo SEM?

EM, aneb TEM nebo SEM? EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový Mikroskopy Světelný Konfokální Fluorescenční Elektronový Světelný mikroskop Historie 1590-1610 - Vyrobeny první přístroje, které lze považovat za použitelný mikroskop (Hans a Zaccharis Janssenové z Middleburgu

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Základní metody světelné mikroskopie

Základní metody světelné mikroskopie Základní metody světelné mikroskopie Brno 2004 2 Předmluva Předkládáme Vám pomocný text o světelných mikroskopech, abychom Vám umožnili alespoň částečně proniknout do tajů, kterými je obestřena funkce

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE PRINCIP V chemické laboratoři se používá k některým stanovením tzv. mikrokrystaloskopie. Jedná se o použití optického mikroskopu při kvalitativních důkazech látek na

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

2. cvičení. Stavba světelného mikroskopu

2. cvičení. Stavba světelného mikroskopu 2. cvičení Stavba světelného mikroskopu Kromě již zmíněných objektivů a okulárů se složený mikroskop skládá z celé řady dalších komponent. Rozlišujeme je na mechanické a optické (Obr. 21). Mechanickými

Více

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

Fluorescenční vyšetření rostlinných surovin. 10. cvičení Fluorescenční vyšetření rostlinných surovin 10. cvičení Cíl cvičení práce s fluorescenčním mikroskopem detekce vybraných rostlinných surovin Princip nepřímé dvojstupňové IHC s použitím fluorochromu Fluorescenční

Více

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek.

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek. MIKROSKOPIE E- mailový zpravodaj MIKROSKOP firmy Olympus Journal of Scanning Probe Microscopy (http://www.aspbs.com/jspm.html) Materials Today, 2008, New Microscopy Special Issue MIKROSKOP Historie Jeden

Více

Principy a instrumentace

Principy a instrumentace Průtoková cytometrie Principy a instrumentace Ing. Antonín Hlaváček Úvod Průtoková cytometrie je moderní laboratorní metoda měření a analýza fyzikálních -chemických vlastností buňky během průchodu laserovým

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Katalog. Didaktik s.r.o. Revoluční 1 696 01 Rohatec. Mikroskopy a příslušenství. Učební pomůcky. Tel. : 518 359 120. e-mail : didaktik@didaktik.

Katalog. Didaktik s.r.o. Revoluční 1 696 01 Rohatec. Mikroskopy a příslušenství. Učební pomůcky. Tel. : 518 359 120. e-mail : didaktik@didaktik. Učební pomůcky pro fyziku, anatomii, laboratorní zařízení, vybavení učeben, doplňky Zájmová činnost Žákovské Studentské Laboratoní Badatelské Aplikace laboratorních a badatelských Stereoskopické Metalografické

Více

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova

Více

Princip rastrovacího konfokálního mikroskopu

Princip rastrovacího konfokálního mikroskopu Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus

Více

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV Světlo vypadá jako bezbarvé, ale ve skutečnosti je směsí červené, žluté, zelené, modré, indigové modři a fialové barvy. Jednoduchými pokusy můžeme světlo rozkládat

Více

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25

Více

Zapněte mikroskop (1.12, 1a.4), vložte sklíčko krycím sklem nahoru a zařaďte 10x objektiv.

Zapněte mikroskop (1.12, 1a.4), vložte sklíčko krycím sklem nahoru a zařaďte 10x objektiv. 1 1. Okuláry s nastavením dioptrií 2. Nastavení vzdálenosti očí 3. Místo pro vložení objektivové prismy 4. Objektivový revolver 5. Stolek s držákem vzorků 6. Kondenzor 7. Aperturní clona 8. Centrovací

Více

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop Úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chyby měření. 2. Změřte zvětšení a zorná pole mikroskopu pro

Více

Stereomikroskop. Stativ pro dopadající světlo

Stereomikroskop. Stativ pro dopadající světlo Stereomikroskop Konstrukční typ Greenough Apochromaticky korigovaná optika Zoomovací poměr min. 8:1 Rozsah celkového zvětšení 10x 80x nebo větší (včetně uvedených hodnot, s 10x okuláry, bez předsádky)

Více

Princip činnosti a pracovní režimy světelného mikroskopu

Princip činnosti a pracovní režimy světelného mikroskopu Princip činnosti a pracovní režimy světelného mikroskopu A. ZADÁNÍ 1. Seznamte se důkladně s jednotlivými prvky a s ovládáním světelného mikroskopu (Amplival pol. U).. Prostudujte sestavu osvětlovací soustavy

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

Laboratorní úloha č. 6 - Mikroskopie

Laboratorní úloha č. 6 - Mikroskopie Laboratorní úloha č. 6 - Mikroskopie Úkoly měření: 1. Seznamte se s ovládáním stereoskopického mikroskopu, digitálního mikroskopu a fotoaparátu. 2. Studujte pod mikroskopem různé preparáty. Vyberte vhodný

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

ZM 1 BOX - Školní mikroskop včetně plastového kufříku

ZM 1 BOX - Školní mikroskop včetně plastového kufříku ZM 1 BOX - Školní mikroskop včetně plastového kufříku Velmi oblíbený žákovský mikroskop. Náklopné rameno umožní pohodlné pozorování. Zvětšení se provádí výměnou objektivů pomocí revolverového měniče, zaostřování

Více

Zobrazovací metody v nanotechnologiích

Zobrazovací metody v nanotechnologiích Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika Ing. Jakab Barnabáš

Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika Ing. Jakab Barnabáš Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Biologická technika zoologická část Eva Řehulková Maria Lujza Kičinjaová (lujzika@mail.muni.cz) Michal Benovics (benovics@mail.muni.

Biologická technika zoologická část Eva Řehulková Maria Lujza Kičinjaová (lujzika@mail.muni.cz) Michal Benovics (benovics@mail.muni. Biologická technika zoologická část Eva Řehulková Maria Lujza Kičinjaová (lujzika@mail.muni.cz) Michal Benovics (benovics@mail.muni.cz)!!! Bezpečnost práce!!! ochranný oděv (plášť) + dlouhé vlasy do gumičky

Více

STEREO série Výukové stereomikroskopy

STEREO série Výukové stereomikroskopy STEREO série Výukové stereomikroskopy Základní vlastnosti Série... Tato série stereomikroskopů je určena pro splnění všech požadavků výuky a amatérských uživatelů. Celá řada, od malého MS-2 až k ST-50,

Více

Měření pevnosti slupky dužnatých plodin

Měření pevnosti slupky dužnatých plodin 35 Kapitola 5 Měření pevnosti slupky dužnatých plodin 5.1 Úvod Měření pevnosti slupky dužnatých plodin se provádí na penetrometrickém přístroji statickou metodou. Princip statického měření spočívá v postupném

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Optika - AZ kvíz. Pravidla

Optika - AZ kvíz. Pravidla Optika - AZ kvíz Pravidla Ke hře připravíme karty s texty otázka tvoří jednu stranu, odpověď pak druhou stranu karty (pro opakované používání doporučuji zalaminovat), hrací kostku a figurky pro každého

Více

MONITOR. Helena Kunertová

MONITOR. Helena Kunertová MONITOR Helena Kunertová Úvod O monitorech Historie a princip fungování CRT LCD PDP Nabídka na trhu Nabídka LCD na trhu Monitor Výstupní elektronické zařízení sloužící k zobrazování textových a grafických

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

5.3.5 Ohyb světla na překážkách

5.3.5 Ohyb světla na překážkách 5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se

Více

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 N á z e v m a t e r i á l u : S v ě t l o j a k o v l n ě n í. T e m a t i c k á o b l a s t : F y z i k

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Sada Optika. Kat. číslo 100.7200

Sada Optika. Kat. číslo 100.7200 Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému

Více

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: biologie Mezipředmětové vztahy: ekologie Ročník: 2.a 3.

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více