Fabryův-Perotův rezonátor

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Fabryův-Perotův rezonátor"

Transkript

1 Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně nekonečně ozlehlými). Odazivosti zadlííh ploh jsou haakteizovány amplitudovými činiteli odazu a (eálné veličiny udávajíí pomě mezi amplitudami elektikého pole vlny odažené k vlně dopadajíí poto musí nabývat hodnot od 0 do ). Ob.. Shéma Fabyova-Peotova ezonátou. Rovinné zadlo má polomě křivosti nekonečný. Znaménková konvene: Polomě křivosti zadla je kladný v případě, že střed křivosti odazné plohy zadla leží ve směu, kde se nahází ezonáto (duhé zadlo). Ob.. Znaménková konvene po otevřené ezonátoy. Příklad : Faby-Peotův ezonáto je tvořen zadly ve volném postou vzdálenými od sebe = mm. Kolik má ezonančníh fekvení v optikém pásmu kmitočtů a kteé to jsou? m m m

2 Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Předpokládáme, že optiké pásmo záření je v intevalu vlnovýh délek = (400,800) nm. Tomuto intevalu vlnovýh délek odpovídá inteval fekvení optikého záření = (.75,7.50)x0 4 Hz. Vypočítáme hodnoty m ve vztahu (..) po dané haniční fekvene: m.50, m To znamená, že daný F-P intefeomet má n = m m =.5x0 ezonančníh fekvení v optikém pásmu kmitočtů. Optiký ezonáto

3 Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Optiký ezonáto je zařízení, kteé je shopno homadit, nebo na jistou dobu udžet optiké záření v omezené oblasti postou. Optiké ezonátoy mohou být obeně tvořeny odaznými plohami ůznýh tvaů. V žádném eálném ezonátou není možné uhovat enegii po nekonečně dlouhou dobu. Pokles enegie uvnitř ezonátou (nebuzeného vnějším postředím) je dán především jeho vlastními ztátami. Časový pokles elkové enegie záření uvnitř ezonátou může být zpavidla popsán exponeniálním zákonem:.exp t U t U0 - doba života fotonu v ezonátou ln R R Činitel jakosti ezonátou pomě enegie uložené v ezonátou k enegii uvolněné z ezonátou za dobu / U U ez 0 Q B ez fn U 0 / ez exp ez Vyjadřuje míu shopnosti ezonátou uhovat enegii. Čím menší jsou ztáty ezonátou, tím větší je doba života fotonu v ezonátou (foton se v ezonátou déle udží ) a tím je také větší činitel jakosti ezonátou Q (shopnost uhovat enegii je větší).

4 Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Otevřený ezonáto Částečně odazné plohy mají konečné příčné ozměy. Činné ztáty Difakční ztáty Diagam stability otevřeného optikého ezonátou, paamety g, g, znaménková konvene g, g Podmínka stability otevřeného optikého ezonátou: 0 gg Fesnelovo číslo velikost difakčníh ztát Příklad : Předpokládejme, že po sestavení optikého ezonátou máme k dispozii ovinné zadlo a zadlo s křivostí 50 m. Jaká musí být vzdálenost zadel, aby daný ezonáto byl stabilní? Poloměy křivosti ezonátou jsou: a m. Bezozměné paamety po klasifikai stability ezonátou budou: g a tedy: g, g Kitéium stability ezonátou je dána: 0 gg Potože paamet g =, aby daný ezonáto byl stabilní, musí paamet g nabývat hodnot v intevalu g 0,. Haniční hodnoty tohoto intevalu dosadíme do předhozíh vztahů. 0 g 0. 5m a záoveň g 0m. Aby ezonáto s danými zadly byl stabilní, musí vzdálenost zadel být menší než m. Příklad : Požadujeme, aby postavený ezonáto byl stabilní a měl délku = 5 m. Po sestavení ezonátou musíme použít kulové zadlo (vyduté, konkávní) s poloměem křivosti = 0.4 m. Jaké by mělo být duhé zadlo ezonátou? g , 0.40 g. Aby byl ezonáto stabilní, musí platit kitéium stability otevřeného ezonátou 0 gg. Tuto soustavu dvou neovni vyřešíme tak, že budeme řešit odděleně dvě dílčí neovnie a výsledné řešení elé původní soustavy neovni učíme jako půnik jednotlivýh řešení dílčíh neovni: 4

5 Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Řešení neovnie 0 gg Řešení neovnie gg Dále ozlišíme dvě možnosti: a) po 0 po vynásobení 4 výsledek b) po 0 po vynásobení 4 neboli výsledek 0 Dále ozlišíme dvě možnosti: a) po 0 po vynásobení 00 5 neboli výsledek 0 b) po 0 po vynásobení 00 5 výsledek Souhnný výsledek je půnikem dílčíh řešení: a) po 0, b) po 0 je souhnný výsledek m je souhnný výsledek, Závěem je možno říi, že aby sestavovaný ezonáto byl stabilní a měl délku m, musí být jeho duhé zadlo buď vyduté (konkávní) s poloměem křivosti, mnebo vypuklé (konvexní) s poloměem křivosti, m, přičemž pvní zadlo bylo zadáno jako vyduté (konkávní) s poloměem křivosti = 0.4 m. m 5

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

5.3.4 Využití interference na tenkých vrstvách v praxi

5.3.4 Využití interference na tenkých vrstvách v praxi 5.3.4 Využití intefeence na tenkých vstvách v paxi Předpoklady: 5303 1. kontola vyboušení bousíme čočku, potřebujeme vyzkoušet zda je spávně vyboušená (má spávný tva) máme vyobený velice přesný odlitek

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

Á Š Ř ý ů ý Ž ů ý ů ý Č ý Ž ý ě ě Š ů ě ý ý ů ý ů ě ě Š ů ý ý ů ýš ý ů ý ň ý ň Ž ě ý É ý ý ž ý ň Ý Ý ů ě ě ý ě ě ý ě Ž ě ů Ý Š ě Š Ž ě ě Š ě ě Š ů ě ě ě ů ý ý ž ý ě ě Š ů ě ě ě Š ů ý ý ý ů ě ě Š ů ě ě

Více

Č Ž Á Í ž é é ě ě ú ů ů ě ě š ů Ť é ě é ě š ě š ě ě š ů é ú é ě ž ě ě š ů ú ú ě é ú ě ě š ů ě ů ů ě ěž ů ž ěž ů é ú ěž ž ů ě ě ú é ů ů ú š ó ě ú ů ů ů ů ů ů š ú ž ú é ň ú ů ů š ě ě ě ú ú é ú ě ů ě ú ů

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM Ondřej Grover Gymnázium Jana Nerudy 7. konference projektu Cesta k Vědě 26.5.2011 Osnova prezentace 1 Vlnovodný systém 2 Analogový vyhodnocovací

Více

Č É É Č ď Č ž ž Ž ď ě š ě š ě ě š ě ď ž ď šť ť ďš Č ď Č Č ě ž ž Í ě Č ě š ě š š Ž ě ě ť ě ž ě Č ě ž š Í Í ě ě ď ě ě ě ě Í ě ť ě ě ď ě ť ě ď ž ě ě š ě ť Č ě Ž Ž ě ž š š Ž ě Č Ž ě ě ě ě ě ě ě Ž ž ě ť É šš

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř

Více

ě ů É ď ů š ě ů ů ž ů ě ě ú Ú ě Ú ě é ě ě é ě š ú ů š š é ě ě ů ě ě ž Í Á Á é ě ěž Ú ě ů ěž ě Ú é ě é é ů é Ž é ě ě ě é é ě ě ú é ě ě ě é ě ď Ú š ú ů é ď ů ě ů ů ě é é ě ů Ú é ů ů é ě Í Á ě ě ů é ě ěž

Více

Ý Ý Ý Ý Ý Ý Ý Ý. ď Ý Ý Ý Ý Ý Ý

Ý Ý Ý Ý Ý Ý Ý Ý. ď Ý Ý Ý Ý Ý Ý Č Á Ě ě ě ěž ě ě é ě É Ř Á É Ř ň é é ž ž é ě ň ň é ě é ě é ě ě ů ů ó ě é ú ó ú é ž é ů Á ě ě é é é é ú é ž é ě é ů ě ú é é ě é ú ě ů ů é ú ě é ě ž ů ě ú ň ž é ň ěž ú Í é ů ěž ú ěž ú ěž ú Č ú é ě ů ú é

Více

6A Paralelní rezonanční obvod

6A Paralelní rezonanční obvod 6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní

Více

ůř ř é Č ř ř Ř Č Á ř ě ř ď ú ů ů ř ě Í ř ě ř ě ř ř ř ú ů ů ř ě ů ř é ř é ě ú ř ě ě ř ř ř ě é ř ě é ř é ě é ě é é ě é ó é é é é é é ř é é ěž é ú Č ř ř é š ř ě Í ú ů é ě Ú ř ě ě ř ř ř Č ř ě é ě Í é ř ě é

Více

ě ý ť ť é ě č ž é š é ě ž Ž Ž É Ž č č č č č ř ó ó ž č é ěř ě ýš é ž ý ě ž é ú ú ď Ů ú é ž Ť Ť Ť ň ť ň ď Ž ě ý ť é é ě č ž é ýš é ě ž Ž Ž É Ž č č č č č ř é é ž č é ěř ě ýš é ž ý ěž Ú ď ú ď Ú ť ú É Ó ř Ď

Více

MĚSTSKÁ ČÁST PRAHA 3 Rada městské části U S N E S E N Í

MĚSTSKÁ ČÁST PRAHA 3 Rada městské části U S N E S E N Í .j.: 654/2013 MĚSTSKÁ ČÁST PRAHA 3 Rada městsk sti U S N E S E N Í. 596 ze dne 11.09.2013 Uzaven dodatků k pojistn smlouvě o pojištěn odpovědnosti za škodu způsobenou provozem vozidla FLOTILA. 6980638925

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

Ú ů ěš Š ň š Ú ě ě ě ů ž ý ě Ú ž ý ž ý ů ď š ě ž ů ů ů ýš ě ý ý ů ě š ě ě Š ě ý ě ď ě š ýš ž ě š ěž ěž ů ěš ý ě š ý ý ý ý ý ý ý š š Ř ž ž ě ě ž ý ú ů ů ě ý š ě ě ě ě š š ň ě Č ý ě ěž ž ý ú ů ž ě ě ě ý

Více

ě ě ě ú ě ě ě ě ě ě ě ě ž ó ú Í ě Í ě ú ť Í ě ě ě Í ě ě ě ž š š ě ě ě ě Í Í ě ě ě ž š ď ě ě ě ě É ě ě ě ž Í ž ď ě ě ě É ě ě ě ě ě ž š ž Í š š óňó ě Ť ě ě É ě ě ž Ě ě Í Í ě ě ě ú ě ú ě ě Ž ě ě ě ě ě ě ě

Více

ára, Foto, Duo, Tužka P ibližn 20 sekund (pro A4/na ší ku/100 % reproduk ní pom r)

ára, Foto, Duo, Tužka P ibližn 20 sekund (pro A4/na ší ku/100 % reproduk ní pom r) Technické údaje RISO EZ390 originálu (max./min.) originálu P i použití p edlohového skla: 50 mm 90 mm - papíru pro tisk 46 g/m 2-210 g/m 2 P ibližn 20 sekund (pro A4/na ší ku/100 % reproduk ní pom r) 291

Více

Í ÁŠ ž ž ř ž ř ž ř ř ť ň š ř ě Š š ř ě ě ř ť ě š ě ř Ť ě ž ř ě ž ý ů ě ě Ť ů ý ě ó ě ř ý ěř ř ě ž ý ěř ě ř ř ě ť ž ěř ř ř ě ž ý ěř ý ěř š ý ř ý ěř š ť ř ý š ě ř ť ř ž ě ř ř ž ě š ř Í ě ř ř ó ř ý ý ž ř

Více

ř Í ř ě Ú ý ě ř ě Ú ú Ú ě ě Ú é Ú ž é ě ř ž é ě Ř Ě ř ě é ů é é ř ý ě é ř é é ř ř ř é š ě é ž ř ý ú ýš ý ř ě ř š ě ž ý é ř ě ň é é š ž ž ř ě ž ř ý ž š é ú ř ý ů ě ě š ž ž ý ř ů ř é ř é ř é é é é ě ž ž

Více

ň ý ú ž ě ě Ž š ý ú š ý ě ě ě ý š ů ě ě ě š ů ě ě š ů ů ýš ý ě ž ú ě ě ě š ů ě ě š ů ě ě ý ž ů ů ó ě Č ú ě ě š ú ň ě ý ž ů ů ý ě ý ž ů ý ě ý ž ů ů ý ů š Ž ů É ď ť ý ž ú Ž Ž ý ů ů ů ú ý ů ě ý ů ě ě š ů

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

ťí Ý É Č ů Č é éž š ů ú ů ů š ů é ť é ú ů é é ú é ú ů ů ú ú ú Í š ť é ů Ž Ž ú ů š ť ú ů Ž ú é é Ž é ů ú é ň é ú ž ů é ů ť ú ů žň é é é ť ž é é š šš é é ž Č š é Í Ť é é ů š é š é ú ú é ú ú ú ů Žň Ú é ú

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

Ť Ť Ť Ť Ť Ť Ť ň Ť š Ť É éť š Ť š éť š éť š ď éť š éť š éť š éť š Ú éť š š Ť š š ě š Ť š é Ť š Ť Ť š Ť Ť š ď Ť Ť š Ú Ě é Ť š Ť š é Ť š Ř š ž Ž ě ď é Ť š é Ť š Ž ž é Ť é Ť š é ě ě ď ě Ť š Ť š é Ť š é é š

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

Í Í ř ř é ů š ř ů ř ř ř ř ů ř ž ž ř ó ó ř ř ň š ř é úř ř ž ř ř é ů é ú Ž ú ž é ž ž ž Ž ů é ž ž ú ř š ř ř é ú ů ú ů ž é ů š ř é ř ž š é ž ř ř ř ú ř ř ž ž é ž ž ž Ú ž ř ř é ó š ž ř é ž ř Ů ř š ř é Ů é ř

Více

Ý Ř É Á ý ď Ř Á É Á Á ě Ř É Á ě ě ó ý ř ě Ů ě ř ý ě ě š ř ů Á É Ř ý ř ý ů ž ž ý ěř ř ě ž ý š ě ř ě ř ý ý ě ě ď ř ó ů ď Ú ú ř ě ě ě ř ě ě ř ý ž ě ě ř ě ý ě ě Ř Ě Ř É ř ě ř ě ď Ž ř ď ý ď ř ý ě ř š ě ě š

Více

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 VZDUCHOVÁ NEPRŮZVUČNOST JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 AKUSTICKÉ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ A KONSTRUKCÍ Množství akustického

Více

č š é ž č é č ž é é é č é š š ř š ř Č é ř š ř ů Ž ř š é š č ř ž š š č ř č Úč ř č č č č ř č Á č č é éř Š ř ř é č č Ř Á č ž é Č ř ž č ů Úč ř č Š ř ů ž Ř Ě Á č ř é ž Á č č ř č Č é č č č ř Č é č č č č é ř

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více

Gravitace. Kapitola 8. 8.1 Gravitační zákon. 8.1.1 Isaac Newton a objev gravitačního zákona

Gravitace. Kapitola 8. 8.1 Gravitační zákon. 8.1.1 Isaac Newton a objev gravitačního zákona Kapitola 8 Gavitace 8.1 Gavitační zákon 8.1.1 Isaac Newton a objev gavitačního zákona Keple objevil své evoluční zákony o pohybu planet v oce 1609 a 1619. Dlouho však byly jeho výsledky přijímány s nedůvěou.

Více

Á Í Ě č ě š č č ž ě ě š č ě ě ě š ů ě ě š ů č ě ě ě ě š ů ě š ě ě ě š ů ě Ž Í ě ž ň ů úč ě Č č ž š ě ě ž ň ů ů č ě ď č č č č ú š ě č č Í Š ě č ť ě ě ů š č ů č ů ů ů ů ě ů ů ě ě š ů úč č š ě č ě ě ň š ě

Více

Petr Kulhánek, Milan Červenka

Petr Kulhánek, Milan Červenka A S T R O F Y Z I K A V P Ř Í K L A D E C H Pet Kulhánek, Milan Čevenka Paha 01 FEL ČVUT OBSAH I. ZÁKLADNÍ VZTAHY 3 1. Pasek 3. Poxima Centaui 4 3. Magnituda 4 4. Pogsonova ovnice 5 5. Absolutní magnituda

Více

ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

ř ě é ř š ž ř ý é ů ý é š ž ř é ě ě ň ž ř é ř ř ý ř Ý é Ý Ý ú é ř ř ě é ž ů Á ž Č é ť Ú ýš é ž ž ú é ú š ý ž ž Ž é ě ě é ě ř ě ů ě é é ú ě Ť é ě é ě ý ř ž ý ž ř ě š Ť ž ě é ý ě é ž ž ť ě š é ě é š ě š

Více

ř š ř š é úř Ú Č ě Ž ú ř ě ě š ě ě ě Í ř š é ř ú ě ř Á é ř é ý ř ě éž ě é ý Í é é ř Č ř ě é ý ř ě éž é ý Č ř ě ř ě éž ě é é š ř ú Ž é ě éř ě é ř é ýď ř ú ú ě ž ž ýš é š ý ě ů ř ú ž é ě é ř ů ř ú Ž é ě

Více

Ť Í ě ě š ř ě ě ě Č Č ě ě š š ú Č Č ě ě ř ú ř ě ě ř ě ř ě ť ř ě š ě ř ř ě š ň ě Ť ď ř ř ř ě ř ě ě ě ř ř ě ř ě š ř š ř ě ř Í ř ě ř Ť ě ě ě ě ě ě Ť ě ň ř ě ú ě ě ě ň ř ř Ť ř ě ě ě ě ě ř Í ř ň š ř ě ě š ř

Více

Odvodňovací čerpadlo, typ ABS Coronada 250

Odvodňovací čerpadlo, typ ABS Coronada 250 Odvodňovaí čerpadlo, typ ABS Coronada 250 1131-00 15970287CS (04/2015) CS Instalační a provozní návod www.sulzer.om 2 Instalační a provozní návod (překlad originálního návodu) Odvodňovaí čerpadlo, typ

Více

é é é é é é é é é é ž š Í é é ž Í ů é ž é Í é é ž Ž š Ř Ž ž ž ú ů š ú é ž ů é Ž š š Ž ů é é Ž é š é é ž é ž é é é é ž é ž š éž Ý š é é ž ů é é é ž ž š ů é é ž é é é Í Í Í é ž é ž š ů ů é é ž é š ů é Ý

Více

Planimetrie. Přímka a její části

Planimetrie. Přímka a její části Planimetie Přímka a její části Bod - značí se velkými tiskacími písmeny - bod ozděluje přímku na dvě opačné polooviny Přímka - značí se malými písmeny latinské abecedy nebo AB, AB - přímka je dána dvěma

Více

Š Ě Č é Š č é é é é é ě ě š Á é ě é é Ř Á č ť é é é é é š ě é é č ě ě š ž é č č ě ť é ě č é é é č ě č ě ě č š ě č ě é ě ť é Ý č ž ť ě ě š ť ť ě š ě š ť š ě ě é ě ě ě ě č ě š é š é ě ž é ť ě ť é é é é š

Více

Ě Á ý é č ř č ř č Š é š ý Č ý é ý é č č Ú ř č š ě ř ř č č ů ý é ů é ř ý é ř č é č č ř ž č ů ý é č ž é ěř ě č š ž ř ě ů ů č ě č č ě ř ž š ř é ú é š ý ř ě ě ú č ř ě ý ř č ž ě ě ňč č Ř ě ř Ř ě ř ř č Š ů ů

Více

Č š ž ý ČŠ ý š šš é é ďě š ý ě ě š ů ě ě š ů é ě ě ě ě ý ů ě ě š ů Č ď š Í ě Í ě Č é ě ž ů ý ý š š ý Ť Ť ý ý š šš é é ě š ý ě ú é é š ý š é š ě ě ú ž ů ě ý š ě ýš ě ů š é ú ě ť ú ů š š ý š š š ý Ť š ě

Více

ú é Č é ě é ě ě ď ú ě ě Í úě ě ě ú ě é ě ě ě ě ú ě é ě é ě ď ě ú é ě ěž é ú ě é ě é é é ěň ě é é ě ď š ě ě ě ó Ú é ěž ú ě ě ó š é š š ěž é ď ě ě é š ú é é ú ě Í ď Í šť é ň ě é ě ě ě ě ě ěí ě ě ě ě ě ě

Více

ó ý ó ě ť ě ě é ě ě é ď ú ý ů ý ů š ň ě ě é é ě ó ě é ě ú ě ý ě ý Ú é ě é ě ý ď ý ů ý ů ý ů Č é ž ý ň Ž ď é ý ú ě ý ě ý ů ě ě é ú ů ý ě é ě ý Í ě ý é ů ě ý ů ý ý ů ě ý ú ý ů Ž ú Ť ý ě ě ú ý ě ů ý ý Ů úě

Více

ě ř Ú ň Č ž ěž ě Ž ř ř ě ú ř ě ě ě Ž ěř ě ř ř ě ř ň ě ř ě ů ř ř ž ž ř ůř ě ě š ř ě ě ň ěř ě ě ř ěř ů ř ů ě ů ě ě ž ů Í ř ů ž ž ř ů ř ůž ř ř ř ě ě ů Č ů ú Š Š ř ň Ť ě Ž ě Ž Í ř ěž ů ú ň ě ě ř š ě š ě Ž

Více

Ú Ú Ú š ě š ě Ú ž ů ě ž ů š ě Š Ě ú Á Ř Ř š Ě ň Ú Ú ě ě Ú ě ú ů Ú ú ě ě ú ú š Ú Ú š ě Ú Ú ú ž Ú ů ě Ú Ú š ů š ú Ú ě ž ů Ú ě ú ů ů ů ň ě ú ž ě ůú ě ú ů ů Ř Ř Ú ú ě š ě ž Ú ě š ě ě ú ě ě ú ě Ú Ú š ě ě ú

Více

ě ý ě é ě ř č ů Ž é ř ě š š ě ř Ž š ě ž š ě č ý ž ě š ď Ž ě š č ý ř ě ž š č ý ý č é Š ř ř ě š ř ě ě ě ů ůš š Š š ě ě š ř š ě š š é ř é ř Š ě é ě ř č éž Ž é ř ě š š ě ř ž ěč ř ž ů š ž š ě ý č ř ý ž š ě

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =?

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =? ÚLOHA 1 Ladička má rekvenci 100 Hz. Kmitá ve vzduchu, kde je rychlost zvuku přibližně c 340 m/s. Úkoly: a) Jak lze u zvuku charakterizovat vlnovou délku λ? b) Jak lze u zvuku charakterizovat periodu T?

Více

ó á ě ěš á á ě ěš ý ý ú Č á á á á ě Ú ý á Š š ňá ě á á ň á á š á š ň á á á Ž ě ď ň á á š ě á ě ě á ý á š š ú ů ý á á á ů á á á ů ě ú ď Ž ě ú ý Č Č ý ě ď á ě á ě á á á á ě ů á á á á ý á á š á á á š á ů

Více

Ťěš Ú Č Č Ú ě ě ě ň ů Ú ž ě ž Ý š Ž ť É ě Í ú ž ě Í ú ů ů ů ú ů ú ů ě ě ť ž ú ů ů ů ú ů ú ů ě ů ú ů ú ů ů ě ť ú ů ú ů ů Ť ě ú žů ť ž ž ě ě Ž ú žů ž ť ž ž ž ť ě ž ů ě ě Ž ú ž ž ú ž Ž ů ž ů Ž ů ů ě ů š š

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

ú Ž ž Č ď Ú ó Ú ČÍ é é ž Ó ú ž ě ě ž ú ě ě ú é ě Ů ě Í ú ě ě ú Č é Ý š ě ž é ž ě ó ú ě ú é ú ě ú éň ě é Š ó ó é ú é ěň š ě ěž éú Č úó ě ě Ú ě š é ě ě ě Ů ú ú ě ó ú Č Č ú Ú é ú ž Ú Á Č Č ě é Ú ě ú ě ě é

Více

Í ý ú ú Ž Í Ž Í ů é ů Ž ů Ž ů Ž Í ů Ž ů Ž ů é ů é é éó ě ě ě ď ů ě ě š Í ů ě ý ě é ě ě ý ú ě Í ý ě ě š ů Š ě ě Ě ě ě ů ý é é ě ě Ó ú ú é ě é ů š ě Ž Ž Š ě ě ý é ů š ě š ě ž ý é ě ýš é Š ý ů ý ý Í Ž Ř ě

Více

Í ě Ě Á Í ú ř ě ů ď ř ď ř ř ě ě š ř ů ř ě ďě ř ů ř š ř ě ř ř ď ď ř ř ě ě š ř ů ř ř ř ě ě ů š ů ě Í š ó ě ř ř ř ř ě Ž ó ř š ř š ř ř ě ř ě ú ů š ř ú ů ř ě ř š ř ř ě ř ů ř ř ě ř š Č ě Š ř ř ě Č É Ě Ě Á ě

Více

Diferenciální (dynamický) odpor diody v pracovním bodě P. U lim. du = di. Diferenciální (dynamická) vodivost diody v pracovním bodě.

Diferenciální (dynamický) odpor diody v pracovním bodě P. U lim. du = di. Diferenciální (dynamická) vodivost diody v pracovním bodě. Difeenciální (ynamický) opo ioy v pacovním boě P lim P Difeenciální (ynamická) voivost ioy v pacovním boě g ( P) lim P P P Výpočet užitím Shockleyho ovnice: ( e T ) P ( g e T T T g T ) V popustném směu:

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Ž Ú ď Č Ú ď Ž Š Ž ť Š Ž Ž ť Č Č Ž Ž ť Č ť Š Ý ŘÁ Ů ť Č Š Ž ť ď Č Ú ť ť ť ť Č Č Ů ť Ů Á ť Š Á ď Š ť Č Ó ť Ú Ž ť Ž Ú Č Ú ť É ť ť ť Ž Ž Ž ť Ž ÝČ Č ť Š ť ť ť Ž ť ť ď ť Ž ť ť Á Ž Ž Ž Ů Ž Ž Ú Ě Ý Č Ž Š Š Ř Ě

Více

Seminární práce z fyziky

Seminární práce z fyziky Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné

Více

Zkušenosti s realizací testu teplotní odezvy ve vrtech pro tepelná čerpadla

Zkušenosti s realizací testu teplotní odezvy ve vrtech pro tepelná čerpadla Acta Montanistica Slovaca Ročník 11 (006), mimoiadne číslo 1, 149-153 Zkušenosti s ealizací testu teplotní odezvy ve vtech po tepelná čepadla Jiří Ryška 1 Expeiences with pefoming a themal esponse test

Více

ů Č Č Č Č Č ě ú ě Ý š Š ě ě ě ě ž Č Č ě ú ě ě Í š Š ě ě š ů ě ě š ů ě ů Ú ů š Č ě ú ů š ú ů ě Č ě ě ě Č ů ů ů ú ů ů ů ů ů ů ů ů ů ě ěž Ž Ž Ž Í ě ú ž ě ú Ž ě ě ú Ž ů ů ú Ž ě ú Ž ú ž ě ů ě ě ů ě ů ě ů ů

Více

Ý Ř Č Ě É Ř Ř ý ě ú ý ů ý ů Í ě ú ý Ž ě ě ě ý ú ú Š ó ý ó ó Ř É ě ý ý ý ú ý Í Ů Č Í ě Í ě ú Ž ý É ě ě ý ů š ý Č Š ý Č Í ú š ú Í ý ú Ó ě ý ů ý ě ý ě ý ý Í ě ý Č ě ý ě ý ú ý Č ú Í ů ú ě ýš Í ý Ů ě ě ý ý

Více

Ý úř ř é ř ř Č Ž Á Í ř ě ř ř ú ů ů ř ě é ř ěř ř ř ř ř Č ú ř ě ř ř ř ú ů ů ř ě ů ř é ř é é é ř ě é ř é é é é ř é ř é ě ú ě ú é ř ě é ú ř ě ě ř Ú š ú š ěž é ú é Č é ř ž ě ů ě š ě ř ů ž é ž ě ů ž ž é úř ř

Více

Ý ÚŘ Č Ý Č É Ý ó Ě Ř Ř Ý é Ú ú Č é é ě ě š ů Ú Í ů ů ě ě š ů ú é é é ě ň ě é ú ě é ě ě ů Š ú Ú Ž Č é ě ě ě é é Ú ů ě ů ě Ú Ó ě ú é ň é Ú ě ě é ů ě ě ě Í ň Ú ů ů Š š ě ě Š Ů š ě é é Ž ě š ě Ů ť Š ě é ž

Více

úř é ř ř ř Č ř Í ř ď ú ů ů Í ř úř ř ř ř ř ř ř ř ř ř ř é ř é úř ó ř ř ř ú ó Č Č ř ř ř ř ď ť é Í ř ř ů ř ř ť ů ň ř ů ú ř é ř ř ř ř ř Í é é ř Š ú é ů ř ů é é ů žň ř Ž é ř Ž š ř ř ž é Ť Ž é ř š é é ú ž ř ů

Více

ý ý ě ý ý ě ý ž š Ž ý ý š ě Ž ý ů ž ý Ž ý ý š ě ý š ž ů ý ě ě ý ž ž Ý ú ů ž š ý ž Ý ýš ž ů Ž ý ý š ě Ž š ů ě ě ý ž ě ý ě ý ž ý ž Í š ý ý ě ů ý ě ý Ž ě Ž ý ýš ý ý ý ů ě Í Ý ž ž ě ě ě ž ú ě ě ě ú ě ě ň ě

Více

Á Ě Ý ě ě ň ě ě š ř ů š ř š ě ú ě ů ě ě š ř ů é ě é ě ř ě é ě ř ě Ú ř úř ú ň ř ě Č Ť ě ě š ů ě é ě ě ř ň ř ř ě ě ě ě é ů ě ě ř ů š ú ě ň ě ě š ě š ů ě ú ě ě Č éž ě ř ě ř ě Č éž Č ú ř ě ě ř ú é ě ř ž ě

Více

ů ř ň ř ř ě ř ě ů ě š šť ě é é ž ř é ž ř é ž ů ů ě šť ě ú ž šť ž šť ů ů é ů ů ů é ž é ů ú ř ě ů é é é é ů ř é ě Ť ě ů šť ě é šť š ě ů ě š ů š ř ů Šť ě é é ř š é é ř ě ů ů é ř ě š ř ě ů ů šť ů é ř ě š ř

Více

ř ň š Š ř ž Ú ř ř ř ů ž ř ů é ž š é ěř ř Š ěř é ň š ěř é ň ž ě ř ě Ú ěř ů ě Ú ů ú šť ř ů é ě ř š ě ě š ě ě ž ž ř ž ě ě é ú ř ě ú ě ž ř š ě šť šú é ě ř ž Ž é úř ř ě ž Ú ř ž ú ř é ř Ú ú ř ě ě š ř ů ž ř ž

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM.

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM. Ondřej Grover 3. minikonference projektu Cesta k vědě, 11.1.2011 Osnova prezentace 1 Motivace Jaderná fúze Jak udržet plazma Měření

Více

ď ř ř č Š Š ř č ž č ě úč úč úč š ž ř ů Ú ě ů é š ě ý ř ý ž ř ř ú ř é Ž ý ý ž ř č Ů ů ř ý ý é š ěř é ž š š é ěř š š ř Ě ě ú ě ž úč ž ř é ě ě ř ž ž č ě ř ž č š š ě ů č ě é ž ý č ě š ě ů ě ě ý š ěř ř š č

Více

ó ý ř ů ť ě ř š ř ý ěž ě ň šř ý ů ů ý ř ů ů ý ý ě Ú ýš ý ě ěř š ý ů ř ě ř š ý ř ů š ř ě ěř ů ř ě ú ů Ó ýý š Ú ý ř ů ř š ý ý ů ď š ů ý ý ř ů Č ě ě ě ů ě ř ř Š ěř ě ů ý ř ů ý ý Ž š ý š ř ý ý Ž ý ě ř ě Š

Více

ř š Ú Í Á Á Í Ý Ž Í Ř Í Č Í š ř ň ť Í Í é Č é ý ý úř š ú ý ž ř úř ř š ý ú ř é š ř ů é ú ř Í ž ž ž Í é Č é ř š šú ú Í ř ú ř š ř é Ž ž ý é ý ů Ž ú Š Č ý ř ž ý ý ú Š Č ý ý ů ř ř ž š ý ň ž ž ž ý é ř ř ř šť

Více

Ř ů ů ů ů ů ů Ď ů ů Ď ů ú ú é é ů é ú ú ě ů Ý úťů ů é é ů é ť ůú ú ě é ú é ů ů ú ťé ú é ů ů ú ň Ř ě ó Ť ěž é é Ý ů ů ú ú ě ů ů ů ú ů ů Ý ů é ů é Ť ů ů é ů Ď ů ú ť ů ů ú ú ů é ů é ů ů é ů ů ú ú é é ů é

Více

š ě ě ý ř ř ě ě ě ý ů ě ě š ř ů é ě š ř ů ý ů é Í ě ě š ř ů ř ř ú ý ů ý ů ě ě š ř ů ž ě š Í ú ř ž é ú é š ě ě é ě ř Í ř ú š ě š ě ř ř é ř ř é é ř ř š Ř Ě Ř Á Í Ř Í ř ě ř ú ř ř ě ě é ú ě ý ú ů ě ě š ř ů

Více

Č č č Ž ěš Ž š ř ř š ý š č ů ý ť Ž é č č Ž č ů ý ř š Ž ý ů č Ž é ě č Ž é ř ř Š ů ů é ý č ě č ě š Í ň š ď ů ý ý ěř Ž š ř ě é š é š č č č ř Í č é č é ň Ó č ě Č Ž č č ů ý č ů ř č É ň ř É ý é č ý ů ý ř ě ý

Více

Ý ÚŘ Č Ý Ý Ě Ř Ř Ř Ý ě ú ý ů ý ů ě ú ě ý š ú ú ě Č é ě Ř É ý ú Í ý ý Í ú Í ý Í ě Í Í Í Ú Í ý ý Í ý ýš ý ý ěň ů é ě ů š ý ž ú Ú ý ú Č Ú Í ú ú Í ě ý ú ě é ú ě Ú ů žň Í ý ý ý ů Í Í Ů ú ú ú Í Í ý Í ě ů ě ú

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě

Více

Kopie z www.dsagro-kostalov.cz

Kopie z www.dsagro-kostalov.cz é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

ť Ý É É ó š Ř ř ň ř é é ž ř ú ě ř ž ě ř š ÚČ ř Č é ř ě ě ř é é ř ě ě ř ě ě ř ě ř ě ě ř š š ž ř ě ě é ř ž Ž é é ř Ů é Ů Ý Ť š ž ž é ř ě ě ž é ř ě ě žž é š ř ě ř ř ě ě š ř Ů š Č ě Č ě š é š ř é š ř ž é ř

Více

č ě Š ř ě č ě Š ě č ř Š ě šč é č ř ě ž š ěž š é č ěž é ě š š ř ů ů č ě ž ě č ě ř ů ě é č é č ě ř š ř č ř é ř ě ř č ř ř é š č é č ř ě š ř š ě č š é é ž š ž ť č ř ž č é č šš ěž ů č č ěž č é é ž ěž ů č ů

Více

ř ě ě Š ř ů Š Ř Ž ě ú š ř é ř é é š ý ě ř é ý é Ž Ž é š ý ú ř ě Í ý ř Ž é ř é é ž ř ě ř ě Ó é ž ř Ž ž ř ž ž ř ě ř ř ž ř ř ř Ž ř ř Ž ý ý ě ž ž ý ě ř Ž Ž ř ě é ě ř Ž é ř ě ů ř Ž ě ě Í ě ě ů ů ř ž é ř ž Ž

Více

úř Ú Š ě ě ěž ěž ř Ú š ě Č Č ř Ž ÁŠ ě ň ř ě ú ň ř ě ě ň ú ě ě ě Ů Ž ř ě ú ě ň ř ř ě ž ě ř ž ě ž ž ž Ž úř ř Ú š ě Š Š ž ě ě ě ž ž ř ň Ů š ě ř ě ě ž ř ř š ž ú š Ú ř ě Ž ě ž ě š ě žš ž ř ž ř š Ž ř Š Ž š Ž

Více

ý ú é ý Č Ř ě é ú ý ů ý ů ě ě ý ž é ů ú ú ě ě ú ý ů ý ů ý ě ý ů é é ý ý ě ý é ě ý ý ů ý š é š ě š š ýš ě é ý š š é š š ě é ýú ěš ý ý ě ý Ú ý š ý ý ú é ě é ě ď ú ě é ěž ý ú ú é Č ěž ý ú ú é ě ú é ú ěž é

Více

Maxima Open Source Software ve výuce matematiky a fyziky - 2

Maxima Open Source Software ve výuce matematiky a fyziky - 2 Uvedené pogamy kolegy velmi zaujaly. Všichni by je ádi ve výuce alespoň občas používali, ale poblém pávem viděli ve finanční náočnosti licencování uvedeného softwae jak po školu, tak po žáky (pokud by

Více

Č ž é ý ý Í ž é ž š š ě ž ě ý ú é š ě ý ě š ž ú Ú Ú š ě ě ň ý ě ý ů ž é é é ě ý ý ů ů ě ě š ě ě ž é é ď ž ě ě ě é ý ů ý ú ě ž ů é ňé š ž ý ů ů ů ú ó ó ě ý ů ě ě š ů ó óó ě ě š ů é ý ě é š ž é é ě ý é é

Více

Č ý é é Č ó ě ě ť ů ě ý ů ě é ý é ť ó ó ě ý ě ě Ť ů ť ě ě ů ý ě é é ě ě ů ž Š é Š ž Š Š Š é ě Š ý ó Č é ů ě ž ě ž ť Š ě Š ý Š Š ě ť é é ď Š ý Š žň é ž ů ž ů ě ěž ý žé Č é ě ž Š Š ý Š ě Š ť ě ý ý ž ý ů

Více

Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú

Více

Š ě ěř ř ř š Š ř ě ř ě ř ě Č ú Ř Č ý ý ú ě ý ý ý ř Š Š ž ř ě ř ě úř úř ý ě ř ř š ř ě š ěř ěř ž ěř ž ř š ý ř š ě ý ý ě ě ř ř ě ř ě ú Í ě ý ý ě ř ě ř ě ř ř ě ř ě ě ř ř š ř š ě š ě ř ř ě ř ž ř š ě ý š ř š

Více

Ž é ř é ř é ř é č č š ě š ě č ř úř ř úř é é ě ě Í ř č ř ř ěž ě ř č é ř é ř č é ě ř ě č éř Ž é ě ě ř ř ě š ě č Ť é Í ě Ž ř é č ř é ř é Ž ě ě Ž ř é č Č é ě č Č é Ž č Č é é č é ě ř ň č é ř ř č ň č Ť é Ť ů

Více

ů Č Č Ú ě ě ě Ž ě ě š Č ě Č Č ě ě ť ě ú ě Ž ú ú ě ě ž ú ě ě ě ž ó ú ě š ě ě Ž ě ě ú ú ě ě ú ě ú ě ž ú ě ů ň ú ě ě ú ú š ú ě ě ě ě ú ě Ž ů Č ě Ž Ž ě ž ú ů ú ě ú ě ů ú ú ů ú ů ě ú ě ú ě ě ú ů ú Ž ú ě Ž Č

Více