Lineární algebra : Polynomy

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární algebra : Polynomy"

Transkript

1 Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1

2 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina přirozených čísel (neobsahuje 0). N 0 := N {0}. Z, Q, R a C... po řadě čísla celá, racionální, realná a komplexní. Pro n N, definujeme ˆn := {1, 2, 3,..., n}. Dále budeme běžně používat symbol a v obyklém smyslu: a a i := a 1 + a a n n a i := a 1 a 2... a n. Další symboly zavedeme během kurzu. Číselné těleso C Přesnou definici číselného tělesa uvedeme později - příklady jsou: Q, R, nebo C. Množina C := {a + ib a, b R}, kde symbol i označuje tzv. imaginární jednotku. Symbol + nemá svůj obvyklý význam, slouží jako "oddělovač"(mohli bychom psát (a, b) místo a + ib). Pro z = a + ib C nazýváme a reálnou částí z a značíme Re z. Číslo b nazýváme imaginární částí z a značíme Im z.

3 3 Tuto množinu vybavíme dvěma operacemi + : C C C a : C C C, které pro a, b, c, d R definujeme následovně: (a + ib) + (c + id) := (a + c) + i(b + d), (a + ib) (c + id) := (ac bd) + i(ad + bc). Všimněte si, že pravidlo pro násobení bychom dostali formálním roznásobením závorek (a + ib) a (c + id), položíme-li i 2 = 1. Komplexní sdružení Definice 1. Buď z = a + ib, a, b R komplexní číslo. Číslo z := a ib nazýváme číslem komplexně sdruženým k číslu z. Dále z := a 2 + b 2 nazýváme absolutní hodnotou komplexního čísla z. Cvičení: Ověřte následující vlastnosti komplexního sdružení: 1. z + w = z + w, 2. z w = z w, 3. z 2 = z z, pro z, w C. 2.2 Polynomy definice a operace Polynomy Definice 2. Funkce p : C C je polynom, právě když existují n N 0 a α 0, α 1,..., α n C tak, že ( ) ( x C) p(x) = α i x i. Čísla α 0, α 1,..., α n nazýváme koeficienty polynomu. Množinu všech polynomů označíme P. Dále definujeme stupeň polynomu p jako St p := max{j N 0 α j 0}, stupeň nulového polynomu p 0 defininujeme 1.

4 4 Poznámka 3. Definice stupně polynomu má smysl, protože, jak ukážeme později, polynom má své koeficienty (a tedy i stupeň) určeny jednoznačně (až na "nulové koeficienty navíc"). Příklad: Funkce p(x) = 6x 4 + πx 2 + (2 i)x + 1/3 je polynom stupně 4. Polynomy operace Operace sčítání polynomů p a q a násobení polynomu p komplexním číslem α zavádíme stejně jako pro funkce: ( x C)( (p + q)(x) := p(x) + q(x)), ( x C)( (αp)(x) := αp(x)). Množina P je vůči těmto operacím uzavřená, tzn. pro p, q P a α C platí: p + q P a αp P. Cvičení: Ukažte, že pro p, q P platí St(p + q) max(st p, St q). Poznámka 4. Všimněte si, že operace na polynomech lze popsat pouze pomocí jejich koeficientů. Také polynom sám lze chápat jako uspořádanou (n + 1)-tici jeho koeficientů. Algoritmy pro realizaci jednotlivých operací pouze sčítají nebo násobí koeficienty polynomů. S proměnnou x algoritmy vůbec nepracují. 2.3 Fundamentální vlastnosti polynomů Definice 5. Číslo λ C nazveme kořen polynomu p, právě když p(λ) = 0. poly- Kořen nomu Věta 6 (Základní věta algebry). Polynom stupně alespoň 1 má alespoň 1 kořen. Důkaz: Neuvádíme (důsledek Liouvilleovy věty z analýzy fukce komplexní proměnné). Bézoutova věta

5 5 Věta 7 (Bézoutova). Nechť p je polynom stupně n N 0, λ 0 C. Potom existuje polynom q stupně n 1 tak, že pro x C platí p(x) = (x λ 0 )q(x) + p(λ 0 ). Důkaz. Buď p(x) = α k x k, α n 0. k=0 Připomeňme známý vzorec, který lze snadno dokázat matematickou indukcí, potom lze psát k 1 a k b k = (a b) a i b k 1 i, Položme p(x) p(λ 0 ) = α k x k α k λ k 0 k=0 k=0 = α k (x k λ k 0) = α k (x k λ k 0) k=0 k=1 ( k 1 = α k (x λ 0 ) k=1 k 1 =(x λ 0 ) α k k=1 q(x) = k=1 x i λ k 1 i 0 x i λ k 1 i 0. k 1 α k x i λ0 k 1 i, pak na pravé straně je člen s nejvyšší mocninou x roven α n x n 1 a tedy q je polynom stupně n 1 a platí p(x) = (x λ 0 )q(x) + p(λ 0 ). ) Poznámka 8. Všimněte si, že je-li λ 0 C v Bézoutově větě kořenem p, tj. p(λ 0 ) = 0, pak existuje polynom q stupně n 1 tak, že pro x C platí p(x) = (x λ 0 )q(x). Důsledek 9. Polynom stupně n 0 má nejvýše n kořenů. Důsledky Bézoutovy 1/2 věty

6 6 Důkaz. Tvrzení dokážeme indukcí podle stupně polynomu n 0: 1. n = 0: Každý polynom nulového stupně je konstantní nenulová funkce (jinak by šlo o nulový polynom, ten má však stupeň 1), ta nemá žádný kořen. 2. Nechť každý polynom stupně n 0 má nejvýše n kořenů. Nechť p je libovolný polynom stupně n + 1. Podle Základní věty algebry má p alespoň jeden kořen λ 0. Podle Bézoutovy věty existuje polynom q stupně n takový, že p(x) = p(λ 0 ) + (x λ 0 )q(x) = (x λ 0 )q(x). Podle indukčního předpokladu má q nejvýše n kořenů a zřejmě p má (díky součinu se závorkou (x λ 0 )) nejvýše o jeden kořen více než q, tedy p má nejvýše n + 1 kořenů. Protože polynom je speciální druh funkce, také rovnosti dvou polynomů p a q budeme rozumět jako rovnosti dvou funkcí. Důsledky Bézoutovy 2/2 věty Tedy p = q def ( x C)(p(x) = q(x)). Je zřejmé, že polynom je jednoznačně určen svými koeficienty. Následující důsledek Bézoutovy věty říká, že je to pravda také obráceně. Důsledek 10. Koeficienty polynomu jsou určeny jednoznačně (až na případné nulové). Nebo-li neexistuje polynom p takový, že ( x C) p(x) = α j x j = β j x j, a přitom ( j 0)(α j β j ).

7 7 Důkaz. Tvrzení dokážeme sporem. Nechť existuje polynom p takový, že ( x C) p(x) = α j x j = β j x j ( j 0)(α j β j ). Označme potom musí k = max{j 0 α j β j }, k ( x C) (α j β j )x j = 0, tj. polynom stupně k by měl nekonečně mnoho kořenů, což je spor s již dokázaným důsledkem Bézoutovy věty. Věta 11. Nechť p je polynom stupně n 1 tvaru p(x) = α j x j a nechť λ 1, λ 2,..., λ k jsou všechny jeho různé kořeny (tj. k n). Potom existují jednoznačně určená čísla n 1, n 2,..., n k N taková, že k n i = n a k p(x) = α n (x λ i ) n i. (2.1) po- na Rozklad lynomu kořenové činitele Důkaz. Nejprve dokážeme existenci takového rozkladu a poté jeho jednoznačnost. 1. Existenci dokážeme indukcí podle stupně n: Pro n = 1 je tvrzení zřejmé neboť p(x) = α 1 x + α 0 s α 1 0 implikuje p(x) = α 1 ( x α 0 α 1 ). Nechť tedy n > 1 a nechť pro polynomy stupně n 1 tvrzení platí. Podle Bézoutovy věty existuje polynom q stupně n 1 takový, že pro každé x C platí p(x) = (x λ k )q(x). (2.2)

8 8 Je-li q(λ k ) 0, potom podle indukčního předpokladu existují přirozená čísla n 1,..., n k 1 taková, že pro každé x C platí k 1 q(x) = α n (x λ i ) n i, k 1 n i = n 1. (2.3) Označíme-li n k = 1, dostáváme kombinací (2.2) a (2.3) tvrzení věty. Je-li q(λ k ) = 0, dostaneme podle indukčního předpokladu existenci přirozených čísel n 1,..., n k 1, ñ k s vlastností (pro každé x C) q(x) = α n (x λ k )ñk k 1 k 1 (x λ i ) n i, ñ k + n i = n 1. (2.4) Položíme-li n k = ñ k + 1, jsou n 1,..., n k hledaná čísla pro polynom p, pro která platí k n i = n a k p(x) = α n (x λ i ) n i. 2. Jednoznačnost dokážeme sporem: Nechť pro každé x C platí k k (x λ i ) n i = (x λ i ) m i, (2.5) kde n i, m i jsou přirozená čísla, k n i = k m i = n a existuje i ˆk takové, že n i m i. Bez újmy na obecnosti předpokládejme, že i = k a m k > n k (jinak kořeny přečíslujeme). Potom po odečtení pravé strany v (2.5) a vytknutí výrazu (x λ k ) n k pro každé x C dostáváme ( k 1 ) k 1 (x λ k ) n k (x λ i ) n i (x λ k ) m k n k (x λ i ) m i = 0. To ale znamená, že výraz ve velké závorce je nulový pro všechna x C. (Rozmyslete si proč!) Platí tedy k 1 k 1 (x λ i ) n i = (x λ k ) m k n k (x λ i ) m i pro každé x C, což ovšem pro x = λ k pravda není (pravá strana je rovna nule, levá nenulovému číslu) a dostáváme spor. Definice 12. Číslo n i z věty nazýváme násobnost kořene λ i, vyjádření p(x) ve tvaru (2.1) rozklad polynomu p na kořenové činitele.

9 9 2.4 Vlastnosti polynomů s reálnými koeficienty Věta 13. Buď p polynom s reálnými koeficienty a λ 0 C kořen polynomu p. Potom λ 0 je také kořen p a násobnosti kořenů λ 0 a λ 0 jsou stejné. Kořeny polynomu s reálnými koeficienty Důkaz. Buď kde α j R pro každé j ˆn. p(x) = α j x j, 1. Buď λ 0 kořen polynomu p. Protože p(x) = α j (x) j = α j x j = α j x j = α j x j = p(x), je také p(λ 0 ) = Nechť λ 0 má násobnost k. Pro každé x C tedy platí p(x) = (x λ 0 ) k q(x), kde q je polynom s vlastností q(λ 0 ) 0. Podobně jako výše odvodíme p(x) = p(x) = (x λ 0 ) k q(x) = (x λ 0 ) k q(x). Protože pro polynom h(x) := q(x), platí h(λ 0 ) = q(λ 0 ) 0, je λ 0 rovněž k-násobný kořen polynomu p. Důsledek 14. Polynom lichého stupně s reálnými koeficienty má alespoň 1 reálný kořen. Důsledek 15. Každý polynom s reálnými koeficienty lze psát ve tvaru součinu polynomů 1. stupně s reálnými koeficienty a polynomů 2. stupně s reálnými koeficienty.

10 10 Důkaz. Rozepišme p ve tvaru rozkladu na kořenové činitele p(x) = α n k (x λ i ) n i. Pro každý kořen λ i nastává jedna ze dvou možností: 1. λ i R, pak se v součinu na kořenové činitele objeví n i -krát polynom prvního stupně s reálnými koeficienty (x λ i ), 2. λ i C \ R, pak i λ i je kořen polynomu p se stejnou násobností n i a v součinu se n i -krát objeví polynom druhého stupně který má reálné koeficienty. (x λ i )(x λ i ) = ( x 2 (2Re λ i )x + λ i 2), Příklad: 2 + 2x 3x 2 + 3x 3 x 4 + x 5 = (x 2)(x 2 + 1)(x 2 + 2) Hledání kořenů polynomu Nalézt rozklad polynomu na kořenové činitele, tedy nalézt kořeny (i s jejich násobnostmi), není algrebraicky možné pro obecný polynom p. Pro polynom 1. stupně je to snadné. Vzorce pro kořeny polynomu stupně 2., p(x) = α 0 + α 1 x + α 2 x 2, jistě znáte: λ 1 = α 1 + α1 2 4α 0α 2, λ 2 = α 1 α1 2 4α 0α 2. 2α 2 2α 2 Pro polynomy 3. a 4. stupně vzorce také existují, ale jsou už poměrně komplikované (vizte Cubic and Quartic function, Wikipedia). Pro polynomy stupně 5. a vyššího algebraické vzorce pro kořeny neexistují! Tuto skutečnost dokázali Niels Abel a Évartiste Galois pomocí teorie grup (Abel Ruffini theorem).

11 Součin a částečný podíl polynomů, Hornerovo schéma Kromě operací p+q a αp pro p, q P a α C lze polynomy také násobit mezi sebou (jako dvě funkce). Výsledek pq bude zřejmě opět polynom. Jaké jsou ale koeficinty polynomu pq, známe-li koeficienty p a q? poly- Součin nomů Buďte potom p(x) = α i x i a m q(x) = β j x j, pq(x) = m+n r=0 γ r x r, kde γ r = min(m,r) j=max(0,r n) α r j β j Nebo trochu jednodušeji: položíme-li α i = 0 pro i > n a β j = 0 pro j > m, můžeme psát r γ r = α r j β j, r {0, 1,..., m + n}. Všimněte si, že platí: St p = n St q = m = St pq = m + n. Částečný polynomů podíl Věta 16. Pro každé p, q P, q 0, existují jednoznačně určené r, z P takové, že platí: 1. p = rq + z, 2. St z < St q. Důkaz. Dokážeme nejprve existenci takových polynomů r, z P a pak jejich jednoznačnost.

12 12 1. Existenci dokážeme indukcí na St q 0. Je-li St q = 0, pak q je nenulový konstantní polynom a zřejmě pro každé x C platí kde St z = 1 < St q. ( 1 p(x) = q(x) p(x) ) }{{} =:r(x) q(x) + }{{} 0, =:z(x) Nechť n 1 a tvrzení platí pro všechny dvojice polynomů p, q kde St q = n 1, dokážeme platnost i pro q se stupněm n. Nechť tedy q P a St q = n. Ze Základní věty algebry vyplývá existence alespoň jednoho kořene q, označme jej λ 0, z Bézoutovy věty dále vyplývá existence polynomu q takového, že St q = n 1 a pro všechna x C. q(x) = (x λ 0 ) q(x) Podobně, pro daný polynom p existuje p P takový, že pro každé x C platí p(x) = (x λ 0 ) p(x) + p(λ 0 ). (2.6) Na polynomy p, q P lze použít indukční předpoklad, tedy existují r, z P takové, že p = r q + z St z < St q. (2.7) Dosadíme-li (2.7) do 2.6, dostáváme pro každé x C p(x) = (x λ 0 ) r(x) q(x) + (x λ 0 ) z(x) + p(λ 0 ) = r(x)q(x) + (x λ 0 ) z(x) + p(λ 0 ). Jelikož (x λ 0 ) z(x) + p(λ 0 ) je polynom stupně St z + 1 < St q + 1 = St q, stačí volit r(x) := r(x) a z(x) := (x λ 0 ) z(x) + p(λ 0 ) a tvrzení platí. 2. Jednoznačnost dokážeme sporem. Nechť pro dané p, q P existují r 1, r 2, z 1, z 2 P takové, že platí p = r 1 q + z 1 = r 2 q + z 2 St z 1 < St q St z 2 < St q. Tedy (r 1 r 2 )q = z 2 z 1. Kdyby r 1 r 2 nebyl nulový polynom, stupeň celého polynomu na levé straně (r 1 r 2 )q by byl větší nebo roven St q, naproti tomu polynom na pravé straně z 2 z 1 má stupeň ostře menší než St q. Tedy nutně r 1 = r 2, a potom také z 1 = z 2, čímž je věta dokázána.

13 13 Definice 17. Polynom r nazýváme částečný podíl a polynom z nazýváme zbytek při dělení polynomu p polynomem q. K získání částečného podílu a zbytku při dělení polynomu p polynomem q používáme známý algoritmus. Částečný podíl polynomů příklad Ilustrujme si ho nejdříve na příkladě: (2x 5 3x 4 + 3x 3 x 2 6x + 8) : (x 2 2x + 4) = 2x 3 + x 2 3x 11 (2x 5 4x 4 + 8x 3 ) x 4 5x 3 x 2 6x + 8 (x 4 2x 3 + 4x 2 ) 3x 3 5x 2 6x + 8 ( 3x 3 + 6x 2 12x) 11x 2 + 6x + 8 ( 11x x 44) 16x + 52 Náčrt algoritmu: Částečný podíl polynomů obecně p : q = γ k x k + γ k 1 x k γ 0 γ k x k q p γ k x k q γ k 1 x k 1 q p (γ k x k γ k 1 x k 1 )q... p (γ k x k + γ k 1 x k γ 0 ) q =: z }{{} =:r

14 14 Algoritmus vždy skončí po konečně mnoha krocích. Algoritmus k dvojici polynomů p a q na vstupu vrátí dvojici polynomů r a z, které mají vlastnosti podle věty o částečném podílu (rozmyslete si, proč). Hornerovo schéma Hornerovo schéma je algoritmus na efektivní vyhodnocení funční hodnoty polynomu p v bodě λ, který je postavený na výrazu: p(λ) = α i λ i = α 0 + λ(α 1 + λ(α λ(α n 1 + λα n )... )). Mezivýpočty (závorky) mohou zůstávat v registru procesoru. Na vyhodnocení jedné závorky stačí jednou násobit a jednou sečíst. Cvičení: Kolik sčítání a násobení potřebuje počítač k vyhodnocení p(λ), použije-li a) vzorec z definice polynomu, b) Hornerovo schéma? Při výpočtu na papír je vhodné zapsat si Hornerovo schéma do třířádkové tabulky následovně: Tři řádky Hornerova schématu α n α n 1 α n 2... α 2 α 1 α 0 λ: λξ n 1 λξ n 2... λξ 2 λξ 1 λξ 0 ξ n 1 ξ n 2 ξ n 3... ξ 1 ξ 0 p(λ) kde a ξ n 1 := α n ξ k 1 := α k + λξ k, pro k = n 1, n 2,..., 1.

15 15 Věta 18. Třetí řádek Hornerova schématu obsahuje koeficienty polynomu q z Bézoutovy věty, pro který platí: p(x) = (x λ)q(x) + p(λ). Důkaz. Nechť p(x) = α i x i, označme polynom s koeficienty z třetího řádku Hornerova schématu jako q(x) = n 1 ξ i x i, kde ξ n 1 = α n, ξ k 1 = α k + λξ k pro k n 1 a p(λ) = α 0 + λξ 0. Upravujme výraz (x λ)q(x) + p(λ): (x λ)q(x) + p(λ) =(x λ) n 1 = = = ( ( n 1 ξ i x i+1 ξ i 1 x i ξ n 1 x n + = ξ n 1 }{{} =α n x n + =p(x), ξ i x i) + p(λ) n 1 n 1 λξ i x i + p(λ) λξ i x i + p(λ) n 1 ξ i 1 x i) n 1 }{{} což platí pro každé x C a tvrzení tedy platí. ( n 1 λξ i x i + λξ 0 ) + p(λ) ( ) ξi 1 λξ i x i λξ 0 + p(λ) }{{} =α i =α 0

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České

Více

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu. Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 19. února 2014, 11:30 1 2 0.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

2. V Q[x] dělte se zbytkem polynomy:

2. V Q[x] dělte se zbytkem polynomy: Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x

Více

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí Polynomy Vlasnosti reálných čísel: 1 (komutativitaoperace+)provšechnačísla a, b Rplatí, a+b=b+a 2 (asociativitaoperace+)provšechnačísla a, b, c Rplatí a+(b+c)=(a+b)+c, 3 (existencenulovéhoprvku)provšechnačísla

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy

4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy 4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Lineární algebra : Lineární (ne)závislost

Lineární algebra : Lineární (ne)závislost Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Charakteristika tělesa

Charakteristika tělesa 16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ), Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Lineární algebra : Lineární zobrazení

Lineární algebra : Lineární zobrazení Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30 Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b = ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin

Více

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

Polynomy a racionální lomené funkce

Polynomy a racionální lomené funkce Polnom a racionální lomené funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Polnom Definice a základní pojm Násobnost kořene Počet kořenů Kvadratický polnom Rozklad na součin kořenových

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b) C Ať C je [n, k] q kód takový, že pro každé u 1,..., u n ) C je také u 2,..., u n, u 1 ) C. Jinými slovy, kódová slova jsou uzavřena na cyklické posuny. Je přirozené takový kód nazvat cyklický. Strukturu

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

4. Kombinatorika a matice

4. Kombinatorika a matice 4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více