Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Rozměr: px
Začít zobrazení ze stránky:

Download "Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla"

Transkript

1 Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme do vší budoucnosti

2 Asociční prvidl mtice dt booleovské tributy čtyřpolní tbulk sociční prvidlo 4ft kvntifikátory sociční prvidl nlýz nákupních košíků MI-KDD P04 J. Ruch : Asociční prvidl 2

3 Mtice dt booleovské tributy Mtice dt M Atributy Zákldní boolevské tributy objekt A 1 A 2 A m A 1 (3) A 2 (5,7) o o o n Odvozené booleovské tributy: A 1 (3) A 2 (5,7), A 1 (4), A 1 (3) A 2 (5,7) MI-KDD P04 J. Ruch : Asociční prvidl 3

4 Zákldní booleovský tribut koeficient Množin ktegorií tributu A A( ) { 1,, k } prvdivý pro objekt o právě když A(o) A( ) neprvdivý pro objekt o právě když A(o) MI-KDD P04 J. Ruch : Asociční prvidl 4

5 Mtice dt booleovské tributy příkldy Mtice dt Půjčky Lon Částk Splátk Měsíců Věk Sex Plt Okres Kvlit M Prh dobrá M Most šptná M Kolín šptná F Brod dobrá Příkldy booleovských tributů: Částk( ) Okres (Prh, Kolín) Sex(M) MI-KDD P04 J. Ruch : Asociční prvidl Kvlit(dobrá) 5

6 Asociční prvidlo 4ft-kvntifikátor Antecedent Sukcedent 1 p 1 q literál literál literál literál MI-KDD P04 J. Ruch : Asociční prvidl 6

7 Literál koeficient literál A( ) positivní literál A( ) negtivní literál A( ) zákldní booleovský tribut coefficient MI-KDD P04 J. Ruch : Asociční prvidl 7

8 4ft kvntifikátor M,b,c,d +b+c+d 0 c b d (,b,c,d) {0,1} 0.9,50 (,b,c,d) = 1 právě když b ,50 (,b,c,d) = 1 právě když b d c d MI-KDD P04 J. Ruch : Asociční prvidl 8

9 4ft kvntifikátory v proceduře 4ft-Miner, příkldy p,bse b p Bse M p,bse b c p Bse c b d p,bse b d c d p Bse + p,bse (1 p) Bse b b c c d MI-KDD P04 J. Ruch : Asociční prvidl 9

10 Asociční prvidlo příkld Okres(Prh, Brno) Věk(31-40) 0.9,50 Půjčk(dobrá) Půjčky Půjčk(dobrá) Půjčk(dobrá) Okres(Prh, Brno) Věk(31-40) Okres(Prh, Brno) Věk(31-40) MI-KDD P04 J. Ruch : Asociční prvidl 10

11 Asociční prvidlo jiný příkld Okres(Brod) Věk(61-70) + 0.6,20 Půjčk(šptná) Půjčky Půjčk(šptná) Půjčk(šptná) Okres(Brod) Věk(61-70) Okres(Brod) Věk(61-70) (1 0.6) * (1 0.6)* MI-KDD P04 J. Ruch : Asociční prvidl 11

12 Asociční prvidl nlýz nákupních košíků klsická sociční prvidl konfidence podpor lgoritmus Apriori nákupní košík, mtice dt čtyřpolní tbulk MI-KDD P04 J. Ruch : Asociční prvidl 12

13 Klsická sociční prvidl Dtbse D bsket items b 1 A, B, D, G, H b r-1 C, G, K, L A, B, C, E, F, J b r Dtbáze D nákupních košíků I množin položek A, B, C, X, Y podmnožiny I X I, Y I Asociční prvidlo: X Y Význm: Košíky obshující položky X obshují čsto i položky Y Míry intenzity: konfidence, podpor (support) MI-KDD P04 J. Ruch : Asociční prvidl 13

14 Konfidence (1) Dtbse D bsket items b 1 A, B, D, G, H b r-1 C, G, K, L A, B, C, E, F, J b r I množin položek A, B, C, X I, Y I košík b i obshuje X : X b i M(X) = {b X b} M(X) je množin všech košíků obshujících X M(X Y) je množin všech košíků obshujících sjednocení X Y t.j. množin všech košíků obshujících jk X tk i Y je počet objektů v množině MI-KDD P04 J. Ruch : Asociční prvidl 14

15 Konfidence (2) Dtbse D bsket items b 1 A, B, D, G, H b r-1 C, G, K, L A, B, C, E, F, J b r I množin položek A, B, C, X I, Y I košík b i obshuje X : X b i M(X) = {b X b} Konfidence: conf (X Y) = M(X Y) / M(X) počet košíků obshujících jk X tk i Y počet košíků obshujících X MI-KDD P04 J. Ruch : Asociční prvidl 15

16 Podpor (suport) Dtbse D bsket items b 1 A, B, D, G, H b r-1 C, G, K, L A, B, C, E, F, J b r I množin položek A, B, C, X I, Y I košík b i obshuje X : X b i M(X) = {b X b} Podpor: sup (X Y) = M(X Y) / r počet košíků obshujících jk X tk i Y počet všech košíků MI-KDD P04 J. Ruch : Asociční prvidl 16

17 Klsická sociční prvidl příkld košík b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 položky A, B, D, E, F, J A, C, D, G, H A, B, C, E, F, G E, F, G, J A, B, C, E, G A, B, E, F, G, J C, G, K, L A, B, C, E, F, J { A, B } { E, F } conf (X Y) = M(X Y) / M(X) conf (A, B E, F) = 4 / 5 = 0.8 sup (X Y) = M(X Y) / 8 sup (A, B E, F) = 4 / 8 = 0.5 MI-KDD P04 J. Ruch : Asociční prvidl 17

18 Algoritmus Apriori Dáno: Dtbáze trnskcí D I množin položek 0 minconf 1, 0 minsup 1 Úloh: Nlézt všechn sociční prvidl X Y tk, že: X Y =, X I, Y I conf (X Y) minconf sup(x Y ) minsup Řešení: Algoritmus A-priori, viz npř.: Aggrvl, R. et ll.: Fst Discovery of Assocition Rules. in Advnces in Knowledge Discovery nd Dt Mining. AAAI Press / The MIT Press, MI-KDD P04 J. Ruch : Asociční prvidl 18

19 bsket items A, B, D, E, F, J b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 Nákupní košík mtice dt A, C, D, G, H A, B, C, E, F, G E, F, G, J A, B, C, E, G A, B, E, F, G, J C, G, K, L A, B, C, E, F, J { A, B } { E, F } 0 MI-KDD P04 J. Ruch : Asociční prvidl 19

20 Nákupní košík čtyřpolní tbulk (1) E F (E F) A B b (A B) c d { A, B } { E, F } conf (X Y) = M(X Y) / M(X) = / ( + b) MI-KDD P04 J. Ruch : Asociční prvidl 20

21 Nákupní košík čtyřpolní tbulk (2) E F (E F) A B b (A B) c d { A, B } { E, F } sup (X Y) = M(X Y) / r = / ( + b + c + d) MI-KDD P04 J. Ruch : Asociční prvidl 21

22 Při tvorbě těchto elektronických podkldů pro výuku byly využity výsledky těchto projektů relizovných n Vysoké škole ekonomické v Prze: Projekt GAČR 201/08/ Aplikce metod znlostního inženýrství při dobývání znlostí z dtbází Projekt MŠMT ME Nové nástroje teorie pro dobývání znlostí z dtbází MI-KDD P04 J. Ruch : Asociční prvidl 22

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 9 Využití doménových znalostí

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 9 Využití doménových znalostí Dobývání znalostí z databází (MI-KDD) Přednáška číslo 9 Využití doménových znalostí (c) prof. RNDr. Jan Rauch, CSc. KIZI, Fakulta informatiky a statistiky VŠE zimní semestr 2011/2012 Evropský sociální

Více

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner

Vysoká škola ekonomická. Katedra informačního a znalostního inženýrství. Fakulta informatiky a statistiky. Systém LISp-Miner Vysoká škola ekonomická Katedra informačního a znalostního inženýrství Fakulta informatiky a statistiky Systém LISp-Miner Stručný popis určený pro posluchače kurzů Metod zpracování informací verse 20.

Více

5.2 Asociační pravidla

5.2 Asociační pravidla 5.2 Asociční prvidl IF-THEN konstrukce nlezneme ve všech progrmovcích jzycích, používjí se i v běžné mluvě (nebude-li pršet, nezmoknem). Není tedy divu, že prvidl s touto syntxí ptří společně s rozhodovcími

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Dolování asociačních pravidel

Dolování asociačních pravidel Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních

Více

Tvorba asociačních pravidel a hledání. položek

Tvorba asociačních pravidel a hledání. položek Tvorba asociačních pravidel a hledání častých skupin položek 1 Osnova Asociace Transakce Časté skupiny položek Apriori vlastnost podmnožin Asociační pravidla Aplikace 2 Asociace Nechť I je množina položek.

Více

Startovní úloha Samostatná práce

Startovní úloha Samostatná práce Dobývání znalostí z databází MI-KDD ZS 2011 Cvičení 5 Startovní úloha Samostatná práce http://lispminer.vse.cz (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Aplikace asociačních pravidel ve společnosti Zinest s.r.o.

Aplikace asociačních pravidel ve společnosti Zinest s.r.o. Aplikace asociačních pravidel ve společnosti Zinest sro Daniel Rydzi Zinest sro rydzi@zinestcz Jan Rauch Katedra informačního a znalostního inženýrství VŠE rauch@vsecz Abstrakt Tento článek si klade za

Více

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA DOPORUČENO PRO AUTORIZOVANÉ OSOBY SLEVY: AO ČKAIT 10 %, ČBS 20 %, AO+ČBS 30 % PŘI ÚČASTI NA 5. NEBO 6. BĚHU ŠKOLENÍ EC2-1 DALŠÍ SLEVA 5 % Ktedrou betonových zděných konstrukcí

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch

DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ PŘÍKLADY APLIKACÍ V KARDIOLOGICKÝCH DATECH Jan Rauch Anotace: Příspěvek obsahuje základní informace o dobývání znalostí jakožto důležité disciplíně informatiky a ukazuje příklady

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9.

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9. Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009 Filip Železný (ČVUT) Vytěžování dat 9. dubna 2009 1 / 22 Rozhodovací pravidla Strom lze převést

Více

4ft-Miner pro začátečníky Získávání znalostí z databází

4ft-Miner pro začátečníky Získávání znalostí z databází 4ft-Miner pro začátečníky Získávání znalostí z databází Dobývání znalostí z databází (DZD) Knowledge Discovery in (from) Databases (KDD) Data Mining (DM) Materiál pro posluchače kurzů IZI211 Metody zpracování

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

Podmínky externí spolupráce

Podmínky externí spolupráce Podmínky externí spolupráce mezi tlumočnicko překldtelskou genturou Grbmüller Jzykový servis předstvující sdružení dvou fyzických osob podniktelů: Mrek Grbmüller, IČO: 14901820, DIČ: CZ6512231154, místo

Více

Rámové bednění Framax Xlife

Rámové bednění Framax Xlife 999764015-06/2014 cs Odborníci n bednění. Rámové bednění Frmx Xlife Informce pro uživtele Návod k montáži použití 9764-449-01 Úvod Informce pro uživtele Rámové bednění Frmx Xlife Úvod by Dok Industrie

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

STATISTICKÝCH METOD PRO SLEDOVÁNÍ JAKOSTNÍHO PROFILU KOMERČNÍ PŠENICE. IVAN ŠVEC a, MARIE HRUŠKOVÁ a a ONDŘEJ JIRSA b. Experimentální část

STATISTICKÝCH METOD PRO SLEDOVÁNÍ JAKOSTNÍHO PROFILU KOMERČNÍ PŠENICE. IVAN ŠVEC a, MARIE HRUŠKOVÁ a a ONDŘEJ JIRSA b. Experimentální část VYUŽITÍ VÍCEROZMĚRNÝCH STATISTICKÝCH METOD PRO SLEDOVÁNÍ JAKOSTNÍHO PROFILU KOMERČNÍ PŠENICE IVAN ŠVEC, MARIE HRUŠKOVÁ ONDŘEJ JIRSA b Ústv chemie technologie schridů, Vysoká škol chemicko-technologická

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výk tehnikýh oorů Klíčová ktivit IV Inove kvlitnění výk směřjíí k rovoji mtemtiké grmotnosti žáků středníh škol Tém IV Algeriké výr výr s moninmi odmoninmi Kpitol Vhodný společný násoek

Více

Informační systémy pro podporu rozhodování

Informační systémy pro podporu rozhodování Informační systémy pro rozhodování Informační systémy pro podporu rozhodování 5 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Asociační pravidla Asociační pravidla (sdružovací

Více

hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku

hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku Asociační pravidla Asociační pravidla hledání zajímavých asociací i korelací ve velkém množství dat původně pro transakční data obchodní transakce analýza nákupního košíku podpora rozhodování Analýza nákupního

Více

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI Frntišek Prášek Ostrv 011 1 : Sylbus modulu Upltnění n trhu práce, dílčí část II Bklářská práce + příprv n prxi

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Rd měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 57545/2012/KnD ČÍSLA USNESENÍ: 1883-1895 ZPRACOVATEL: Dniel Knpková Usnesení z 63. schůze Rdy měst Kopřivnice ze dne 27.11.2012

Více

kritérium Návaznost na další dokumenty Dokument naplňující standard

kritérium Návaznost na další dokumenty Dokument naplňující standard 1. CÍLE A ZPŮSOBY ČINNOSTI POVĚŘENÉ OSOBY Dokument obshuje zákldní prohlášení středisk Služby pro pěstouny, do kterého se řdí: poslání, cílová skupin, cíle zásdy, v souldu s kterými je služb poskytován.

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 13 1/14 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

grafický manuál květen 2004 verze 1.0

grafický manuál květen 2004 verze 1.0 květen 2004 verze 1.0 grfický mnuál Úvodní slovo Tento dokument slouží jko mnuál pro používání log Fondu soudržnosti. Součástí mnuálu je i zákldní grfický design pro tištěné elektronické mteriály sloužící

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ

APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ Ing. Igor Neckř APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ posluchč doktorského studi oboru Soudní inženýrství FAST VUT v Brně E-mil: inec@volny.cz Přednášk n konferenci znlců ÚSI

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.:

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.: Potenciometrie Poločlánek (elektrod) je heterogenní elektrochemický systém tvořeny lespoň dvěm fázemi. Jedn fáze je vodičem první třídy vede proud prostřednictvím elektronů. Druhá fáze je vodičem druhé

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1

4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1 4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1 OBSAH 4.1 Trubky RAUTHERM S příslušenství k trubkám 4.3 4.2 Násuvné objímky fitinky 4.5 Spojky 4.5 Kolen 4.5 T-kus přechody 4.6 Připojovcí grnitury s příslušenstvím

Více

NAVRHOVÁNÍ BETONOVÝCH KONSTRUKCÍ 2

NAVRHOVÁNÍ BETONOVÝCH KONSTRUKCÍ 2 POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA NAVRHBK 2 www.cbsbeton.eu NOVÉ ŠKOLENÍ CYKLU KONSTRUKCÍ ČBS AKADEMIE SLEVA PRO ČLENY ČBS: 20 % Slovenská komor stvebných inžinierov www.sksi.sk ve spolupráci s Fkultou stvební

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

VIESMANN VITOPLEX 300 Nízkoteplotní olejový/plynový topný kotel Výkon 90 až 500 kw

VIESMANN VITOPLEX 300 Nízkoteplotní olejový/plynový topný kotel Výkon 90 až 500 kw VIESMANN VITOPLEX 300 Nízkoteplotní olejový/plynový topný kotel Výkon 90 ž 500 kw List technických údjů Obj. čísl ceny: viz ceník VITOPLEX 300 Typ TX3A Nízkoteplotní olejový/plynový topný kotel Tříthový

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

Porovnání výsledků analytických metod

Porovnání výsledků analytických metod Metdický lit 1 EURCHEM-ČR 212 Editr: Zbyněk Plzák (plzk@iic.c.cz) Prvnání výledků nlytických metd Chrkterizce výknnti nlytické měřící metdy je jedním z důležitých znků nlytickéh měřicíh ytému, zejmén pr

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY.

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY. PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Formální

Více

SOLUTIONS FOR BIOCLIMATIC FAÇADES

SOLUTIONS FOR BIOCLIMATIC FAÇADES SOLUTIONS FOR BIOCLIMATIC FAÇADES nimeo Systém pro řízení bioklimtických fsád nimeo TYP ŘÍZENÍ > Solo Compct Premium EIB/ KNX LON počet motorů 800 1 600 6 400 > 6 400 > 6 400 počet zón 2 4 8 16 > 16 >

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

Souhrn Doporučených postupů ESC pro diagnostiku a léčbu akutního a chronického srdečního selhání 2012. Připraven Českou kardiologickou společností

Souhrn Doporučených postupů ESC pro diagnostiku a léčbu akutního a chronického srdečního selhání 2012. Připraven Českou kardiologickou společností Cor et Vs vilble online t www.sciencedirect.com journl homepge: www.elsevier.com/locte/crvs Doporučení pro Guidelines Souhrn Doporučených postupů ESC pro dignostiku léčbu kutního chronického srdečního

Více

PROBLEMATIKA ENÍ EKONOMICKÉ EFEKTIVNOSTI SANACE

PROBLEMATIKA ENÍ EKONOMICKÉ EFEKTIVNOSTI SANACE PROBLEMATIKA VYJÁDŘEN ENÍ EKONOMICKÉ EFEKTIVNOSTI SANACE Ing. Hana Čermáková,, CSc. RNDr. Jan Novák, Ph.D. hana.cermakova@tul.cz tul.cz; jan.novak novak@tul. tul.cz http://risk.rss.tul.cz Ekonomický efekt

Více

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů Technický průvodce Vodorovné protipožární konstrukce > Rozsh pltnosti N zákldě výsledků zkoušek, které jsou zde uvedené, lze plikovt desky CETRIS v těchto typech protipožárních vodorovných konstrukcí:

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Olejové odporové spoustece ODPOROV. Vysoky záberovy moment - omezeny rozbehovy proud

Olejové odporové spoustece ODPOROV. Vysoky záberovy moment - omezeny rozbehovy proud Olejové odporové spoustece ODPOROV Vysoky záberovy moment - omezeny rozbehovy proud Olejové spouštěče 3PA3 pro střídvé motory s kroužkovou kotvou do 1.800 kw Spouštěče 3PA3 jsou rozběhové odporníky se

Více

Grant 2006. Výzkum e-learningu - učitelé

Grant 2006. Výzkum e-learningu - učitelé Grnt 2006 Výzkum e-lerningu - učitelé Dosttek informcí o e-lerningu Máte Máte dosttek dosttek informcí informcí o o tom, tom, co co je je to to e-lerning e-lerning (elektronické (elektronické zděláání)?

Více

Vysoká škola polytechnická Jihlava, Ústav zdravotnických studií Studijní program (bakalářský/ magisterský) bakalářský Ošetřovatelství

Vysoká škola polytechnická Jihlava, Ústav zdravotnických studií Studijní program (bakalářský/ magisterský) bakalářský Ošetřovatelství Přehled kreditovných zdrvotnických mgisterských ch studijních oborů, jejichž bsolvováním se získává způsobilost k výkonu zdrvotnického povolání n zákldě souhlsného stnovisk Ministerstv (ke dni 1. ledn

Více

Technická univerzita Liberec, Ústav zdravotnických studií http://www.vslib.cz/ Univerzita Pardubice, Fakulta zdravotnických studií http://www.upce.

Technická univerzita Liberec, Ústav zdravotnických studií http://www.vslib.cz/ Univerzita Pardubice, Fakulta zdravotnických studií http://www.upce. Přehled kreditovných zdrvotnických mgisterských ch studijních oborů, jejichž bsolvováním se získává způsobilost k výkonu zdrvotnického povolání n zákldě souhlsného stnovisk Ministerstv (ke dni 1. ledn

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA Tomáš Kocyan OBSAH PREZENTACE Představení výzkumu Popis analyzovaných dat Analýza Asociace Fundovaná implikace Interpretace výsledků Rozhodovací stromy Výběr atributů

Více

Hodnocení ISO pro rok 2014 katedra 714

Hodnocení ISO pro rok 2014 katedra 714 Hodnocení ISO pro rok 2014 katedra 714 1 OBLAST STUDIJNÍ A PEDAGOGICKÁ 1.1 VÝUKA - Zajištění výuky v základních kurzech matematiky, deskriptivní geometrie, výpočetní techniky, algoritmizace, numerických

Více

č č š č Ť š Ť Š ň Ť Ť š Ť Ť Ť Ž Ť Ť Ť š Ť Ť š Ť š ň Ť č Ž Ž č ťč Ž š Ť š Ť Ť š Ž ď Ť ť č Ů č ď ú č š č Ť š Ť ď Ť š Ž č š Č č Ž Ť Ž Ž Ť Ť č č Ť Ť č č Ó Ť Ť š š č Ť Ť š Ť Ž Ť Ž č Ť č Ť Ť Ť š š č Ť č č č

Více

PROGRAM SOCRATES II./ERASMUS. Závěrečná zpráva ze studijního pobytu akademický rok 2004/2005

PROGRAM SOCRATES II./ERASMUS. Závěrečná zpráva ze studijního pobytu akademický rok 2004/2005 PROGRAM SOCRATES II./ERASMUS Závěrečná zpráva ze studijního pobytu akademický rok 2004/2005 Tato zpráva musí být předána zahraničnímu oddělení Vaší domácí VŠ do 30 dnů po ukončení studijního pobytu. Erasmus

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Astronomická olympiáda 2010/2011

Astronomická olympiáda 2010/2011 Astronomická olympiád 00/0 Úvod V roce 00 jsme si připomenuli jedno význmné domácí výročí, uplynulo totiž 600 let od vyrobení nejstrších částí pržského orloje. V roce 0 nás tké čeká celá řd stronomických

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Obsah. Seznam obrázků. Seznam tabulek. Petr Berka, 2011

Obsah. Seznam obrázků. Seznam tabulek. Petr Berka, 2011 Petr Berka, 2011 Obsah... 1... 1 1 Obsah 1... 1 Dobývání znalostí z databází 1 Dobývání znalostí z databází O dobývání znalostí z databází (Knowledge Discovery in Databases, KDD) se začíná ve vědeckých

Více

Procvičování učiva periodizace politických a kulturních dějin raného středověku

Procvičování učiva periodizace politických a kulturních dějin raného středověku Procvičování učiv periodizce politických kulturních dějin rného středověku Autor: Mgr. Přemysl Dvorský, Ph.D. Dtum tvorby: červen 2012 Ročník: sedmý Vzdělávcí oblst: dějepis Anotce: Digitální učební mteriál

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Projekt: Digitální učení mteriály e škole registrční číslo projektu CZ.1.07/1..00/4.07 Příjeme: Střední zdrotniká škol Vyšší odorná škol zdrotniká Huso 71 60 České Budějoie Náze

Více

PROGRAM SOCRATES II./ERASMUS. Závěrečná zpráva ze studijního pobytu akademický rok 2006/2007

PROGRAM SOCRATES II./ERASMUS. Závěrečná zpráva ze studijního pobytu akademický rok 2006/2007 PROGRAM SOCRATES II./ERASMUS Závěrečná zpráva ze studijního pobytu akademický rok 2006/2007 Tato zpráva musí být předána zahraničnímu oddělení Vaší domácí VŠ do 30 dnů po ukončení studijního pobytu. Erasmus

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Masterský studijní obor datové & webové inženýrství

Masterský studijní obor datové & webové inženýrství Masterský studijní obor datové & webové inženýrství Předpoklady Struktura studia Přihlášky Poradenství Masterský studijní obor datové & webové inženýrství představuje ve studijním konceptu fakulty informatiky

Více

LABORATORNÍ PŘÍSTROJE A POSTUPY

LABORATORNÍ PŘÍSTROJE A POSTUPY LABORATORNÍ PŘÍSTROJE A POSTUPY USNADNĚNÉ HYDRODYNAMICKÉ DÁVKOVÁNÍ VZORKU DO SEPARAČNÍ KAPILÁRY V LABORATORNÍCH ELEKTROFORETICKÝCH APARATURÁCH TEREZA KADLECOVÁ, FRANTIŠEK OPEKAR PETR TŮMA b Univerzit Krlov

Více

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M Chem. Listy, 55 53 (7) VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ OTAKAR TRNKA MILOSLAV HARTMAN Ústv chemických procesů, AV ČR, Rozvojová 35, 65 Prh 6 trnk@icpf.cs.cz

Více

ť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 4 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice ČSN EN 61 140 Ochrn před úrzem elektrickým proudem Společná hledisk pro instlci zřízení Tto mezinárodní norm pltí pro ochrnu osob zvířt před úrzem elektrickým proudem. Je určen pro poskytnutí zákldních

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

informacní technologie

informacní technologie STUDENT s 2/2013 Odborný čsopis od studentů pro studenty STUDENT s informcní technologie STUDENT s elektronická komunikce Výběr oceněných ZÁVĚREČNÝCH studentských prcí STUDENT S Best Editoril Tiráž Student

Více

ZPRÁVY ÈESKÉ SPOLEÈNOSTI RUKOPISNÉ. Øada: VI. ISSN 1213-9033 Praha, 1. èervna 2003

ZPRÁVY ÈESKÉ SPOLEÈNOSTI RUKOPISNÉ. Øada: VI. ISSN 1213-9033 Praha, 1. èervna 2003 ZPRÁVY ÈESKÉ SPOLEÈNOSTI RUKOPISNÉ 3 Ød: VI ISSN 1213-9033 Prh, 1. èervn 2003 Obsh Èlánky Krel Nesmìrák: Struèná historie Èeské spoleènosti rukopisné... 49 Robert Jn Høebíèek: Nd skldbou O velikých bojéch

Více

Kuželové upínací prvky

Kuželové upínací prvky SHAFTLOCK 01 Upínací prvky Utahovací d D L 1 L Mt Ft P P 1 mm mm mm mm mm Nm kn N/mm 2 N/mm 2 Nm 19 47 17 20 26 299 26.8 220 93 8 M6x18 17 20 47 17 20 26 308 26.8 210 93 8 M6x18 17 22 47 17 20 26 325 26.8

Více