ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF"

Transkript

1 Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice apod.). Vzdáleost mezi uzly i, j ozačme c ij. Naším cílem je projít každou ulicí alespoň jedou a vrátit se do výchozího místa tak, aby délka trasy byla miimálí. Jestliže jsou všechy uzly v grafu sudého stupě, existuje v grafu eulerovský cyklus, tz. dokážeme projít každou hraou a vrátit se do výchozího uzlu. V opačém případě ale musíme ěkteré hray zdvojit (tz. přidáme hray do grafu). Otázkou je, které. PRVNÍ MODEL PRO NEORIENTOVANÝ GRAF: Zavedeme biárí proměou x ij, která bude rova 1 v případě, že do grafu přidáme hrau mezi uzly i, j, jiak 0. Dále zavedeme pomocou celočíselou proměou y ij. Uzly rozdělíme a: uzly lichého stupě: T je možia uzlů lichého stupě. K im musíme přidat lichý počet hra. uzly sudého stupě: U T je možia uzlů lichého stupě. K im musíme přidat sudý počet hra. Pracujeme je s horí trojúhelíkovou maticí. Model má ásledující tvar: 1 z = i=1 j=i+1 c ij x ij mi Sažíme se, aby součet ohodoceí (tz. vzdáleosti) dodatečých hra přidaých do grafu byl co ejmeší. Celková vzdáleost, kterou listooš urazí, je součtem ohodoceí všech hra (protože jedou jimi musí projít každopádě) a hodoty účelové fukce z tohoto modelu (ta představuje dodatečou vzdáleost, která odpovídá přidaým hraám). i 1 j=1 x ji + j=i+1 x ij = 2y i + 1 i T (1) Pro uzly lichého stupě musí platit, že k im přidáme lichý počet hra. Například pokud z uzlu i vedou 3 hray, musíme přidat 1, 3, 5... hra. i 1 j=1 x ji + j=i+1 x ij = 2y i i U T (2) Pro uzly sudého stupě musí platit, že k im přidáme sudý počet hra. x ij {0, 1} i = 1,2-1, j = i+1,i+2 (3) Přidáme hrau mezi uzly i a j? yi 0, celé, i U (4) Pomocá proměá. Ad podmíka (1) a (2): apříklad pro 5 uzlů bychom v matici proměých sčítali takto: Leka Fiřtová (2014)

2 Úloha číského listooše Alexej Nikolajevič si ašel zajímavý přivýdělek: ve všech staicích metra musí rozvěsit reklamí letáky. Metro v Petrohradě má však více liií ež v Praze (viz obrázek) a Alexej Nikolajevič by rád věděl, jakým způsobem si má cestu apláovat, aby byla co ejkratší co do celkového počtu projetých staic. Model je zadá výčtem hra a pracuje je s hraami, kde i < j. Uzly představují přestupí ebo koečé staice. Náklady (cij) počítáme podle toho, kolik staic se mezi uzly achází, ebereme tedy v úvahu skutečou vzdáleost, kterou metro ujede. Rověž yí ebudeme brát v úvahu přestupováí mezi jedotlivými likami. model: sets: staice/1..16/:y; trasa(staice,staice)/1 14,2 13,3 13,4 16,5 11,6 11,7 15,8 10,9 15, 10 11, 10 12,10 15,10 16,11 16,12 13,12 14,12 16,13 14,14 15/:x,c; edsets data: c= ; j#lt#i: x(j,i)) j#gt#i:x(i,j)) = j#lt#i: x(j,i)) j#gt#i:x(i,j)) = 2*y(i)+1);! k uzlům sudého stupě je třeba přidat sudý počet hra, zatímco k uzlům lichého stupě lichý ed Výsledek: Kromě cest od kocových uzlů do cetra, kudy určitě musíme jet dvakrát, je ejvýhodější projet dvakrát mezi uzly a Alexej Nikolajevič, který bydlí a koečé staici červeé liie, tedy projede uzly v tomto pořadí: Model ám pouze řeke, kterými hraami máme projet dvakrát, cestu si musíme apláovat sami. Účelovou fukci ve výši 55 lze iterpretovat jako počet staic, mezi imiž musí Alexej Nikolajevič projet avíc, jelikož všemi staicemi projede alespoň jedou. Součet ákladů všech hra je 78, což je třeba při pláováí délky cesty přičíst. Zadáí Řešeí Zdroj obrázku: Leka Fiřtová (2014)

3 Úloha číského listooše DRUHÝ MODEL PRO NEORIENTOVANÝ GRAF: Zavedeme celočíselou proměou x ij, která ám tetokrát říká, kolikrát bude hraa (i,j) celkem zahruta v Eulerově cyklu. Pracujeme s celou maticí. Model má ásledující tvar: z = i=1 j=1 c ij x ij mi Sažíme se, aby byl celková vzdáleost, kterou urazíme, byla co ejmeší. V tomto modelu ám hodota účelové fukce a rozdíl od předchozího modelu přímo řeke, čemu se tato vzdáleost rová. xij + xji 1 (i, j) H (1) Po každé existující hraě (i, j) musíme jet alespoň jedou (buď po í do příslušého uzlu vjedeme ebo vyjedeme). j=1 x ji = j=1 x ij i = 1,2 (2) Pro všechy uzly musí platit, že do ich vjedeme tolikrát, kolikrát z ich vyjedeme. xij 0, celé, i U (3) Kolikrát projedeme hraou (i,j)? xij = 0, xji = 0 (i, j) H (4) Pokud mezi uzly i, j eexistuje hraa, pak mezi imi eprojedeme ai jedou. Ve hře Pacma musí figurka síst všechy putíky. Kudy má jít, aby byla její cesta co možá ejkratší? Model je zadá výčtem hra, aby jej bylo možé řešit demoverzi Liga (takhle jich je přesě 50). Náklady jsou staovey jako počet mezer mezi všemi putíky při cestě od jedoho uzlu k druhému (viz obrázek). model: sets: uzel/1..19/; cesta(uzel,uzel)/1 2,1 16,1 17,2 1,2 3,2 18,2 19,3 2,3 4,3 5,4 3,4 8,5 3,5 6,6 5,6 7,7 6,7 8,7 12,8 4,8 7,8 9,8 19,9 8,9 10,10 9,10 11,10 13,11 10,11 14, ,12 7,12 13,13 10,13 12,14 11,14 15,15 14,15 16,16 1,16 11,16 15,17 1,17 18,18 2,18 17,19 2,19 8,19 11/: x,c; edsets data: c= x(i,j)) x(j,i)));!kolikrát do uzlu přijdeme, tolikrát musíme i x(i,j)+x(j,i)>=1);!každé dva uzly, mezi imiž je hraa, musí být spojeé; ed Účelová fukce má hodotu 90. Model ám řeke, kolikrát máme kterou hraou projít, ale fiálí trasu si musíme sestavit sami. Některé hray vyjdou rovou zdvojeě (x ij = 2), u jiých vyjde x ij = 1 a x ji = 1, takže je zřejmé, že mezi těmito dvěma uzly (i,j) bude hraa také zdvojeá. Samozřejmě jde o eorietovaý graf, takže evadí, kdyby se apř. x 34 rovalo jedé a my bychom přitom šli z uzlu 4 do uzlu 3. S pomocí zalosti hra, kterými musíme projít více ež jedou, lze ačrtout Pacmaovu ejkratší cestu: Zadáí Řešeí Zdroj obrázku: Leka Fiřtová (2014)

4 Úloha číského listooše MODEL PRO ORIENTOVANÝ GRAF: Rozdělíme si uzly a dvě skupiy. I bude možia uzlů, ve kterých je počet vstupujících hra větší ež počet vystupujících hra. Těmto uzlům přidáme atribut a i, což bude rozdíl počtu vstupujících a vystupujících hra, tedy vlastě počet vystupujících hra či cest, který musíme u těchto uzlů přidat. Tyto uzly budou vlastě aalogií dodavatelů : mají totiž ějaké výstupí hray avíc, což jsou jakoby jejich kapacity. J bude možia uzlů, ve kterých je počet vystupujících hra větší ež počet vstupujících hra. Těmto uzlům přidáme atribut b i, což bude rozdíl počtu vystupujících a vstupujících hra, tedy vlastě počet vstupujících hra či cest, který musíme u těchto uzlů přidat. Tyto uzly budou vlastě aalogií odběratelů : chybí jim totiž ějaké vstupí hray, což jsou jakoby jejich požadavky. Úlohu tedy v podstatě převádíme a dopraví problém. Náklady a hrau/cestu mezi uzly i, j ozačíme c ij. Nevadí, že mezi ěkterými uzly žádá hraa eí. V matici bude v tomto případě hodota odpovídající ejkratší možé vzdáleosti mezi uzly i, j. Zavedeme jedu proměou x ij, což bude počet orietovaých hra/cest mezi uzly i a j, které přidáme do grafu. Model bude mít ásledující tvar: z = i I j J c ij x ij mi Sažíme se, aby byl áklad a dodatečé hra/cesty byl co ejmeší. Skutečé celkové áklady jsou pak součtem ákladů a všechy hray, protože každou musíme projet aspoň jedou, a tohoto dodatečého ákladu získaého z modelu. j J x ij = a i i I (1) Pro všechy dodavatele musí platit, že z ich povede tolik hra/cest avíc, kolik odpovídá jejich kapacitě. Ke každému takovému uzlu přidáme právě tolik výstupích hra, aby se jejich celkový počet vyroval s počtem vstupích hra. i I x ij = b j j J (2) Pro všechy odběratele musí platit, že do ich povede tolik hra/cest avíc, kolik odpovídá jejich požadavkům. Ke každému takovému uzlu přidáme právě tolik vstupích hra, aby se jejich celkový počet vyroval s počtem výstupích hra. xij 0 i I, j J, (3) Kolikrát přidáme hrau/cestu mezi uzly i, j? Leka Fiřtová (2014)

5 Úloha číského listooše Vyrazili jsme si a hory zalyžovat. Lyžařské středisko abízí moho sjezdovek a my bychom je chtěli projet všechy, ale jelikož jsme omezei časově, rádi bychom to zvládli co možá ejrychleji. Plá střediska s očíslovaými uzly a dobou cesty v miutách mezi jedotlivými uzly zachycuje obrázek. Nejdéle samozřejmě trvá cesta vlekem ahoru, protože se u ěj tvoří froty. Model úlohy číského listooše převedeme a dopraví problém, jelikož jde o orietovaý graf, protože po sjezdovkách se bohužel edá jezdit ahoru. Každou cestou musíme projet alespoň jedou, výjimkou jsou cesty mezi jedotlivými vleky (uzly 13, 10 a 1), mezi imiž ovšem také existuje hraa, kterou můžeme v případě potřeby použít. Nejprve si sestavíme matici ejkratších vzdáleostí. Pokud mezi dvěma uzly eexistuje přímo hraa, pak sečteme ejkratší dobu, kterou bychom museli urazit při cestě přes jié uzly. Například z uzlu pět je možé dostat se do uzlu čtyři buď za 25 miut s použitím prostředího vleku, ebo za 24 miut s použitím pravého vleku, což je tedy ohodoceí ejkratší vzdáleosti. Uzly, do ichž více hra vede, ež z ich vychází, jsou dodavatelé, aopak uzly, z ichž více hra vychází, jsou odběratelé, jelikož do ich musíme dodat hrau, po které přijedeme, abychom mohli opětově vyjet. Odběratelem je třeba uzel 4, do kterého vede cesta je z uzlu 3, zatímco jet z ěj musíme do uzlů 2, 5 a 10. Dodavatelem je, kromě vleků samozřejmě, apříklad uzel 2, z ějž vedou je dvě sjezdovky, ale do ěj celkem tři. Kapacity, resp. požadavky, jsou rozdílem počtu vstupích a výstupích hra. Tyto počty jsou patré z ásledující tabulky. Dodavetelé jsou ozačeí modře, odběratelé zeleě. Leka Fiřtová (2014)

6 Úloha číského listooše UZEL počet počet z uzlů do ulzů vstupů výstupů , ,4,6 1, ,8 2,4, ,5, ,8, ,9, , , ,5,7,11, ,9 5,10, ,13 13,14,15, , ,15 10, , model: sets: dodavatele/1..6/:kapacity; odberatele/1..7/:pozadavky; preprava(dodavatele,odberatele):x,c; edsets data: kapacity= ; pozadavky= ; c= x(i,j)) x(i,j)) = pozadavky(j)); ed Leka Fiřtová (2014)

7 Úloha číského listooše Řešeí zachycuje ásledující matice a obrázek. Účelová fukce je 183, což ale eí celkový čas, ale je čas, který strávíme tím, že po ěkterých cestách pojedeme více ež jedou. Celkový čas získáme součtem všech hra (kromě hra mezi vleky, po ichž jet emusíme) a této účelové fukce, což je 297 miut, eboli 4 hodiy a 57 miut. Tolik času ám ejméě zabere projet všechy vyzačeé sjezdovky. Zdroj obrázku: ZDROJE: Ig. J. Fábry, Ph.D.: předášky 4EK314 Diskrétí modely, Leka Fiřtová (2014)

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly.

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly. Distribučí úlohy DISTRIBUČNÍ ÚLOHY KONTEJNEROVÝ DOPRAVNÍ PROBLÉM, ROZŠÍŘENÁ ÚLOHA BATOHU (BIN PACKING PROBLEM), ÚLOHA OPTIMÁLNÍHO ROZMÍSTĚNÍ ZAŘÍZENÍ, ÚLOHA O POKRYTÍ. POKRÝVACÍ A DĚLÍCÍ PROBLÉM (SET COVERING

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE. 2014 Bc. Filip Uhlíř

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE. 2014 Bc. Filip Uhlíř VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE 2014 Bc. Filip Uhlíř VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název diplomové práce: Optimalizace

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

š š ě š š ňí ě Í Í š Ž Č ťí ň ú š Č ú Č ě ě Ž ě ď š š ě ě š š š ú š š ě Ž Č ě š ě ě ě ě ě š Žň š ě ě š ě Ž ě Ž ň ě Ž ě š Ž ě š Ž š š Ž š š ěí ě š ěí ě ě ň ě ě ě ě ě š š ě ě ě ě š š š š ě ě ě Í ď Í š ě

Více

TAC. Zařízení pro ahování da z digiálních achografů a čipových kare řidičů. Uživaelká příručka

TAC. Zařízení pro ahování da z digiálních achografů a čipových kare řidičů. Uživaelká příručka TAC Zařízení pro ahování da z digiálních achografů a čipových kare řidičů Uživaelká příručka Telefonická pomoc: +20 777 62 970 E-mail: halesro@hale.cz Verze dokuetu: 2.0 číslo dokuetu 6939-173 straa 1

Více

Á š š ý É Ř ě Í ý ý Í š ě ý š ý Ů š ý Í ž ý š ý ě Ž š ě ý ě ý ě ě ý Í Ž ě Í ÁŤ Ž š Í ý ěž ý Ů ý Ů ě Ž š Ť ě ěž ěž ěž ě ě Í ý š ý Í š ý Ž ý Ř š ň š Í ě ý ý ě š ě ý ý ě Ž ý ý ě ý Í ý ě Ž ý Ž ě ě Ž ý Ž ý

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

Doporučená dávka je 5 mg solifenacin sukcinátu jednou denně. Pokud je to nutné, dávka může být zvýšena na 10 mg solifenacin sukcinátu jednou denně.

Doporučená dávka je 5 mg solifenacin sukcinátu jednou denně. Pokud je to nutné, dávka může být zvýšena na 10 mg solifenacin sukcinátu jednou denně. sp.z. sukls132863/2014 sukls87952/2014 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1 NÁZEV PŘÍPRAVKU Setacuri 5 mg potahovaé tablety 2 KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Setacuri 5 mg potahovaé tablety: Jeda tableta obsahuje

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Á Š Í Ú Ú ř ě úř ó úř é ě ěš úř úř č é š ě úř ě ě č úř é š ě é š ě é š ě ě úř Ú Í Š ě Ř Á ÁŠ Í Ú Í Í ý č ě úř úř ř š ý č ú ř ě ě š ř ů ú ř ž Ž ě Í ě é š ě é ř ě é ě Š é ř ě é é š ě ý é š ě š é é š ě ž

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž

Více

Vmnohaaplikacíchseomezujemenamaloumnožinučíselapřivyskočenísedonívracímecyklicky,takjakto dělámeběžněuhodin.zdesenatopodívámepořádněamatematicky.

Vmnohaaplikacíchseomezujemenamaloumnožinučíselapřivyskočenísedonívracímecyklicky,takjakto dělámeběžněuhodin.zdesenatopodívámepořádněamatematicky. Diskrétí matematika 7a. Kogruece, počítáí modulo phabala 2012 7. Počítáí modulo V této kapitole se podíváme a téma, bez kterého se eobejde žádá diskuse o fugováí počítačů, akoec skočíme u Iteretu. Tato

Více

STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE

STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE PROCES Cetrum pro rozvoj obcí a regioů, s.r.o. 2011 STUDIE SÍDELNÍ STRUKTURY MORAVSKOSLEZSKÉHO KRAJE Příloha A Metodika Ig. Lubor Hruška-Tvrdý, Ph.D. a kolektiv PROCES Cetrum pro rozvoj obcí a regioů,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu. doc. PhDr. Marta Volfová, CSc.

KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu. doc. PhDr. Marta Volfová, CSc. KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu doc. PhDr. Marta Volfová, CSc. Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 Kalendářové úlohy jsou zahaleny určitou tajemností a přitahují

Více

Parametry kvality elektrické energie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ OVLÁDÁNÍ

Parametry kvality elektrické energie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ OVLÁDÁNÍ Podiková orma eergetiky pro rozvod elektrické eergie ČEZ Distribuce, E.ON CZ, E.ON Distribuce, PRE Distribuce, ČEPS, ZSE Parametry kvality elektrické eergie ČÁST 6: OMEZENÍ ZPĚTNÝCH VLIVŮ NA HROMADNÉ DÁLKOVÉ

Více

Ý Č ě ř Í Š Ý č ý é č š é ř Ž č ř ý ý š š é é é č š č ě ú é ř ě é é é ě š é ě é ě é ř č ý ě ě é ě ř ě č é é ě Í ý ý š ě ý ý č ž š ř ý š ě ě š č ž ř ě ě ě Í ý č ň š ě š ě é ý Ž é ě č ý ý ěč ý č é č ý ý

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

1.1.10 Součtové trojúhelníky

1.1.10 Součtové trojúhelníky ..0 Součtové trojúhelníky Předpoklady: 0009 Př. : Uskupení čísel na obrázku se nazývá součtový trojúhelník. Zformuluj pravidlo, které splňují čísla v trojúhelníku. 9 20 Doplň podle stejného pravidla následující

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:

Více

é é ž é é ěž é é ž é ž š ý ž ě š ý ž ž é ž ž éž ě é é ěž é ž ě é é é é ž ý ž š ě ý ž ý é é ě Š š š š ě é š ě ě ěš š é š Á Š Í ě Š Í ň š Í ď Š é Š Í ý š š ň š š š ň ý ň ú ň Š Í š Š ě é Š ď ň ý Š Í ýš Í

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Á á úř š Ě ř ň á Š Š ú Áě Ú Í ý ú ěá á ě úř ř ř š ý é ě ú á á řá ě ě š ř ů á á ú ř ž á Žá á ě Ť é á ě á Ž Š Ú ú č š é É á ě á á áš č ě š ú ú ř ř á ú á Í č á ú ř Í ě ý é ě ě úč Í ť é ý ý ž á ě ý ý ť ý ů

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

ý ž é é é ýš Í Č Á Ž ě é ěž ý ý Ž ěž ý ú ě é ý ě ý ý Ž Ž ěž é é Ž é é ě ěš ě ýš é é ý ý ě š š ě ě Č é ě ú ěš ě é Ž ě š ů ě Ů Ř Č Ž Ý ů é é Ž é Ž é ě Ž ň ů ý Ú Č Ž ý š Ž š ě é é Ú é ů ý ě Ž ě ů Ž Ž ě Ú

Více

é á úř Ř ř á Í á čá úř úř á úř ř š á á á č ú á řá á é š ř á á č é ú Í ř ž Ž á žá á á é á á ř á á á á áš šú ú ř ř á ú ř á áš č á á á řá Ů á č á ř á Ú é ř ř ť é ó é č é á ř ž š á ř Í é éú ř é ř é á č é ú

Více

Ú ř Ý ě ě š ř ů Ý Í ř ě Ú ý ě ř ě Ú ú ř ě ž ř é ě é ě ř ž é ě Ř Ě ř ě é ů ý ů é é Í ř é ř ř é š ě é ř ý ú ýš ý ř ě ř š ě ž ý é ř ě ň é ó š ž ž ř ě ž ř ý ž š é ř ý ů ě ě š ž ž ý ř Ů ř é ř é ř é é é ě ž

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

š ý ě éří Č Íý ň Ř Š Í É ř é ý ě é ř ý ě é Í š éú Ž Č Š ř ř ý ě Š Š Ž ý ř ě Ý ě é ř ř ě ý ě é ř č ý ě ř š é ř ě ý ě é ř č ý ý č ý é č ž ě ý ě é ř ň ě ř č ř ý č ě ě š č ř š é ě Š ř ř é š ý ř ř ě ř ě é č

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

Průchod paprsků různými optickými prostředími

Průchod paprsků různými optickými prostředími Průchod paprsků růzými optickými prostředími Materiál je urče pouze jako pomocý materiál pro studety zapsaé v předmětu: A4M38VBM, ČVUT- FEL, katedra měřeí, 05 Před A4M38VBM 05, J. Fischer, kat. měřeí,

Více

SOUHRN ÚDAJŮ O PŘÍPRAVKU

SOUHRN ÚDAJŮ O PŘÍPRAVKU Sp.z.sukls240754/2012, sukls240755/2012 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1. NÁZEV PŘÍPRAVKU Solifeaci PMCS 5 mg Solifeaci PMCS 10 mg potahovaé tablety 2. KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Solifeaci PMCS 5 mg:

Více

Metody operačního výzkumu cvičení

Metody operačního výzkumu cvičení Opakování vektorové algebry domácí úkol ) Pojem vektorového prostoru praktická aplikace - je tvořen všemi vektory dané dimenze - operace s vektory (součin, sčítání, násobení vektoru skalární hodnotou)

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více