ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF"

Transkript

1 Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice apod.). Vzdáleost mezi uzly i, j ozačme c ij. Naším cílem je projít každou ulicí alespoň jedou a vrátit se do výchozího místa tak, aby délka trasy byla miimálí. Jestliže jsou všechy uzly v grafu sudého stupě, existuje v grafu eulerovský cyklus, tz. dokážeme projít každou hraou a vrátit se do výchozího uzlu. V opačém případě ale musíme ěkteré hray zdvojit (tz. přidáme hray do grafu). Otázkou je, které. PRVNÍ MODEL PRO NEORIENTOVANÝ GRAF: Zavedeme biárí proměou x ij, která bude rova 1 v případě, že do grafu přidáme hrau mezi uzly i, j, jiak 0. Dále zavedeme pomocou celočíselou proměou y ij. Uzly rozdělíme a: uzly lichého stupě: T je možia uzlů lichého stupě. K im musíme přidat lichý počet hra. uzly sudého stupě: U T je možia uzlů lichého stupě. K im musíme přidat sudý počet hra. Pracujeme je s horí trojúhelíkovou maticí. Model má ásledující tvar: 1 z = i=1 j=i+1 c ij x ij mi Sažíme se, aby součet ohodoceí (tz. vzdáleosti) dodatečých hra přidaých do grafu byl co ejmeší. Celková vzdáleost, kterou listooš urazí, je součtem ohodoceí všech hra (protože jedou jimi musí projít každopádě) a hodoty účelové fukce z tohoto modelu (ta představuje dodatečou vzdáleost, která odpovídá přidaým hraám). i 1 j=1 x ji + j=i+1 x ij = 2y i + 1 i T (1) Pro uzly lichého stupě musí platit, že k im přidáme lichý počet hra. Například pokud z uzlu i vedou 3 hray, musíme přidat 1, 3, 5... hra. i 1 j=1 x ji + j=i+1 x ij = 2y i i U T (2) Pro uzly sudého stupě musí platit, že k im přidáme sudý počet hra. x ij {0, 1} i = 1,2-1, j = i+1,i+2 (3) Přidáme hrau mezi uzly i a j? yi 0, celé, i U (4) Pomocá proměá. Ad podmíka (1) a (2): apříklad pro 5 uzlů bychom v matici proměých sčítali takto: Leka Fiřtová (2014)

2 Úloha číského listooše Alexej Nikolajevič si ašel zajímavý přivýdělek: ve všech staicích metra musí rozvěsit reklamí letáky. Metro v Petrohradě má však více liií ež v Praze (viz obrázek) a Alexej Nikolajevič by rád věděl, jakým způsobem si má cestu apláovat, aby byla co ejkratší co do celkového počtu projetých staic. Model je zadá výčtem hra a pracuje je s hraami, kde i < j. Uzly představují přestupí ebo koečé staice. Náklady (cij) počítáme podle toho, kolik staic se mezi uzly achází, ebereme tedy v úvahu skutečou vzdáleost, kterou metro ujede. Rověž yí ebudeme brát v úvahu přestupováí mezi jedotlivými likami. model: sets: staice/1..16/:y; trasa(staice,staice)/1 14,2 13,3 13,4 16,5 11,6 11,7 15,8 10,9 15, 10 11, 10 12,10 15,10 16,11 16,12 13,12 14,12 16,13 14,14 15/:x,c; edsets data: c= ; eddata j#lt#i: x(j,i)) j#gt#i:x(i,j)) = j#lt#i: x(j,i)) j#gt#i:x(i,j)) = 2*y(i)+1);! k uzlům sudého stupě je třeba přidat sudý počet hra, zatímco k uzlům lichého stupě lichý ed Výsledek: Kromě cest od kocových uzlů do cetra, kudy určitě musíme jet dvakrát, je ejvýhodější projet dvakrát mezi uzly a Alexej Nikolajevič, který bydlí a koečé staici červeé liie, tedy projede uzly v tomto pořadí: Model ám pouze řeke, kterými hraami máme projet dvakrát, cestu si musíme apláovat sami. Účelovou fukci ve výši 55 lze iterpretovat jako počet staic, mezi imiž musí Alexej Nikolajevič projet avíc, jelikož všemi staicemi projede alespoň jedou. Součet ákladů všech hra je 78, což je třeba při pláováí délky cesty přičíst. Zadáí Řešeí Zdroj obrázku: Leka Fiřtová (2014)

3 Úloha číského listooše DRUHÝ MODEL PRO NEORIENTOVANÝ GRAF: Zavedeme celočíselou proměou x ij, která ám tetokrát říká, kolikrát bude hraa (i,j) celkem zahruta v Eulerově cyklu. Pracujeme s celou maticí. Model má ásledující tvar: z = i=1 j=1 c ij x ij mi Sažíme se, aby byl celková vzdáleost, kterou urazíme, byla co ejmeší. V tomto modelu ám hodota účelové fukce a rozdíl od předchozího modelu přímo řeke, čemu se tato vzdáleost rová. xij + xji 1 (i, j) H (1) Po každé existující hraě (i, j) musíme jet alespoň jedou (buď po í do příslušého uzlu vjedeme ebo vyjedeme). j=1 x ji = j=1 x ij i = 1,2 (2) Pro všechy uzly musí platit, že do ich vjedeme tolikrát, kolikrát z ich vyjedeme. xij 0, celé, i U (3) Kolikrát projedeme hraou (i,j)? xij = 0, xji = 0 (i, j) H (4) Pokud mezi uzly i, j eexistuje hraa, pak mezi imi eprojedeme ai jedou. Ve hře Pacma musí figurka síst všechy putíky. Kudy má jít, aby byla její cesta co možá ejkratší? Model je zadá výčtem hra, aby jej bylo možé řešit demoverzi Liga (takhle jich je přesě 50). Náklady jsou staovey jako počet mezer mezi všemi putíky při cestě od jedoho uzlu k druhému (viz obrázek). model: sets: uzel/1..19/; cesta(uzel,uzel)/1 2,1 16,1 17,2 1,2 3,2 18,2 19,3 2,3 4,3 5,4 3,4 8,5 3,5 6,6 5,6 7,7 6,7 8,7 12,8 4,8 7,8 9,8 19,9 8,9 10,10 9,10 11,10 13,11 10,11 14, ,12 7,12 13,13 10,13 12,14 11,14 15,15 14,15 16,16 1,16 11,16 15,17 1,17 18,18 2,18 17,19 2,19 8,19 11/: x,c; edsets data: c= ; x(i,j)) x(j,i)));!kolikrát do uzlu přijdeme, tolikrát musíme x(i,j)+x(j,i)>=1);!každé dva uzly, mezi imiž je hraa, musí být spojeé; ed Účelová fukce má hodotu 90. Model ám řeke, kolikrát máme kterou hraou projít, ale fiálí trasu si musíme sestavit sami. Některé hray vyjdou rovou zdvojeě (x ij = 2), u jiých vyjde x ij = 1 a x ji = 1, takže je zřejmé, že mezi těmito dvěma uzly (i,j) bude hraa také zdvojeá. Samozřejmě jde o eorietovaý graf, takže evadí, kdyby se apř. x 34 rovalo jedé a my bychom přitom šli z uzlu 4 do uzlu 3. S pomocí zalosti hra, kterými musíme projít více ež jedou, lze ačrtout Pacmaovu ejkratší cestu: Zadáí Řešeí Zdroj obrázku: Leka Fiřtová (2014)

4 Úloha číského listooše MODEL PRO ORIENTOVANÝ GRAF: Rozdělíme si uzly a dvě skupiy. I bude možia uzlů, ve kterých je počet vstupujících hra větší ež počet vystupujících hra. Těmto uzlům přidáme atribut a i, což bude rozdíl počtu vstupujících a vystupujících hra, tedy vlastě počet vystupujících hra či cest, který musíme u těchto uzlů přidat. Tyto uzly budou vlastě aalogií dodavatelů : mají totiž ějaké výstupí hray avíc, což jsou jakoby jejich kapacity. J bude možia uzlů, ve kterých je počet vystupujících hra větší ež počet vstupujících hra. Těmto uzlům přidáme atribut b i, což bude rozdíl počtu vystupujících a vstupujících hra, tedy vlastě počet vstupujících hra či cest, který musíme u těchto uzlů přidat. Tyto uzly budou vlastě aalogií odběratelů : chybí jim totiž ějaké vstupí hray, což jsou jakoby jejich požadavky. Úlohu tedy v podstatě převádíme a dopraví problém. Náklady a hrau/cestu mezi uzly i, j ozačíme c ij. Nevadí, že mezi ěkterými uzly žádá hraa eí. V matici bude v tomto případě hodota odpovídající ejkratší možé vzdáleosti mezi uzly i, j. Zavedeme jedu proměou x ij, což bude počet orietovaých hra/cest mezi uzly i a j, které přidáme do grafu. Model bude mít ásledující tvar: z = i I j J c ij x ij mi Sažíme se, aby byl áklad a dodatečé hra/cesty byl co ejmeší. Skutečé celkové áklady jsou pak součtem ákladů a všechy hray, protože každou musíme projet aspoň jedou, a tohoto dodatečého ákladu získaého z modelu. j J x ij = a i i I (1) Pro všechy dodavatele musí platit, že z ich povede tolik hra/cest avíc, kolik odpovídá jejich kapacitě. Ke každému takovému uzlu přidáme právě tolik výstupích hra, aby se jejich celkový počet vyroval s počtem vstupích hra. i I x ij = b j j J (2) Pro všechy odběratele musí platit, že do ich povede tolik hra/cest avíc, kolik odpovídá jejich požadavkům. Ke každému takovému uzlu přidáme právě tolik vstupích hra, aby se jejich celkový počet vyroval s počtem výstupích hra. xij 0 i I, j J, (3) Kolikrát přidáme hrau/cestu mezi uzly i, j? Leka Fiřtová (2014)

5 Úloha číského listooše Vyrazili jsme si a hory zalyžovat. Lyžařské středisko abízí moho sjezdovek a my bychom je chtěli projet všechy, ale jelikož jsme omezei časově, rádi bychom to zvládli co možá ejrychleji. Plá střediska s očíslovaými uzly a dobou cesty v miutách mezi jedotlivými uzly zachycuje obrázek. Nejdéle samozřejmě trvá cesta vlekem ahoru, protože se u ěj tvoří froty. Model úlohy číského listooše převedeme a dopraví problém, jelikož jde o orietovaý graf, protože po sjezdovkách se bohužel edá jezdit ahoru. Každou cestou musíme projet alespoň jedou, výjimkou jsou cesty mezi jedotlivými vleky (uzly 13, 10 a 1), mezi imiž ovšem také existuje hraa, kterou můžeme v případě potřeby použít. Nejprve si sestavíme matici ejkratších vzdáleostí. Pokud mezi dvěma uzly eexistuje přímo hraa, pak sečteme ejkratší dobu, kterou bychom museli urazit při cestě přes jié uzly. Například z uzlu pět je možé dostat se do uzlu čtyři buď za 25 miut s použitím prostředího vleku, ebo za 24 miut s použitím pravého vleku, což je tedy ohodoceí ejkratší vzdáleosti. Uzly, do ichž více hra vede, ež z ich vychází, jsou dodavatelé, aopak uzly, z ichž více hra vychází, jsou odběratelé, jelikož do ich musíme dodat hrau, po které přijedeme, abychom mohli opětově vyjet. Odběratelem je třeba uzel 4, do kterého vede cesta je z uzlu 3, zatímco jet z ěj musíme do uzlů 2, 5 a 10. Dodavatelem je, kromě vleků samozřejmě, apříklad uzel 2, z ějž vedou je dvě sjezdovky, ale do ěj celkem tři. Kapacity, resp. požadavky, jsou rozdílem počtu vstupích a výstupích hra. Tyto počty jsou patré z ásledující tabulky. Dodavetelé jsou ozačeí modře, odběratelé zeleě. Leka Fiřtová (2014)

6 Úloha číského listooše UZEL počet počet z uzlů do ulzů vstupů výstupů , ,4,6 1, ,8 2,4, ,5, ,8, ,9, , , ,5,7,11, ,9 5,10, ,13 13,14,15, , ,15 10, , model: sets: dodavatele/1..6/:kapacity; odberatele/1..7/:pozadavky; preprava(dodavatele,odberatele):x,c; edsets data: kapacity= ; pozadavky= ; c= ; x(i,j)) x(i,j)) = pozadavky(j)); ed Leka Fiřtová (2014)

7 Úloha číského listooše Řešeí zachycuje ásledující matice a obrázek. Účelová fukce je 183, což ale eí celkový čas, ale je čas, který strávíme tím, že po ěkterých cestách pojedeme více ež jedou. Celkový čas získáme součtem všech hra (kromě hra mezi vleky, po ichž jet emusíme) a této účelové fukce, což je 297 miut, eboli 4 hodiy a 57 miut. Tolik času ám ejméě zabere projet všechy vyzačeé sjezdovky. Zdroj obrázku: ZDROJE: Ig. J. Fábry, Ph.D.: předášky 4EK314 Diskrétí modely, Leka Fiřtová (2014)

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM.

TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. Graf je útvar, terý je možo zázorit obrázem v roviě pomocí bodů (uzly

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly.

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly. Distribučí úlohy DISTRIBUČNÍ ÚLOHY KONTEJNEROVÝ DOPRAVNÍ PROBLÉM, ROZŠÍŘENÁ ÚLOHA BATOHU (BIN PACKING PROBLEM), ÚLOHA OPTIMÁLNÍHO ROZMÍSTĚNÍ ZAŘÍZENÍ, ÚLOHA O POKRYTÍ. POKRÝVACÍ A DĚLÍCÍ PROBLÉM (SET COVERING

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2 4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

4EK212 Kvantitativní management 4. Speciální úlohy lineárního programování

4EK212 Kvantitativní management 4. Speciální úlohy lineárního programování 4EK212 Kvatitativí maagemet 4. Speciálí úlohy lieárího programováí 3. Typické úlohy LP Úlohy výrobího pláováí (alokace zdrojů) Úlohy fiačího pláováí (optimalizace portfolia) Směšovací problémy Nutričí

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Vážeí zákazíci, dovolujeme si Vás upozorit, že a tuto ukázku kihy se vztahují autorská práva, tzv. copyright. To zameá, že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE. 2014 Bc. Filip Uhlíř

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE. 2014 Bc. Filip Uhlíř VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY DIPLOMOVÁ PRÁCE 2014 Bc. Filip Uhlíř VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název diplomové práce: Optimalizace

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

TAC. Zařízení pro ahování da z digiálních achografů a čipových kare řidičů. Uživaelká příručka

TAC. Zařízení pro ahování da z digiálních achografů a čipových kare řidičů. Uživaelká příručka TAC Zařízení pro ahování da z digiálních achografů a čipových kare řidičů Uživaelká příručka Telefonická pomoc: +20 777 62 970 E-mail: halesro@hale.cz Verze dokuetu: 2.0 číslo dokuetu 6939-173 straa 1

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

1.1.10 Součtové trojúhelníky

1.1.10 Součtové trojúhelníky ..0 Součtové trojúhelníky Předpoklady: 0009 Př. : Uskupení čísel na obrázku se nazývá součtový trojúhelník. Zformuluj pravidlo, které splňují čísla v trojúhelníku. 9 20 Doplň podle stejného pravidla následující

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Příklady k přednášce 12 - Frekvenční metody

Příklady k přednášce 12 - Frekvenční metody Příklady k předášce 1 - Frekvečí metody Michael Šebek Automatické řízeí 018 8-3-18 Frekvečí charakteristika OL a mez stability CL Pro esoudělý OL přeos Ls () platí: 1) Je-li s C pól CL, pak 1 + Ls () =

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Doporučená dávka je 5 mg solifenacin sukcinátu jednou denně. Pokud je to nutné, dávka může být zvýšena na 10 mg solifenacin sukcinátu jednou denně.

Doporučená dávka je 5 mg solifenacin sukcinátu jednou denně. Pokud je to nutné, dávka může být zvýšena na 10 mg solifenacin sukcinátu jednou denně. sp.z. sukls132863/2014 sukls87952/2014 SOUHRN ÚDAJŮ O PŘÍPRAVKU 1 NÁZEV PŘÍPRAVKU Setacuri 5 mg potahovaé tablety 2 KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Setacuri 5 mg potahovaé tablety: Jeda tableta obsahuje

Více

š š ě š š ňí ě Í Í š Ž Č ťí ň ú š Č ú Č ě ě Ž ě ď š š ě ě š š š ú š š ě Ž Č ě š ě ě ě ě ě š Žň š ě ě š ě Ž ě Ž ň ě Ž ě š Ž ě š Ž š š Ž š š ěí ě š ěí ě ě ň ě ě ě ě ě š š ě ě ě ě š š š š ě ě ě Í ď Í š ě

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Á š š ý É Ř ě Í ý ý Í š ě ý š ý Ů š ý Í ž ý š ý ě Ž š ě ý ě ý ě ě ý Í Ž ě Í ÁŤ Ž š Í ý ěž ý Ů ý Ů ě Ž š Ť ě ěž ěž ěž ě ě Í ý š ý Í š ý Ž ý Ř š ň š Í ě ý ý ě š ě ý ý ě Ž ý ý ě ý Í ý ě Ž ý Ž ě ě Ž ý Ž ý

Více

Entropie, relativní entropie a sdílená (vazební) informace

Entropie, relativní entropie a sdílená (vazební) informace Etroie, relativí etroie a sdíleá vazebí iformace Pojem iformace je říliš rozsáhlý a to, abchom jej komleě osali jedoduchou defiicí. Pro libovolou distribuci ravděodobosti můžeme defiovat tzv. etroii, jež

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu. doc. PhDr. Marta Volfová, CSc.

KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu. doc. PhDr. Marta Volfová, CSc. KALENDÁŘOVÉ ÚLOHY PRO TALENTY, vč. metodického listu doc. PhDr. Marta Volfová, CSc. Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 Kalendářové úlohy jsou zahaleny určitou tajemností a přitahují

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Testujeme hypotézu: proti alternativě. Jednoduché třídění:

Testujeme hypotézu: proti alternativě. Jednoduché třídění: Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché

Více