V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

Rozměr: px
Začít zobrazení ze stránky:

Download "V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x)."

Transkript

1 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD 3.. Funkce náhodné veln V mnoha pípadech, k známe rozdlení náhodné veln, potebujeme urt rozdlení náhodné veln Y, která je funkcí, tzn. Y h(). Je-l funkce h(x) v oboru možných hodnot veln monotónní, pak exstuje nverzní funkce h (), a jde o vzájemn jednoznaný vztah mez a Y. Je-l v takovém pípad h(x) rostoucí, pak pro všechna x > x je >, a dstrbuní funkc veln Y lze psát jako: G() P(Y < ) P[ < h ()] F[h ()] Pro klesající funkc h(x), tzn. pro všechna x > x platí >, je dstrbuní funkce: G() P(Y < ) P[ > h ()] F[h ()] Pro dskrétní náhodnou velnu je pravdpodobnostní funkce dána jako: p Y ( ) p h ( ) Je-l spojtá náhodná velna s hustotou pravdpodobnost f(x), pemž h - () má pro všechna spojtou dervac, pak pro rostoucí funkc h(x) dostaneme hustotu pravdpodobnost () veln Y jako: Podobn pro klesající funkc h(x) dostaneme: dg f ( h ) f ( h ) 6

2 dg f ( h ) f ( h ) Vzhledem k tomu, že v pípad rostoucí funkce h(x) je > 0, zatímco v pípad klesající funkce je < 0, lze oba pedchozí vztah spojt do jednoho: dg f ( h ) f ( h ) Není-l h(x) monotónní funkcí, pak mez a Y neexstuje vzájemn jednoznaný vztah a te an nverzní funkce k h(x). Dstrbuní funkce G() P(Y < ) je v takovém pípad dána pravdpodobností, že náhodná velna nabude hodnot z kteréhokolv ntervalu, pro který Y <. Pak platí: Pro dskrétní náhodnou velnu : G p : h( x ) Pro spojtou náhodnou velnu : G f ( x) h ( x ) Pro pípad dskrétní náhodné veln je pravdpodobnostní funkce vztahem: p p x Y : h( x ) py veln Y dána Nech exstuje konený poet dervace 0 x takových, že ( x ) h. Nech pro každé x exstuje. Pak exstuje hustota pravdpodobnost náhodné veln Y: f ( x ) : h ( x ) x x ešený píklad Nech velna má rovnomrné rozdlení v ntervalu rozdlení má velna t x? ;. Jaké 7

3 f h Hustota pravdpodobnost rovnomrného rozdlení: f ( x) ( x) t x h x arct h d ( arct ) + + Hustota pravdpodobnost veln Y je te: f h ( + ), R Uvedené rozdlení se nazývá Cauchho. Je píkladem rozdlení, které nemá konený rozptl: DY ( + ) ( + ) ( + ) [ ] + ešený píklad Nech velna má normální rozdlení N(0;). Jaké rozdlení má velna x? Pro nezáporná exstuje nverzní funkce h : x ±. x ± Pak hustota pravdpodobnost nezáporné náhodné veln Y je: 0 : ) f ( ± ) ( + ( ) f f e + e ( e 8

4 Jde o hustotu rozdlení χ s jedním stupnm volnost. 3.. Pblžné stanovení charakterstk funkce náhodné veln V prax je nk k dspozc pouze jedná zmená hodnota veln (oad její stední hodnot) a smrodatná odchlka mení σ (daná napíklad udanou chbou mícího pístroje). Pokud je varaní koefcent mnohem menší než jedna oadnout charakterstk veln h(x). Pedpokládejme, že náhodná velna je spojtá. Stední hodnotu náhodné veln Y oadneme na základ vztahu: σ <<<, lze pblžn µ EY h h ( E ) h E + D ( x) f ( x) h( E ) + h ( E ) ( x E ) h( E ) h + ( E ) x E + f ( x ) Rozptl DY lze pak vjádt pblžn z lneárního lenu Talorova rozvoje: DY ( h( x) EY ) f ( x) ( h( x) h( E )) f ( x) D x E Otázk 3.. Nech Yh(). h(x) je monotónní funkce. Naleznte vztah mez hustotou pravdpodobnost náhodné veln Y a hustotou pravdpodobnost náhodné veln. Úloh k ešení 3.. F je dstrbuní funkce náhodné veln, je spojtá a rostoucí. Náhodná velna Y je defnována vztahem: Y F. Urete rozdlení náhodné veln Y (hustotu pravdpodobnost).. Náhodná velna má rovnomrné rozdlení na ntervalu 0 ; 3. Urete rozdlení náhodné veln Y, Y+. 3. Náhodná velna má normální rozdlení N ( µ;σ ) Y, Y e.. Urete rozdlení náhodné veln 9

5 λx 4. Náhodná velna má hustotu pravdpodobnost: náhodné veln Y, Y ln. f x λ e. Urete rozdlení 30

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Kapitola 2 - Testování hypotéz. Testy dobré shody

Kapitola 2 - Testování hypotéz. Testy dobré shody Kaptola - Testování hypotéz. Testy dobré shody Dva základní statstcké postupy jsou odhad parametr a testování hypotéz. V mnulé kaptole jsme s ukázal, jak odhadujeme charakterstky základního souboru, v

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

2 ELEMENTÁRNÍ POET PRAVDPODOBNOSTI. as ke studiu kapitoly: 70 minut. Cíl: Po prostudování této kapitoly budete umt

2 ELEMENTÁRNÍ POET PRAVDPODOBNOSTI. as ke studiu kapitoly: 70 minut. Cíl: Po prostudování této kapitoly budete umt 2 ELEMENTÁRNÍ OET RAVDODOBNOSTI as ke studiu kapitoly: 70 minut Cíl: o prostudování této kapitoly budete umt charakterizovat teorii pravdpodobnosti a matematickou statistiku vysvtlit základní pojmy teorie

Více

Á É Č ď ý ý Č Ť ž ý ý ť žž Ž ý ú ž š ý ž ž ž š š š ý Š ť ý ý š ž ž ý ž ž Ň ý ž ť ť ú ž ý š ž š ž ž š ž š ž ý ý šť ý Ý Ú ň ý ý Ý ž ý ý ť ý ž ý ý ž ý ď ý ý š ý ž ú ú ď ý ž š ž ý ž ť ý ý ý ý ý Á ý ď ž š ž

Více

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST 1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST Kombinatorické pravidlo o souinu Poet všech uspoádaných k-tic, jejichž první len lze vybrat n 1 zpsoby, druhý len po výbru prvního lenu n 2 zpsoby atd. až k-tý

Více

dq T dq ds = definice entropie T Entropie Pi pohledu na Clausiv integrál pro vratné cykly :

dq T dq ds = definice entropie T Entropie Pi pohledu na Clausiv integrál pro vratné cykly : Entropie Pi pohledu na Clausiv integrál pro vratné cykly : si díve i pozdji jist uvdomíme, že nulová hodnota integrálu njaké veliiny pi kruhovém termodynamickém procesu je základním znakem toho, že se

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UEÍ TECHICKÉ V BR FAKULTA STAVEBÍ PROF. IG. JIDICH MELCHER, DrSc. DOC. IG. MIROSLAV BAJER, CSc. PRVKY KOVOVÝCH KOSTRUKCÍ MODUL BO02-M07 AVRHOVÁÍ OCELOVÝCH KOSTRUKCÍ A MEZÍ STAV ÚAVY STUDIJÍ OPORY

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8. GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

Návod k obsluze a montáži

Návod k obsluze a montáži Návod k obsluze a montáži Trojfázové relé pro monitorování napájení sít, ada CM Pokyn: tento návod k obsluze a montáži neobsahuje všechny podrobné informace ke všem typm této výrobkové ady a nebere v úvahu

Více

R O V N O B Ž N Í K (2 HODINY)

R O V N O B Ž N Í K (2 HODINY) R O V N O B Ž N Í K (2 HODINY)? Co to vlastn rovnobžník je? Na obrázku je dopravní znaka, která íká, že vzdálenost k železninímu pejezdu je 1 m (dva pruhy, jeden pruh pedstavuje vzdálenost 80 m): Pozorn

Více

Návod k obsluze. Hoval CZ s.r.o. Republikánská 45 31204 Plzeň tel/fax: (+420) 377 261 002, (+420) 377 266 023 info@hoval.cz www.hoval.

Návod k obsluze. Hoval CZ s.r.o. Republikánská 45 31204 Plzeň tel/fax: (+420) 377 261 002, (+420) 377 266 023 info@hoval.cz www.hoval. CZ Návod k obsluze Kotel pro spalování oleje Uno-3 / Mega-3 / Max-3 / Cosmo / ST-plus Kotel pro spalování plynu CompactGas (1000-2800) / Cosmo alufer / ST-plus alufer Hoval CZ s.r.o. Republkánská 45 31204

Více

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B.

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B. Ing. Martna Ltschmannová Statsta I., cvení ANOVA Rozšíením dvouvýbrových test pro stední hodnoty je analýza rozptylu nebol ANOVA, terá umožuje srovnávat nol stedních hodnot nezávslých náhodných výbr. Analýza

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

III. CVIENÍ ZE STATISTIKY

III. CVIENÍ ZE STATISTIKY III. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data pomocí chí-kvadrát testu, korelaní a regresní analýzy. K tomuto budeme používat program Excel 2007 MS Office,

Více

č č ň Ž ť ň Ž č Í č Ž Í č Í ň č ň Ž č č Ď ň Í Š č ň č Ž ň ň ň ň ň č Ž č ť Ů č ň ň č Í č ň Ó č č ň č Í č č ň Ď ň č č ň ň Í č č č Ž Ž č Ž Ž ň Ž ň ň Ó č ň ň Ž č č č ň ď Ž ň Íč ť č Ů Ž č č č Í ň Í ň č č ň

Více

Efektivní hodnota proudu a nap tí

Efektivní hodnota proudu a nap tí Peter Žilavý: Efektivní hodnota proudu a naptí Efektivní hodnota proudu a naptí Peter Žilavý Katedra didaktiky fyziky MFF K Praha Abstrakt Píspvek experimentáln objasuje pojem efektivní hodnota stídavého

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ VIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 14 Jméno: Jan Datum mení: 14.

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

ijímací ízení ve šk. roce 2012/2013.

ijímací ízení ve šk. roce 2012/2013. Stední škola technická a obchodní, Olomouc, Kosinova 4 Kosinova 4, 772 00 Olomouc,tel.: 585 220 663, fax: 585 223 576, ssto@kosinka.com ijímací ízení ve šk. roce 2012/2013. Pro školní rok 2013/2014 budeme

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

8 Strojové uení a adaptace

8 Strojové uení a adaptace 8 Strojové uení a adaptace Dležitou vlastností živých organism je schopnost pizpsobovat se mnícím se podmínkám (adaptovat se), eventuáln se uit na základ vlastních zkušeností. Schopnost uit se bývá nkdy

Více

Ý ý Č ž ý ž ů ď ý ů ů Ýú ž ž ý ž ý ů ý Š ž Ř ý Š ý ý ý ů ý ů ý ž ý ž Ř Š Š ý ž ý ý Š ý ú ý ů ý ž ý Š ý ý ý ý ů ž ý ú ý ůž ň ůž Š ů Č ž ý ž ý ů ů ý ž ž ý ů ý Ů ý ů ý Ů ý ů ů ý ů ů ú ž Ž Š Č ú ýž ý ž ý ý

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Žš ž ň ž Ž Š Š š š šť š š ž ž ů ž ž ý ý š š Č Ú ů š ů š š Ž Ž š Č ů ý ý š ý Š ž ý ň Č š ý Ž Č ý š ž š Č Č ý ý ý š ý ů š ý Č É Č š Č ý ý š ýň š Č ý ý š ý ó ň š š ýň š Č ý ý ý ý š š Č ý ž š ň š ý ů ý š š

Více

Výpočet tepelné ztráty budov

Výpočet tepelné ztráty budov Doc Ing Vladmír Jelínek CSc Výpočet tepelné ztráty budov Výpočty tepelných ztrát budov slouží nejčastěj pro stanovení výkonu vytápěcího zařízení, tj výkonu otopné plochy místnost, topného zdroje atd Výpočet

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

CM-TCS.11, CM-TCS.12, TM-TCS.13 CM-TCS.21, CM-TCS.22, TM-TCS.23. Návod k obsluze a montáži. Teplotní monitorovací relé ady CM

CM-TCS.11, CM-TCS.12, TM-TCS.13 CM-TCS.21, CM-TCS.22, TM-TCS.23. Návod k obsluze a montáži. Teplotní monitorovací relé ady CM CM-TCS.11, CM-TCS.12, TM-TCS.13 CM-TCS.21, CM-TCS.22, TM-TCS.23 Návod k obsluze a montáži Teplotní monitorovací relé ady CM Pokyn: tento návod k obsluze a montáži neobsahuje všechny podrobné informace

Více

UTB ve Zlín, Fakulta aplikované informatiky, 2010 4

UTB ve Zlín, Fakulta aplikované informatiky, 2010 4 UTB ve Zlín, Fakulta aplikované informatiky, 00 4 ABSTRAKT Tato práce se zabývá Signal Processing Toolboxem (SPTOOL) a Filter Design&Analysis Toolboxem (FDATOOL) v prostedí MATLAB. Jedním z cíl této práce

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Prostedky automatického ízení

Prostedky automatického ízení VŠB-TU Ostrava / Prostedky automatického ízení Úloha. Dvoupolohová regulace teploty Meno dne:.. Vypracoval: Petr Osadník Spolupracoval: Petr Ševík Zadání. Zapojte laboratorní úlohu dle schématu.. Zjistte

Více

9. Kombinatorika, pravd podobnost a statistika

9. Kombinatorika, pravd podobnost a statistika 9. Kombinatorika, pravdpodobnost a statistika VÝCHOZÍ TEXT K ÚLOZE 1 V kódu je na prvním míst jedno z písmen A, B, C nebo D. Na dalších dvou pozicích je libovolné dvojciferné íslo od 11 do 45. (Existují

Více

ENÍ TEXTILIÍ PŘEDNÁŠKA 2

ENÍ TEXTILIÍ PŘEDNÁŠKA 2 ZKOUŠEN ENÍ TEXTILIÍ PŘEDNÁŠKA 2 10 12 tera T 10-3 ml m 10 9 gga G 10-6 mkro µ 10 6 mega M 10 9 nano n Zobrazovací modul Převádí délkové jednotky obrazu na skutečné jednotky měřené velčny (např. z grafů

Více

Programování jako nástroj porozumění matematice (seriál pro web modernivyuka.cz)

Programování jako nástroj porozumění matematice (seriál pro web modernivyuka.cz) Programování jako nástroj porozumění matematce (serál pro web modernvyuka.cz) Autor: Radek Vystavěl, vystavel(zavnáč)modernprogramovan.cz Díl 15: Analýza Určtý ntegrál MATEMATIKA Integrál je v běžné řeč

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah

Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah Konstrukce a kalibrace t!íkomponentních tenzometrických aerodynamických vah Václav Pospíšil *, Pavel Antoš, Ji!í Noži"ka Abstrakt P!ísp#vek popisuje konstrukci t!íkomponentních vah s deforma"ními "leny,

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.0/1.5.00/4.018 Šablona III/ Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY INOVACE_Hor015 Vypracoval(a), dne Mgr.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

MANAŽERSKÝ!SOUHRN! DOPORU"ENÍ!K!NÁVRHU!NOVÉ!! STÁTNÍ!ENERGETICKÉ!KONCEPCE!! V!OBLASTI!KONE"NÉ!SPOT#EBY!ENERGIE!! A!ENERGETICKÉ!Ú"INNOSTI!

MANAŽERSKÝ!SOUHRN! DOPORUENÍ!K!NÁVRHU!NOVÉ!! STÁTNÍ!ENERGETICKÉ!KONCEPCE!! V!OBLASTI!KONENÉ!SPOT#EBY!ENERGIE!! A!ENERGETICKÉ!ÚINNOSTI! MANAŽERSKÝSOUHRN DOPORU"ENÍKNÁVRHUNOVÉ STÁTNÍENERGETICKÉKONCEPCE VOBLASTIKONE"NÉSPOT#EBYENERGIE AENERGETICKÉÚ"INNOSTI DATUMVYPRACOVÁNÍ: 7.12.2012 D O P O R U " E N Í K N Á V R H U N O V É S T Á T N Í E

Více

"#$ %&% ' #$ %&'() ((' ' ' ' *+$ %&'() ((' (',-.(

#$ %&% ' #$ %&'() ((' ' ' ' *+$ %&'() ((' (',-.( ! "#$ %&% '!" #$ %&'() ((' ' ' ' *+$ %&'() ((' (',-.( ///0 K otázce splatnosti pohledávek úpadce v konkurzu Tento dokument pedstavuje obecnou informaci o nkterých vybraných otázkách právních vztah a slouží

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Zamení fasády stavebního objektu

Zamení fasády stavebního objektu Zamení fasády stavebního objektu metodou pozemní stereofotogrammetrie - souhrn materiál k projektu OBSAH - technologický postup - poznámky - práce v terénu pehled - poznámky - fotogrammetrické vyhodnocení

Více

1. MODELY A MODELOVÁNÍ. as ke studiu: 30 minut. Cíl: Po prostudování této kapitoly budete umt: Výklad. 1.1. Model

1. MODELY A MODELOVÁNÍ. as ke studiu: 30 minut. Cíl: Po prostudování této kapitoly budete umt: Výklad. 1.1. Model 1. MODELY A MODELOVÁNÍ as ke studiu: 30 minut Cíl: Po prostudování této kapitoly budete umt: charakterizovat model jako nástroj pro zobrazení skutenosti popsat proces modelování provést klasifikaci základních

Více

krajské školící stedisko projektu

krajské školící stedisko projektu krajské školící stedisko projektu Cílem kurzu Intel - Vzdlávání pro budoucnost je vyškolit uitele tak, aby mohli vést projektovou výuku a efektivn integrovat poítae do stávajících uebních plán takovým

Více

VYHODNOCENÍ ODCHYLEK A CLEARING TDD V CS OTE JAROSLAV HODÁNEK, OTE A.S.

VYHODNOCENÍ ODCHYLEK A CLEARING TDD V CS OTE JAROSLAV HODÁNEK, OTE A.S. OTE, a.s. VYHODNOCENÍ ODCHYLEK A CLEARING TDD V CS OTE JAROSLAV HODÁNEK, OTE A.S. 16.-17.4.2014 Trendy elektroenergetiky v evropském kontextu, Špindlerv Mlýn Základní innosti OTE 2 Organizování krátkodobého

Více

DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA

DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI HODINA Podívej se na následující obrázek: Na obrázku je rovnobžník s vyznaeným pravým úhlem. Odpovídej na otázky:? Jaká je velikost vnitního úhlu pi vrcholu C? Je rovna

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Š Á š š ý š ň ý š š ý ž Ů š š šš ý š Č š ž š š š ž š š ý ó ý ž ó ý ý žó ť š š ý š š Š ýň š šš ý š š š š žň ý ý ž ý ž ý š š š š ž š šš š š ž Š ý ň š ý ž ž š Č š ž ý š š ú š ýž š ž ý ý ý ž Ů ý ž ý š ý š

Více

FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY

FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY Zpsob financování spolenosti hraje dležitou roli v rozhodovacím procesu. V této souvislosti hovoíme o kapitálové struktue firmy. Kapitálová struktura je složení dlouhodobých

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

STANOVENÍ NEJISTOT PRIMÁRNÍ KALIBRACE SNÍMA AKUSTICKÉ EMISE

STANOVENÍ NEJISTOT PRIMÁRNÍ KALIBRACE SNÍMA AKUSTICKÉ EMISE STANOVENÍ NEJISTOT PRIMÁRNÍ KALIBRACE SNÍMA AKUSTICKÉ EMISE Jií KEPRT, Petr BENEŠ FEKT VUT Brno, Ústav automatizace a micí techniky, R Abstract The paper reviews the background of the primary calibration

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Stední prmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Píjmení: Hladna íslo úlohy: 3 Jméno: Jan Datum mení: 10.

Více

5. Teorie informace. Kvantitativní vyjádení množství informace ve zpráv. Syntax versus sémantika (zde nás zajímá syntaktická ást).

5. Teorie informace. Kvantitativní vyjádení množství informace ve zpráv. Syntax versus sémantika (zde nás zajímá syntaktická ást). Enet 004 5. Teoie infomace 5. Infomace a entopie Kvantitativní vyjádení množtví infomace ve zpáv. Syntax ve émantika (zde ná zajímá yntaktická át. Dležité pojmy: o Abeceda nap. {a,b,c,bd,cd}. o Zpáva (nap.

Více

Š Ž Ž Í Í Í ň ž Í ž Í ž Í Í ž Ý Í Í Ť Ý Í Ť Í Š Í Í ž Ó Ť Í ň Í Í Á ď Ť Ť ú ž Ý Ú ž Ý Ž ž ž Ý Ť Í Ž Ž ž Ť Ž Í ň Í ý ž ž Í Ť Ť Ť ž Ý Í Ť Í ň Ž Ť Í ž Ý Ý Ý Ý Í Ý ž Ť Í Í ž Í Ť Í Í ž Ó Ó Í Ó Ř Í Š Ý Ý Ý ň

Více

CHEMIE STAVEBNÍCH LÁTEK

CHEMIE STAVEBNÍCH LÁTEK VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ CHEMIE STAVEBNÍCH LÁTEK MODUL M05 VYHODNOCOVÁNÍ VÝSLEDK STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Marie Pištková -2(29) Záhlaví liché

Více

NÁVRH PRACOVNÍHO BODU ODSTŘEDIVÉHO ČERPADLA THE OPERATING POINT OF THE CENTRIFUGAL PUMP.

NÁVRH PRACOVNÍHO BODU ODSTŘEDIVÉHO ČERPADLA THE OPERATING POINT OF THE CENTRIFUGAL PUMP. VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGI INSTITUTE NÁVRH PRACOVNÍHO BODU ODSTŘEDIVÉHO ČERPADLA

Více

Pednáška mikro 07 : Teorie chování spotebitele 2

Pednáška mikro 07 : Teorie chování spotebitele 2 Pednáška mikro 07 : Teorie chování spotebitele 2 1. ngelova kivka x poptávka po statku, M- dchod x luxusní komodita ( w >1) standardní komodita (0< w 1) podadná komodita ( w < 0) 2. Dchodový a substituní

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník

RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník RÁMCOVÉ OTÁZKY pro pedmt Mechanika zemin pro 2. roník Zemina jako trojfázové prostedí Pevná fáze zeminy 1. Vznik zemin (zvtrávání, transport, sedimentace) 2. Zeminy normáln konsolidované a pekonsolidované

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

LINEÁRNÍ PROGRAMOVÁNÍ

LINEÁRNÍ PROGRAMOVÁNÍ LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn! MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení

Více

Postup efektování jednotlivých part

Postup efektování jednotlivých part Postup efektování jednotlivých part Níže uvedený postup platí pro nástroje ady Yamaha PSR (konkrétn PSR-1000, 2000, 1100, 2100, 1500, 3000), pro Yamahu TYROS a také TYROS 2. Uvedené obrázky ovládacího

Více

ú ř ý ř ř ž ť ý ž ý ť Ě Í ú ý Š ž ř ř Í ř ř ř ž ť ř Í ž Ř Ý Š Ě Í Ž Í Š Ě Í ú ž Í Í ú ř ř Í ž ýž ť ÍřÍ ž ř Í ř ř Í Í ý Í ý ú Í ž ř ú ž ř ý Í Ý ř Í Í ř Í ř ý ř Í ý ř ů ý ř Í ř Š ý ř Í ř Í Í ý ř ů Í Í ží

Více

PRAVIDLA RADY MSTA VIMPERK pro vyizování stížností a peticí

PRAVIDLA RADY MSTA VIMPERK pro vyizování stížností a peticí PRAVIDLA RADY MSTA VIMPERK pro vyizování stížností a peticí Rada msta Vimperk v souladu s 102 odst. (2) písm. n) zákona. 128/2000 Sb., o obcích, v platném znní a zákonem. 85/1990 Sb., o právu petiním,

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Cykly Intermezzo. FOR cyklus

Cykly Intermezzo. FOR cyklus Cykly Intermezzo Rozhodl jsem se zaadit do série nkolika lánk o základech programování v Delphi/Pascalu malou vsuvku, která nám pomže pochopit principy a zásady pi používání tzv. cykl. Mnoho ástí i jednoduchých

Více

Metodický materiál Ma

Metodický materiál Ma Metodický materiál Ma Metodický materiál Ma... 1 Úvod... 2 Možnosti použití v hodin... 2 Podmínky... 2 Vhodná témata... 3 Nevhodná témata... 3 Vybrané téma: Funkce... 3 Úvod... 3 Použití v tématu funkce...

Více

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII DISKRÉTNÍ FOURIEROVA TRANSFORMACE PI NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII Luboš PAZDERA *, Jaroslav SMUTNÝ **, Marta KOENSKÁ *, Libor TOPOLÁ *, Jan MARTÍNEK *, Miroslav LUÁK *, Ivo KUSÁK * Vysoké uení

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

1. Úvodní údaje: Zpráva poskytuje základní informace v rámci dokumentace projektu pro DSP. Podklady dány investorem stavby a pedpisy SN.

1. Úvodní údaje: Zpráva poskytuje základní informace v rámci dokumentace projektu pro DSP. Podklady dány investorem stavby a pedpisy SN. !"#$%&&! "#$%&& stupe dokumentace: DSP 1. Úvodní údaje:...1 2. Základní údaje:...1 3. Stanovení prostedí dle SN 332000-3 Z1/Z2/Z3, SN 332000-5-51 ed.3:...1 4.Rozdlení elektrického píkonu:...1 5. Ochrany:...1

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

ijímací ízení ve šk. roce 2011/2012.

ijímací ízení ve šk. roce 2011/2012. Stední škola technická a obchodní, Olomouc, Kosinova 4 Kosinova 4, 772 00 Olomouc,tel.: 585 220 663, fax: 585 223 576, ssto@kosinka.com ijímací ízení ve šk. roce 2011/2012. Pro školní rok 2012/2013 budeme

Více