EKOTECH Fluorescence chlorofylu in vivo 1

Rozměr: px
Začít zobrazení ze stránky:

Download "EKOTECH Fluorescence chlorofylu in vivo 1"

Transkript

1 INDUKCE FLUORESCENCE CHLOROFYLU in vivo V PRŮBĚHU PRIMÁRNÍ FOTOSYNTÉZY U VYŠŠÍCH ROSTLIN RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, v.v.i. Ústav molekulární biologie rostlin, Branišovská 31, České Budějovice; <rohacek@umbr.cas.cz> 1. Úvod Záznam indukované fluorescence chlorofylu a (Chl) je cestou jak nedestruktivně zkoumat fotosyntetické procesy v rostlinách, řasách i sinicích - obecně ve všech fotosyntetizujících organizmech. Změny výtěžku fluorescence Chl jsou citlivým indikátorem fotosyntetických procesů probíhajících v časovém rozmezí od mikrosekund (rychlé primární fotofyzikální děje) až po mnoho minut (pomalé enzymatické procesy ve stromatu chloroplastů). Vyhodnocením časového záznamu fluorescence Chl, tzv. fluorescenční indukční křivky, lze stanovit hodnoty řady fluorescenčních parametrů, které umožňují kvalitativně i kvantitativně charakterizovat funkčnost fotosyntetického aparátu rostlin, jejich fyziologický stav a rovněž detailně studovat děje probíhající v tylakoidních membránách uvnitř chloroplastů. Fluorescence Chl má svůj původ ve fotosyntetických pigmentech zelených rostlin a odráží širokou škálu fotofyzikálních procesů, které probíhají v tylakoidních membránách uvnitř chloroplastů během přeměny energie slunečního (viditelného) záření na biochemicky dále využitelnou formu - v podobě molekul přenašečů vodíku (NADPH, redukované formy nikotinamidadenindinukleotidfosfátu) a v makroergních molekulách (ATP, adenosintrifosfát). Energie kvant světelného záření (fotonů) je absorbována v anténních pigmentech dvou fotosystémů (FS I a FS II) a přenášena do reakčních center obou fotosystémů ve formě toku excitonů. V kaskádě fotochemických reakcí donor-akceptorového charakteru je tato energie využívána k transportu elektronů z primárního donoru (molekuly H 2 O) na cílový akceptor (NADP + ) za současného vzniku vysoce energetického substrátu (ATP), potřebného k fixaci CO 2 v Calvinově-Bensonově cyklu. První pokusy o měření výtěžku fluorescence Chl v rostlinách byly inspirovány klasickými pracemi Kautského a Hirsche z roku 1934 [1]. Koncem 20. století se měření indukované fluorescence Chl stalo velmi úspěšnou technikou v získávání kvalitativních i kvantitativních informací o účinnosti fotochemických a nefotochemických procesů uvnitř chloroplastů. Přispělo k tomu především rychlé rozšíření komerčních fluorimetrů, přístrojů pracujících na principu pulzní amplitudové modulace (PAM) fluorescenčního signálu. PAM-fluorimetrie, metoda úspěšně využívaná ve fotosyntetickém výzkumu, je spojena především se jménem a pracemi Ulricha Schreibera a jeho spolupracovníků [2]. 2. Fotosyntéza Fotosyntéza je složitý soubor procesů, jimiž fotoautotrofní organizmy využívají energii kvant slunečního záření k zabudování molekul ve vzduchu obsaženého oxidu uhličitého (CO 2 ) do organických sloučenin a k uvolnění molekulárního kyslíku (O 2 ) z molekul vody (H 2 O) do ovzduší. Fotosyntetická tvorba nových organických látek a kyslíku má tedy zásadní význam EKOTECH Fluorescence chlorofylu in vivo 1

2 pro udržení života na planetě Zemi. K tomuto účelu je využíváno elektromagnetické záření absorbované fotosyntetickými barvivy (chlorofyly, karotenoidy a fykobiliny) v tzv. viditelné oblasti slunečního spektra, tj. v intervalu vlnových délek od 400 do 700 nm [3]. Fotosyntéza patří k nejstarším a také nejdůležitějším biochemickým pochodům na zemi. První fototrofní organismy vznikly na naší planetě přibližně před třemi miliardami let. Velmi zjednodušeně je fotosyntéza charakterizována následující sumární rovnicí: h 6 CO H 2 O C 6 H 12 O O H 2 O. (1) Z této rovnice vyplývá, že fotosyntetické procesy v rostlinách mohou zůstat aktivní pouze při dostatečně dlouhé době ozáření a kontinuálním příjmu molekul H 2 O a CO 2. Použitím radioaktivních a stabilních izotopů C, N, O, P se zjistilo, že fotosyntetický proces je možno rozdělit na fázi světelnou (fotofyzikální) a fázi temnotní (chemosyntetickou). Světelná fáze zahrnuje oxido-redukční reakce, při nichž nastává fotolýza vody, vytváří se phgradient a vzniká ATP a NADPH. Temnotní fáze zahrnuje enzymatické reakce, v nichž se na úkor chemické energie produktů světelné fáze (NADPH, ATP) a za spoluúčasti CO 2 a H 2 O syntetizují důležité organické látky - sacharidy, tuky, bílkoviny apod., přičemž účinnost jejich syntézy v chloroplastech závisí na intenzitě přísunu ATP a NADPH, tj. na účinnosti světelných reakcí. 3. Chloroplast Nejmenší strukturní i funkční jednotkou, která je schopna i po izolaci absorbovat záření, fixovat CO 2 a zabudovávat uhlík do sacharidů, je chloroplast. Skládá se z dvojité povrchové membrány, vnitřní tekuté fáze, zvané stroma, jež obsahuje enzymy uplatňující se při fixaci CO 2, a membránových útvarů, tzv. tylakoidů, s granální strukturou. Membránu tylakoidů lze považovat za lipidovou dvojvrstvu, do níž jsou vnořeny pigment-bílkovinné komplexy, tvořící dvě základní fotosyntetické jednotky - fotosystém II a I (FS II a I). Ty se skládají z reakčního centra (RC), tvořeného molekulou dimeru Chl a, a z vnitřních (core) a vnějších (mobilních) světlosběrných antén, které obsahují velké množství molekul Chl a a b. Poměr chlorofylu a ku b je v tzv. vnějších anténách přibližně 3:1. Do RC směřuje energie fotonů absorbovaných celým světlosběrným komplexem ve formě toku excitonů (vázaných nábojových stavů). FS I má ve svém reakčním centru pigment s maximem absorpce kolem 700 nm (P 700 ) a téměř nefluoreskuje. FS II obsahuje analogický pigment s maximem při kratší vlnové délce 680 nm (P 680 ) a výrazně fluoreskuje (viz níže).oba dva fotosystémy jsou mezi sebou propojeny řadou elektronových přenašečů a navzájem úzce kooperují. 4. Chlorofyl Základním fotoreceptorem (látkou schopnou zachytit přicházející fotony), který se účastní fotosyntézy, je chlorofyl. Jeho molekulu tvoří planární hořečnatý komplex redukovaného porfyrinu s navázaným polyisoprenovým řetězcem alkoholu fytolu. Chl má v dopadajícím bílém (polychromatickém) světle zelenou barvu, neboť intenzivně absorbuje viditelné záření v oblastech vlnových délek okolo 430nm (modrá oblast spektra) a 663nm (červená oblast), zatímco záření ze zelené oblasti (cca 500 nm) propouští. Rozlišujeme dva základní typy, které se odlišují pouze jedním substituentem na porfyrinovém kruhu - Chl a obsahuje metylovou EKOTECH Fluorescence chlorofylu in vivo 2

3 skupinu, kdežto Chl b karbonylovou. Přesto se tato malá chemická záměna výrazně projevuje na optické fyzikální charakteristice, které říkáme absorpční spektrum molekuly Chl. Světlo - přesněji řečeno viditelná oblast elektromagnetického záření/pole - je proud fotonů (kvazičástic) o vlnové délce (λ) v intervalu od 400 do 700 nm. Každý pohlcený foton může způsobit jednoduchý fotofyzikální děj za předpokladu, že nese dostatečné množství energie (E hν ). Energie fotonů pohání primární fotochemické reakce, které iniciují fotosyntetickou přeměnu zářivé energie na biochemicky využitelnou formu a vedou k separaci náboje v RC FS II a FS I), nebo je disipována nefotochemickou cestou - přeměnou na teplo a fluorescenci. Vysvětlení fotochemických a nefotochemických procesů v RC vyžaduje použití některých základních pojmů z kvantové teorie. K jejich lepšímu pochopení slouží následující obrázek. Obr. 1: Zjednodušené tříhladinové schéma využití excitační energie v molekule chlorofylu reakčního centra fotosystému II [4]. Energetické schéma ukazuje základní singletní stav (S 0 ) a dva singletní excitované stavy (S 1, S 2 ) molekuly Chl. Horizontální čáry znázorňují vibrační stavy uvedených energetických hladin pro různá vibrační čísla (v" pro základní stav, v' pro excitované stavy). Vertikální šipky reprezentují následující kvantové procesy: (1) absorption - absorpce kvanta záření s určitou vlnovou délkou A, jež způsobí přechod elektronu ze základního do excitovaného stavu v čase kratším než s, (2) dissipation to heat - rozptýlení excitační energie nezářivou vnitřní konverzí na teplo, a (3) fluorescence - zářivá deexcitace vzbuzeného stavu vyzářením fotonu s vlnovou délkou F větší než 650nm. Parametr znamená přibližnou dobu života elektronu v jednotlivých kvantových stavech. Horizontální šipky reprezentují tzv. fotochemickou cestu (photochemistry), tj. rozdělení náboje v RC FS II jako počátek transportu elektronů (Electron transport), a nábojovou neutralizaci iontu Chl + elektrony dodávanými (Donation of electrons) komplexem štěpícím vodu (WSC) [4]. Chlorofyl v RC můžeme popsat jako oxidoredukční systém: oxiduje se předáním elektronu na molekulu akceptoru a poté se vrací do základního (nábojově neutrálního) stavu tak, že přijme elektron od primárního donoru. Potřebné množství energie pro přechod elektronu mezi EKOTECH Fluorescence chlorofylu in vivo 3

4 základním a excitovaným stavem se získá absorpcí světla. Je-li absorbován foton z modré oblasti viditelného spektra (λ = 450 nm), přechází elektron do vyššího excitovaného stavu S 2, dojde-li k absorpci fotonu z energeticky chudší červené oblasti (λ = 650 nm), může elektron přejít pouze do stavu S 1. Doba života elektronu v excitovaném stavu S 1 je ale zároveň asi tisíckrát delší (τ = s) než v S 2. Během této doby musí být elektron buď přenesen na sousední molekulu v elektronově transportním řetězci (feofytin u rostlin), anebo se vrací do základního stavu nezářivým procesem (teplotní disipace) nebo zářivým (fluorescence). Kvantová účinnost fotosyntézy (počet molů fixovaného CO 2 na 1 mol absorbovaných kvant záření) se zvýší, pokud je světlo absorbováno nejen chlorofylem a, ale také přídavnými pigmenty. Anténní komplexy proto obsahují vedle Chl a a b také tzv. pomocná barviva, hlavně karotenoidy. Jsou to žlutá a červená lipofilní barviva, jež zachycují světelná kvanta v oblasti spektra, kde Chl neabsorbuje. Excitační energie je následně využita rychlým přenesením na Chl a. Karotenoidy rovněž odstraňují radikálové formy kyslíku, které vznikají v průběhu fotosyntézy a působí destruktivně jak na RC, tak na další lipoproteiny v tylakoidní membráně. 5. Elektronový transport Přenos elektronů přes dlouhou řadu přenašečů spojených do tzv. elektronově transportního řetězce je poměrně složitý proces, během něhož jsou elektrony transportovány z primárního donoru - molekuly vody, až na cílový akceptor - molekulu NADP +. Tímto způsobem rostliny transformují světelnou energii na chemickou, přesněji řečeno oxido-redukční. Tento proces je popisován pomocí tzv. Z-schématu (obr. 2), do něhož patří: komplex tvořený 4 atomy Mn, který štěpí naráz 2 molekuly H 2 O na 4 protony (H + ), 4 elektrony a molekulární kyslík (O 2 ), tyrosin obsahující molekula (Y Z ), jež dopravuje elektrony do dimeru Chl v RC FS II (P 680 ), excitony vybuzený Chl (P 680 *), který je primárním donorem elektronů pro molekulu feofytinu (Pheo), z něhož jsou elektrony přenášeny na plastochinonovou molekulu (Q A ), pevně vázanou na D2 proteinu, a poté na D1 proteinu volně vazný plastochinon (Q B ). Ten po obdržení 2 elektronů a 2 protonů se oddělí a v podobě redukovaného plastochinonu (PQH 2 ) se pohybuje uvnitř tylakoidní membrány směrem k superkomplexu tvořenému Rieskeho FeS-proteinem, dvěma cytochroby b 6 a cytochromem f. Odtud s pomocí vysoce mobilního plastocyaninu (PC), měď obsahujícího proteinu, jsou elektrony přenášeny do RC FS I (P 700 ), kde po obdržení excitační energie přechází ze vzbuzeného stavu Chl (P 700 *) na primární akceptor FS I (A 0 ) a dále přes molekulu fyllochinonu - vitaminu K (A 1 ) na trojici imobilních FeSproteinových center F X, F A a F B. V závěrečné fázi se přes pohyblivý FeS-protein ferredoxin (Fd) a za přispění enzymu ferredoxin-nadp-oxidoreduktázy elektronový pár přenáší na cílový akceptor - oxidovanou formu nikotinamidadenindinukleotidfosfátu (NADP + ), který se navázáním protonu redukuje na NADPH [5]. Molekuly vody slouží na jedné straně jako donor protonů pro tvorbu NADPH a na druhé straně jako zdroj elektronů pro kladně nabitou molekulu aktivního Chl a v RC FS II. Při transportu elektronů se napříč thylakoidní membránou zároveň transportují též protony (H + ), čímž vzniká ph-gradient, nezbytný pro vytváření molekul ATP z adenosindifosfátu (ADP) a fosfátové skupiny pomocí tzv. ATP-syntázy (membránového enzymatického bílkovinného komplexu). NADPH a ATP jsou substráty nezbytné pro fotosyntetickou fixaci molekul CO 2 do molekul glukózy, jež jsou syntetizovány v rámci kaskády biochemických reakcí v tzv. Calvinově-Bensonově cyklu. EKOTECH Fluorescence chlorofylu in vivo 4

5 Obr. 2: Z-schéma lineárního elektronového transportu [5]. 6. Fluorescence Záznam fluorescence vyzařované molekulami Chl a se ve fotosyntetickém výzkumu stal základem široce využívané metody, která dovolila pochopit fotochemické a nefotochemické procesy probíhající v tylakoidní membráně chloroplastů. Dostupnost komerčních zařízení, pracujících na principu pulzní amplitudové modulace (PAM) fluorescenčního signálu, umožnila přesná měření fluorescence chlorofylu (FChl) dokonce i v polních podmínkách. FChl je při pokojové teplotě detegována převážně (asi z 90 %) z chlorofylových komplexů FS II a představuje cca 3 5 % z celkové pohlcené energie. K popsání a kvantifikování procesu emise fluorescence byl zaveden termín kvantový výtěžek fluorescence ( F), který je definován jako podíl počtu vyzářených fotonů (n F ) k počtu všech absorbovaných kvant (n A ): F = n F / n A, (2) resp. může být vyjádřen následující rovnicí: F = I F / I A = k F / Σk i, (3) kde I F značí intenzitu fluorescence, I A intenzitu absorbovaného záření, k F rychlostní konstantu fluorescence a Σk i představuje sumu rychlostních konstant všech konkurenčních procesů, které vedou k návratu molekuly Chl do základního stavu (viz obr. 1) [4]. Přestože fluorescence Chl představuje minoritní proces deaktivace excitovaných pigmentů, časové změny výtěžku FChl umožňují zkoumat mechanismy, pomocí nichž tylakoidy regulují využití zářivé energie absorbované komplexy FS II. Jak plyne z obr. 1 a zákona zachování energie, růst jedné komponenty vede ke snížení nejméně jedné z ostatních dvou komponent, do nichž excitační energie přechází. Mezi fotochemickými a nefotochemickými procesy platí antiparalelní vztah a tudíž měřením F lze nepřímo usuzovat na účinnost fotochemických dějů v RC FS II. Záznam časových změn kvantového výtěžku fluorescence (tzv. Kautského jev) se nazývá fluorescenční indukční křivka (FIK) a její příklad je na obrázku 3. Analýza EKOTECH Fluorescence chlorofylu in vivo 5

6 takovéto křivky umožňuje kvalitativně i kvantitativně posoudit zužitkování excitační energie ve fotosystému II a nepřímo také dalšími komplexy v tylakoidní membráně. Např. zvýšení toku excitační energie do fotochemických procesů vede k poklesu (zhášení) výtěžku FChl. Tímto způsobem FIK odráží změny v účinnosti primárních fotosyntetických procesů. Obr. 3: Fluorescenční indukční křivka zaznamenaná fluorimetrem PAM-2000 (H. Walz, Effeltrich, SRN) na listu fazolu in vivo. Dark period označuje temnotní adaptaci listu, light period fotosynteticky aktivní fázi a dark relaxation návrat vzorku ze světelně do temnotně adaptovaného stavu. +MR/-MR znamená zapnutí/vypnutí měřícího záření (ozářenost povrchu < 0,1 μmol hν m -2 s -1 ), +AR/-AR zapnutí/vypnutí aktinického záření (290 μmol hν m -2 s -1 ), SP spuštění saturačního pulzu (cca 2500 μmol hν m -2 s -1 ) a FR se šipkou označuje aplikaci far-red záření (cca 10 μmol hν m -2 s -1, 3 s). Použito bylo normování FIK na maximum FChl (F M ) [4]. Metodou saturačních pulzů lze rozlišit dva základní typy zhášení FChl: fotochemické zhášení, které odpovídá energii spotřebované při rozdělení (separaci) náboje v reakčních centrech FS II a nefotochemické zhášení, jež je vyvoláno tvorbou ph-gradientu a také aktivací četných regulačních mechanismů, které zajišťují efektivní využití excitační energie a umožňují rostlinám vypořádat se s nadměrnou ozářeností (fotoinhibicí) nebo jiným druhem poškození fotosyntetických komplexů způsobených v průběhu stresu. 6. Fluorescenční indukční křivka V temnotně adaptovaném stavu (TAS), který je vzhledem k elektronově transportním procesům v tylakoidní membráně fotochemicky neaktivním stavem, jsou obecně všechna RC FS II reoxidována ( otevřená ). V tomto stavu je možné zaznamenat tzv. minimální výtěžek FChl (viz F 0 na obr. 3), jestliže je vzorek ozařován slabým modulovaným měřícím zářením (MR). Je-li vzorek následně vystaven krátkému pulzu (max. 1 s) velmi intenzivního bílého světla, způsobí tento saturační pulz (SP) rychlé uzavření všech aktivních reakčních center FS EKOTECH Fluorescence chlorofylu in vivo 6

7 II, provázené redukcí všech akceptorů Q A a vysycením fotochemických procesů ve FS II. Tehdy je zaznamenán tzv. maximální výtěžek FChl (F M na obr. 3). Správné stanovení jak F M, tak F 0 je nezbytné pro následné kvantifikování procesů fotochemické i nefotochemické povahy, které se uplatňují během primární fáze fotosyntézy. Rozdíl mezi F M a F 0 je označován jako maximální výtěžek variabilní FChl v temnotně adaptovaném stavu (F V ). F V lze vypočítat ze vztahu: F V = F M F 0. (4) Po zapnutí aktinické záření (AR) se výtěžek FChl dynamicky mění v důsledku působení fotochemických a nefotochemických procesů. Fotochemické procesy se vztahují k rozdělení náboje v RC FS II, nefotochemické procesy zahrnují vytváření ph-gradientu, nezářivou disipaci energie na teplo, fosforylaci mobilních světlosběrných komplexů FS II, fotoinhibici reakčních center FS II, konformační změny tylakoidní membrány atd. V průběhu světelné periody přechází fotosyntetický aparát postupně z temnotně do světelně adaptovaného stavu (SAS). Ten je charakterizován nepřetržitou syntézou ATP, NADPH a souběžnou fixací CO 2. Jakmile se procesy elektronového transportu a spřažených biochemických reakcí dostanou do rovnováhy, je dosaženo i tzv. ustálené úrovně (steady-state) výtěžku fluorescence Chl (F S ). Použití saturačního pulzu v SAS umožňuje určit maximální výtěžek FChl (F M '). Jakmile je AR vypnuto, je po krátkém pulzu slabého dlouhovlnného červeného záření (far-red, FR), jež urychluje reoxidaci akceptorové strany FS II, zaznamenán minimální výtěžek FChl (F 0 '). Pak je možné určit maximální výtěžek variabilní FChl ve světelně adaptovaném stavu (F V ') jako: F V ' = F M ' F 0 '. (5) Obecně tedy úrovně fluorescence F M a F 0 jednoznačně charakterizují temnotně adaptovaný stav, F M ', F S a F 0 ' charakterizují světelně adaptovaný stav tylakoidní membrány. Návrat vzorku ze SAS do TAS po vypnutí indukčního aktinického záření lze sledovat během tzv. temnotní relaxační fáze aplikací pulzů saturačního záření v určitých časových intervalech (viz obr. 3). Analýzou relaxační kinetiky nefotochemického zhášení FChl pak lze najít jeho základní komponenty, které úzce souvisí s aktivací konkrétních regulačních a reparačních mechanizmů uvnitř tylakoidní membrány v průběhu primární fotosyntézy. 7. PAM-fluorimetr Blokové schéma PAM-fluorimetru, přístroje pracujícího na principu pulzní amplitudové modulace indukované FChl, je na obr. 4. Měřící postup je následující: Předzatemněný vzorek (10 15 min) je vystaven červenému (λ = 650 nm) velmi slabému (cca 0,1 mol fotonů m -2 s -1 ) pulsujícímu (f = 600 Hz) měřícímu záření (MR) ze světloemitující diody (LED). Jednotlivé pulzy jsou dlouhé 3 s. Anténní pigmenty obou fotosystémů světlo pohlcují a polovodičový fotodetektor zaznamenává vzniklou fluorescenční odezvu (úroveň F 0 na obr. 3). Detektor zaznamenává signál pouze na frekvenci MR, čímž se dosahuje vysoké selektivity a citlivosti. Vystavení vzorku aktinickému záření, které je schopno navodit fotosynteticky aktivní stav, nebo saturačnímu záření, které v krátkém časovém okamžiku uzavře všechna RC FS II, se projeví změnou amplitudy (výšky) pulzů indukované fluorescence. Ta je elektronickou částí vyhodnocena jako časově proměnný výtěžek FChl a znázorněna na displeji počítače. EKOTECH Fluorescence chlorofylu in vivo 7

8 Obr. 4: Blokové schéma PAM-fluorimetru pro detekci indukované fluorescence Chl a: A (amplifier) - zesilovač, AR (actinic radiation) - zdroj aktinického záření, D (detector) detektor, e (emission) - emise modulované fluorescence Chl, FR (far-red) - zdroj far-red záření, LF (long-pass filter) - filtr propouštějící světlo o delší vlnové délce (λ > 700 nm), MR (measuring radiation) - zdroj měřícího záření, r (reflected radiation) - odražené záření, SF (short-pass filter) - filtr propouštějící světlo o kratší vlnové délce (λ < 670 nm), SR (saturating radiation) - zdroj saturačních pulzů (SP) [4]. Kontinuální aktinické záření (AR) emitované LED (650 nm) s hustotou toku fotonů řádově 100 mol m -2 s -1 vyvolává separaci náboje v RC, tok elektronů od FS II přes FS I na NADP +, tvorbu ph-gradientu, syntézu ATP a fixaci CO 2 v Calvin-Bensonově cyklu. Saturační pulzy (SP) o délce 0,8 s jsou vytvářeny halogenovou lampou (řádově 10 3 mol m -2 s -1 ). Toto bílé světlo (SP) způsobí, že se všechna RC FS II převedou do uzavřeného (přeredukovaného) stavu. V tomto stavu jsou fotochemické procesy ve FS II plně saturovány a excitační energie je disipována procesy nefotochemické povahy, tj. dochází k její přeměně na fluorescenci a teplo. V tomto stavu je dosaženo tzv. maximálního výtěžku FChl (F M, F M ' na obr. 3). Frekvence měřícího záření se během aplikace AR a SP zvyšuje z 600 Hz na 20 khz, čímž se dosahuje vyššího časového rozlišení. Zdroj far-red (FR) záření ( = 735 nm, 10 mol m -2 s -1 ) je využíván k rychlé reoxidaci akceptorové strany FS II (plastochinonového zásobníku) po vypnutí AR nebo po aplikaci SP. Má vliv pouze na činnost FS I a je nezbytný pro stanovení úrovně FChl označované jako F 0 ' (obr. 3) [4]. 8. Fluorescenční parametry Pro účely kvantitativní analýzy záznamů FIK byly ve fotosyntetickém výzkumu zavedeny tzv. fluorescenční parametry (FP). Definování FP je závislé na pětici vzájemně nezávislých úrovní FChl: F 0, F M (pro TAS), F 0 ', F M ' a F S (pro SAS). Jejich korektní naměření je zcela zásadní pro správné určení hodnot příslušných FP. Z celé řady parametrů se velmi často používá následujících šest [4]: 1. Maximální kvantový výtěžek fotochemických procesů ve FS II ( Po) Po = F V /F M = (F M F 0 )/ F M = 1 F 0 /F M ; (0 Po 1) (6) EKOTECH Fluorescence chlorofylu in vivo 8

9 Po patří mezi nejpoužívanější parametry. Jednoznačně charakterizuje TAS. Počítá se jako podíl mezi maximálním variabilním (F V ) a maximálním (F M ) výtěžkem FChl. Určuje míru maximální fotochemické kapacity FS II a jeho střední hodnota u mnoha druhů rostlin je za nestresujících podmínek rovna 0,832. U rostlin vystavených stresu, anebo v případě jejich poškození, se hodnota tohoto parametru výrazně snižuje. Po tedy může velmi rychle prokázat poškození komplexů FS II, a to např. jako následek stresu suchem, nadměrnou ozářeností, chladem apod. 2. Koeficient fotochemického zhášení variabilní FChl (q P ) q P = (F M ' F S )/( F M ' F 0 ') = F/F V ' ; (0 q P 1) (7) Tento parametr se vztahuje k SAS. Kvantifikuje fotochemickou kapacitu FS II a velmi úzce souvisí s aktuální frakcí otevřených (reoxidovaných) reakčních center FS II. 3. Koeficient nefotochemického zhášení variabilní FChl (q N ) q N = (F V F V ')/F V = 1 F V '/F V (0 q N 1) (8) Velikost q N je odrazem účinnosti nefotochemických procesů, které jsou charakteristické pro SAS. K nim patří tvorba ph-gradientu, syntéza ATP, činnost Calvinova-Bensonova cyklu, aktivace regulačních mechanismů (odpojení mobilních světlosběrných komplexů, aktivace xantofylového cyklu) atd. Na rozdíl od q P, při poškození fotosyntetického aparátu rostliny se hodnota q N zvyšuje. 4. Koeficient relativní změny základní FChl (q 0 ) q 0 = (F 0 F 0 ')/F 0 = 1 F 0 '/F 0 ; (-0,2 q 0 1) (9) Parametr q 0 popisuje změny počáteční úrovně F 0 poté, co byl vzorek vystaven aktinickému záření. Podobně jako q N kvantifikuje děje nefotochemické povahy v SAS a odráží též konformační změny uvnitř pigment-proteinových komplexů v tylakoidní membráně. 5. Efektivní kvantový výtěžek fotochemické přeměny energie ve FS II ( 2) 2 = (F M ' F S )/F M ' = F/F M ' ; (0 2 < 1) (10) Parametr 2 se vztahuje k SAS a kvantifikuje účinnost fotochemické konverze zářivé energie v FS II během fotosyntézy, resp. účinnost lineárního elektronového transportu. Je velmi často využíván v terénním výzkumu, neboť nevyžaduje předchozí temnotní adaptaci vzorku. 6. Nefotochemické zhášení FChl (NPQ) NPQ = (F M F M ')/F M ' = F M /F M ' 1 (0 NPQ 6) (11) NPQ je důležitý FP vztahující se k SAS. Odráží procesy, které vedou ke snížení hodnoty F M v průběhu adaptace rostliny na světlo. NPQ kvantifikuje nefotochemické procesy způsobující přeměnu velké části excitační energie na teplo. Jeho velikost souvisí s tvorbou ph-gradientu, aktivací xantofylového cyklu (reverzibilní konverzí pigmentu vioalaxantinu na zeaxantin ve světlosběrných komplexech FS II jako následek nadměrné ozářenosti), fotoinhibicí, resp. fotodestrukcí reakčních center FS II atd. 9. Závěr Zde uvedený text shrnuje základní informace o fotofyzikálních procesech a navazujících biochemických dějích v primární fázi fotosyntetické přeměny zářivé energie, jež jsou nutné pro vznik složitějších organizkých látek (cukrů, škrobů, bílkovin), na nichž je založen život na naší planetě. Vysvětluje potřebné fyzikální pojmy a také metodu, pomocí níž lze relativně EKOTECH Fluorescence chlorofylu in vivo 9

10 rychle a efektivně účinnost primárních fotofyzikálních procesů měřit. Pro hlubší pochopení dané problematiky odkazuji čtenáře na níže uvedenou literaturu a další četné práce odborníků, kteří se zabývají biofyzikálním a biochemickým výzkumem fotosyntézy. Tento příspěvek vznikl v rámci výzkumného záměru ÚMBR AV ČR č. AV0Z Literatura [1] Kautsky H., Hirsch A.: Chlorophyllfluoreszenz und Kohlensäureassimilation. I. Das Fluoreszenzverhalten grüner Pflanzen. Biochem. Z. 274: , [2] Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10: 51-62, [3] Procházka S., Macháčková I., Krekule J., Šebánek J. a kol.: Fyziologie rostlin. Academia, Praha, 484 stran, [4] Roháček K., Barták M.: Technique of the modulated chlorophyll fluorescence basic concepts, useful parameters, and some applications. Photosynthetica 37: , [5] Whitmarsh J., Govindjee: The photosynthetic process. Článek zveřejněný na URL-adrese [ Seznam v textu použitých zkratek ADP adenosindifosfát AR aktinické záření ATP adenosintrifosfát Chl chlorofyl FChl fluorescence chlorofylu FIK fluorescenční indukční křivka FP fluorescenční parametr FR far-red záření FS I a II fotosystém I a II LED světlo emitující dioda MR měřící záření NADPH redukovaná forma nikotinamidadenindinukleotidfosfátu PAM pulzní amplitudová modulace RC reakční centrum SAS světelně adaptovaný stav SP saturační pulz TAS temnotně adaptovaný stav WSC vodu štěpící komplex Karel Roháček, EKOTECH Fluorescence chlorofylu in vivo 10

Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu

Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, Ústav molekulární biologie rostlin České Budějovice,

Více

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza

Více

aneb Fluorescence chlorofylu jako indikátor stresu

aneb Fluorescence chlorofylu jako indikátor stresu Měření fotosyntézy rostlin pomocí chlorofylové fluorescence aneb Fluorescence chlorofylu jako indikátor stresu Fotosyntéza: Fotosyntéza je proces, ve kterém je světelná energie zachycena světlosběrnými

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

7 Fluorescence chlorofylu in vivo

7 Fluorescence chlorofylu in vivo 7 Fluorescence chlorofylu in vivo Petr Ilík KBF a CRH, PřF UP Fluorescence chlorofylu in vivo fluorescence in vivo z chlorofylu a (ostatní přídavné pigmenty přenos energie na chl a) indikátor neschopnosti

Více

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV Úloha č. 7 Extrakce a chromatografické dělení (C18 a TLC) a stanovení listových barviv -1 - EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV LISTOVÁ BARVIVA A JEJICH FYZIOLOGICKÝ

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Fluorescence, fotosyntéza a stress: jak to spolu souvisí?

Fluorescence, fotosyntéza a stress: jak to spolu souvisí? tun. Fluorescence, fotosyntéza a stress: jak to spolu souvisí? Mgr. Julie Soukupová, hd. Ústav systémové biologie a ekologie AVČR, Ústav fyzikální biologie JU HTTsoukupova@greentech.czTTH a RNDr. Karel

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -

Více

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA -2014 ABSORPČNÍ SPEKTROMETRIE ACH/IM 1 Absorpce záření ve Vis oblasti Při dopadu bílého světla na vzorek může být záření zcela odraženo

Více

4 Přenos energie ve FS

4 Přenos energie ve FS 4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA BIOFYZIKY BAKALÁŘSKÁ PRÁCE Fotoinhibice lišejníků studovaná pomocí rychlého fluorescenčního indukčního jevu Vypracovala: Lenka Řiháková Studijní

Více

6 Přenos elektronů a protonů

6 Přenos elektronů a protonů 6 Přenos elektronů a protonů Petr Ilík KBF a CRH, PřF UP Evoluce FS 1 Halobaktérie H + pumpa http://www.rsc.org/publishing/chemtech/volume/2008/11/b acteriorhodopsin_insight.asp - Protonová pumpa halobakterií

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

FOTOBIOLOGICKÉ POCHODY

FOTOBIOLOGICKÉ POCHODY FOTOBIOLOGICKÉ POCHODY Základním zdrojem energie nutné pro život na Zemi je sluneční záření. Většina pochodů souvisí s přímým využitím zářivé energie pro metabolické pochody nebo pro orientaci organizmu

Více

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Autor: Katka  Téma: fyziologie (fotosyntéza) Ročník: 1. Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZPRÁVA O UKONČENÍ PROJEKTU Projekt Název projektu: Změna optických vlastností listů révy vinné v závisloti na obsahu fenolických látek

Více

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost: W.m -2 (= J.s -1.m -2 ) (osvětlenost: ln.m -2 = lux)? Fotonová (kvantová) ozářenost: mol.s -1.m

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY s názvem ZAŘÍZENÍ PRO ANALÝZU FOTOSYNTÉZY CEITEC MU vyhotovené podle 156 zákona č. 137/2006 Sb., o veřejných zakázkách, v platném znění (dále jen Zákon o VZ) 1. ODŮVODNĚNÍ ÚČELNOSTI

Více

ení s chemickými látkami. l rní optiky

ení s chemickými látkami. l rní optiky OPTICKÉ SENSORY Základem je interakce světeln telného zářenz ení s chemickými látkami. l Při i konstrukci katalytických biosensorů se používaj vají: optické techniky: absorbance fluorescence luminiscence

Více

Biologie. Pracovní list č. 4 žákovská verze Téma: Fotosyntéza a faktory, které ji ovlivňují. Lektor: Mgr. Naděžda Kurowská

Biologie. Pracovní list č. 4 žákovská verze Téma: Fotosyntéza a faktory, které ji ovlivňují. Lektor: Mgr. Naděžda Kurowská www.projektsako.cz Biologie Pracovní list č. 4 žákovská verze Téma: Fotosyntéza a faktory, které ji ovlivňují Lektor: Mgr. Naděžda Kurowská Projekt: Reg. číslo: Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

Fluorescence chlorofylu

Fluorescence chlorofylu Pro připomenutí Fluorescence chlorofylu Princip Fotochemické a nefotochemické zhášení fluorescence Excitace chlorofylu: plantphys.info Analýza zhášení (quenching analysis) Temnostní adaptace Kautského

Více

RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE

RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE Teoretický úvod: FLUORESCENCE RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE Praktikum fyziologie rostlin FLUORESCENCE 1. Co je to fluorescence? Emisi záření, ke kterému dochází při přechodu excitované molekuly

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku? Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy

Více

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Ekofyziologie Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fyziologické a ekologické aspekty fotosyntézy vliv stresů a proměnného prostředí na fotosyntézu; mechanismy

Více

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN

AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

Barva produkovaná vibracemi a rotacemi

Barva produkovaná vibracemi a rotacemi Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.

Více

Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie

Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie IZOLACE GENOMOVÉ DNA Deoxyribonukleová kyselina (DNA) představuje základní genetický materiál většiny

Více

TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT

TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT Termodynamická rovnováha systému je charakterizována absencí spontánních procesů. Poněvadž práce může být konána pouze systémem, který směřuje ke spontánní

Více

ení k tvorbě energeticky bohatých organických sloučenin

ení k tvorbě energeticky bohatých organických sloučenin Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Určeno pro Sekce Předmět Téma / kapitola 6. ročník Základní EVVO Fotosyntéza

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Umělá fotosyntéza. Michael Hagelberg. Tomáš Polívka, Ústav fyzikální biologie

Umělá fotosyntéza. Michael Hagelberg. Tomáš Polívka, Ústav fyzikální biologie Umělá fotosyntéza Michael Hagelberg Tomáš Polívka, Ústav fyzikální biologie Energetické požadavky společnosti Energetický rozdíl 14 TW, 2050 33 TW, 2100 Alternativy Fosilní paliva Jaderné štěpení Obnovitelné

Více

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza FIA a CIA FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza Značky pro antigeny a protilátky: radioizotop enzym fluorescenční sonda luminiscenční sonda kovové

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace

Více

Kinetika chemických reakcí

Kinetika chemických reakcí Kinetika chemických reakcí Kinetika chemických reakcí se zabývá rychlostmi chemických reakcí, jejich závislosti na reakčních podmínkách a vysvětluje reakční mechanismus. Pro objasnění mechanismu přeměny

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Úbytek stratosférického ozónu a pozorované abiotické poškození rostlin u nás

Úbytek stratosférického ozónu a pozorované abiotické poškození rostlin u nás Úbytek stratosférického ozónu a pozorované abiotické poškození rostlin u nás Libuše Májková, Státní rostlinolékařská správa Opava Tomáš Litschmann, soudní znalec v oboru meteorologie a klimatologie, Moravský

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace

2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace 1. Úvod (proč jsou důled ležité) 2. Fotosensitizované reakce a jejich mechanismus 3. Fotodynamická terapie 4. Spontánní aggregace 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace Porfyriny

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

2. kapitola: Přenosová cesta optická (rozšířená osnova)

2. kapitola: Přenosová cesta optická (rozšířená osnova) Punčochář, J: AEO; 2. kapitola 1 2. kapitola: Přenosová cesta optická (rozšířená osnova) Čas ke studiu: 4 hodiny Cíl: Po prostudování této kapitoly budete umět identifikovat prvky optického přenosového

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin

Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin Jihočeská univerzita v Českých Budějovicích Biologická fakulta Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin Silvie Svidenská Vedoucí práce: Mgr. Julie Soukupová, Ph.D. České

Více

Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva

Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva Gymnázium Jana Nerudy Závěrečná práce studentského projektu Fotosyntéza - Rostlinná barviva Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Pod vedením vedoucích práce Mgr. Jiřího Vozky,

Více

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy

Více

Faktory ovlivňující růst rostlin. Ivana Šandová Šafránková

Faktory ovlivňující růst rostlin. Ivana Šandová Šafránková Faktory ovlivňující růst rostlin Ivana Šandová Šafránková Význam ikon v textu Klíčové pojmy Seznam důležitých pojmů a hlavních bodů, které by student při studiu tématu neměl opomenout. Poznámka V poznámce

Více

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. Vynález se týká způsobu určování ráže jaderného výbuchu a zapojení k jeho provádění.

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. Vynález se týká způsobu určování ráže jaderného výbuchu a zapojení k jeho provádění. ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ (6l) (23) Výstavnípriorita (22) Přihlášeno 26 03 76 (2!) PV 1967-76 199 070 (11) (BIJ (51) Int.CI. J G 21 J 5/CO

Více

EKOLOGIE LESA 27.1.2014. Primární produkce lesních ekosystémů funkce abiotických faktorů

EKOLOGIE LESA 27.1.2014. Primární produkce lesních ekosystémů funkce abiotických faktorů EKOLOGIE LESA Pracovní sešit do cvičení č. 4: Primární produkce lesních ekosystémů funkce abiotických faktorů Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Více

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku

Více

Energetický metabolismus rostlin. respirace

Energetický metabolismus rostlin. respirace Energetický metabolismus rostlin Zdroje E: fotosyntéza respirace Variabilní využívání: - orgánové a pletivové rozdíly (kořen, prýt, pokožka, ) - změny při vývoji a diferenciaci - vliv dostupnosti vody,

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Měření Planckovy konstanty

Měření Planckovy konstanty Měření Planckovy konstanty Online: http://www.sclpx.eu/lab3r.php?exp=2 Pro stanovení přibližné hodnoty Planckovy konstanty jsme vyšli myšlenkově z experimentu s LED diodami, viz např. [8], [81], nicméně

Více

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým

Více

Alfanumerické displeje

Alfanumerické displeje Alfanumerické displeje Alfanumerické displeje jsou schopné zobrazovat pouze alfanumerické údaje (tj. písmena, číslice) a případně jednoduché grafické symboly definované v základním rastru znaků. Výhoda

Více

Využití fluorescence sinic a řas při hodnocení kvality vod. RNDr. Štěpán Zezulka, PhD.

Využití fluorescence sinic a řas při hodnocení kvality vod. RNDr. Štěpán Zezulka, PhD. Využití fluorescence sinic a řas při hodnocení kvality vod RNDr. Štěpán Zezulka, PhD. Kvalita vod Přehrady zdroje pitné vody Umělé i přírodní nádrže pro rekreaci Řeky, potoky, rybníky Odpadní vody Kvalita

Více

9. MĚŘENÍ TEPELNÉ VODIVOSTI

9. MĚŘENÍ TEPELNÉ VODIVOSTI Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi

Více

ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU

ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU Václav Michálek, Antonín Černoch Společná laboratoř optiky UP a FZÚ AV ČR Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/07.0018 VM, AČ (SLO/RCPTM)

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Experimentální analýza hluku

Experimentální analýza hluku Experimentální analýza hluku Mezi nejčastěji měřené akustické veličiny patří akustický tlak, akustický výkon a intenzita zvuku (resp. jejich hladiny). Vedle členění dle měřené veličiny lze měření v akustice

Více

Světelné reakce fotosyntézy. - fixace energie záření

Světelné reakce fotosyntézy. - fixace energie záření Světelné reakce fotosyntézy - fixace energie záření Slunečnízáření Ultrafialové (UV, < 400 nm) Fotosynteticky aktivní radiace PAR, 400 až 700 nm (380-750nm) Infračervené (>750 nm) Sluneční záření http://www.giss.nasa.gov

Více

Dýchací řetězec (Respirace)

Dýchací řetězec (Respirace) Dýchací řetězec (Respirace) Buněčná respirace (analogie se spalovacím motorem) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 ---------> 6 CO 2 + 6H 2 O + 38 ATP Oxidativní

Více