Úskalí a možnosti zvyšování účinnosti u energetického využívání odpadů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úskalí a možnosti zvyšování účinnosti u energetického využívání odpadů"

Transkript

1 8 Úskalí a možnosti zvyšování účinnosti u energetického využívání odpadů Autor v článku se v úvodu zaměřuje na popis výchozí situace v oblasti energetického využívání odpadů (EVO), dále pokračuje s charakteristikou spalovacího procesu, přibližuje možnosti zvyšování účinnosti technologického řetězce. Blíže se přitom zaměřuje na parametry přehřáté páry, teploty spalin na výstupu z kotle, snižování teploty a množství spalin a přihřívání páry. Na závěr uvádí další možnosti zvyšování účinnosti. Výchozí situace Česká republika nesplňuje požadavky EU na skládkování odpadu. Produkce samotných komunálních odpadů však má vzrůstající trend, což souvisí s růstem životní úrovně. Stoupá také podíl komunálních odpadů ukládaných na skládky. Většina evropských států směsný zbytkový odpad z domácností a ze živností tedy spalitelný odpad, který se nedá dále jinak využít, spaluje v zařízeních na energetické využívání komunálního odpadu s vysokým stupněm technické inovace a využívá jej jako zdroj energie, tedy elektřiny a tepla. Například ve Švýcarsku, kde se již od roku 2000 nesmí skládkovat vůbec, je v nepřetržitém provozu 30 spaloven. Podobná situace je v Dánsku, Holandsku, Belgii, Německu, Rakousku a Švédsku. Také v ostatních evropských státech energetické využívání odpadů stále více nahrazuje skládkování. Ve Velké Británii je ve výstavbě několik spaloven odpadu. V České republice bylo za posledních třináct let uvedeno do provozu pouze jedno nové zařízení na energetické využívání odpadů a jedno bylo kompletně rekonstruováno (Termizo v Liberci v roce 1999, SAKO Brno v roce 2011). Vzniklo však několik projektových záměrů. Nesetkaly se však s podporou Ministerstva životního prostředí a nevládních organizací ani s pochopením občanských iniciativ a sdružení, které nebyly dostatečně informovány o výhodách energetického využívání odpadu a o jeho skutečných dopadech na životní prostředí. Nicméně se situace v ČR v posledních dvou letech výrazně změnila a je cítit (zatím verbální) podpora energetického využívání odpadů. Proces spalování odpadu v technických zařízeních má zhruba 150 letou tradici. Byly vyvinuty vyspělé technologie jak vlastního spalování, tak využití energie, tak čištění spalin a zpracování zbytkových látek. Až do poměrně nedávné doby byla jedním z hlavních kritérií spolehlivost technologického řetězce. Nicméně se do popředí zájmu dostává efektivita přeměny chemické energie paliva a její další využití, tedy zvyšování energetické účinnosti či tzv. energetické efektivity. Zatímco je ve Švýcarsku kladen větší a větší důraz na udržitelné hospodaření se zdroji a z tohoto důvodu také na využívání zbytkových látek z procesu energetického využívání odpadů, je např. v SRN kladen větší důraz na energetickou účinnost. Výsledkem jsou pak zařízení s jednoduchým čištěním spalin generující nezpracovatelné zbytkové látky. Spalovací proces Odpad představuje velmi komplikované palivo s neustále se měnícími vlastnostmi vykazuje Obecné schéma možností zpracování zbytkových látek Technologický řetězec s fyzikálně-chemickou absorpcí a se zpracováním zbytkových látek

2 9 nerovnoměrné hodnoty výhřevností. Při vysokých a vyšších výhřevnostech hoří odpad v přední části roštu, zatímco u nízkých výhřevností přesídlí hlavní spalovací zóna do zadní části ohniště, což má za následek nepravidelný teplotní profil i nepravidelný parní výkon. Proces spalování musí být přesto řízen tak, aby mohla být vyrobená energie dodávána do rozvodných soustav pravidelně, tedy bez výrazného kolísání výkonu. Systém řízení výkonu spalovacího procesu musí umožnit produkci páry tak, že přes 90 % všech měřených hodnot parního výkonu bude v intervalu ± 5%. Zvolený výkon parního kotle a nastavená hodnota zbytkové koncentrace O 2 ve spalinách na výstupu z kotle jsou vhodnými řídícími signály rozdělení primárního a sekundárního spalovacího vzduchu, pro pohyb hydraulického podávacího stolce a pro rychlost pohybu segmentů spalovacího roštu. Spalovací proces přestane být optimálně řízen, dojde-li ke změně vstupních podmínek - zpravidla k trvalé změně složení a tím i ke změně výhřevnosti odpadu. Dochází k vysokým teplotám, k vysokým rychlostem proudění spalin, k zanášení teplosměnných ploch kotle, k masivním erozivním i ke korozivním úkazům. Hospodárnost a ekologie jsou ohroženy. Návrh asanačních opatření vyžaduje systematická měření klíčových hodnot, jejich exaktní vyhodnocení jakož i použití déletrvajících zkušeností. Ohledně řízení výkonu ohniště existují různé (někdy i krkolomné) systémy výrobců zařízení EVO. Nicméně základem účinného řízení je splnění jednoduché základní podmínky - Součet množství primárního a sekundárního vzduchu musí být pro daný parní výkon konstantní. Při dodržení této podmínky je pak parní výkon nepřímo úměrný obsahu O 2 ve spalinách na výstupu z kotle. Dále Obsluha jeřábu musí odpad bezpodmínečně homogenizovat a musí mít informace o tom, který parní výkon alespoň zhruba odpovídá hodinovému prosazení odpadu (např.: 36 tun páry/h odpovídá cca 12 tun odpadu/h). Regulace výkonu u energetických zařízení na palivo o konstantním složení je nepoměrné snadnější - viz příklad práškového ohniště. Pro automatické řízení spalovacího procesu je rovněž možné použít teplotu v prostoru ohniště, resp. ve druhém tahu kotle (eliminace vlivu záření plamene). Parní výkon je přímo úměrný teplotě v prostoru ohniště a tím i teplotě ve druhém tahu kotle. Ve vazbě na zbytkový obsah kyslíku ve spalinách na výstupu z kotle je automaticky regulován poměr primárního a sekundárního vzduchu. Tímto Příklad automatického řízení spalovacího procesu Příklad neseřízené regulace výkonu spalovacího Zadaná a skutečná hodnota množství páry

3 10 způsobem lze docílit velmi rychlou regulaci spalovacího procesu. Poměrně často je při navrhování zařízení podceněno dimenzování sekundárního ventilátoru, který má pro řízení parního výkonu svoji nezastupitelnou funkci, zvláště při vyšší výhřevnosti odpadu s vysokým podílem těkavé hořlaviny. Poznámka: Je známé, že některá paliva mají malý podíl těkavé hořlaviny a není tak třeba pro jejich spalování používat sekundární vzduch. Vlastní konstrukce roštu (na trhu se nachází několik systémů), spolu s korektním rozdělením primárního vzduchu pod jednotlivé zóny roštu má přímý vliv na kvalitu spalování, resp. na chemický nedopal ve škváře. Optimalizovaný spalovací proces vykazuje zejména: Nedopal < 1 %. Rovnoměrný parní výkon přes 90 % všech měřených hodnot parního výkonu je v intervalu ± 5 % Koncentrace O2 ve spalinách 6 až 7 % (v závislosti na podmínkách u starších konstrukcí 10 %) ověření síťovým měřením. Koncentrace CO hluboko pod 50 mg/nm 3 ověření síťovým měřením. Průběh dávkování primárního a sekundárního vzduchu Možnosti zvyšování účinnosti technologického řetězce Bez optimálně fungujícího řízení spalovacího procesu je snaha o zvyšování účinnosti v podstatě zbytečná. Parametry přehřáté páry Poměrně často je, v souvislosti s legitimizací energetického využívání odpadů v ČR, možné sledovat diskusi či návrhy ohledně zvyšování parametrů páry o spalovenských kotlů. Jak to tedy je? Parní kotle pro technologický řetězec energetického využívání odpadů se navrhují zpravidla na parametry páry těsně kolem 400 C, 4,0 MPa. V praxi je trvale a mnohonásobně prokázáno, že lze takto navržený parní spalovenský kotel spolehlivě provozovat. Nicméně je případně možné - velmi opatrně - uvažovat o určitém zvýšení parametrů vyráběné páry. Každopádně je zvýšení parametrů páry u energetického využívání odpadů vždy spojeno s rizikem havárie tlakové části kotle zejména přehříváku páry. Parametry páry nad 400 C 4,0 MPa mohou přispět určitým způsobem k větší výrobě elektrické energie, což má určitý pozitivní vliv při kondenzačním provozu, tedy vyšší parametry páry přispějí ke zvýšení účinnosti technologického řetězce, nicméně na účinnost vlastního parního kotle nemají žádný vliv. Náklady spojené se zvýšením parametrů páry u zařízení na energetické využívání odpadu nejsou adekvátní k výnosům a provozním rizikům. Z hlediska výroby tepelné energie je vliv zvýšených parametrů páry nulový. Velká většina zařízení na energetické využívání odpadů je konfigurována jako teplárna a v takových případech je zvyšování parametrů páry bez většího vlivu na celkovou účinnost. Zvláště u zařízení na energetické využívání průmyslových (nebezpečných) odpadů je nutné xxxxxxxxxxxxxxxxxxxxxxxxxxxx Rovnoměrný parní výkon: 94,3 % všech měřených hodnot parního výkonu je v intervalu ± 5 %

4 11 samotná látka bod měknutí ( C) směsi látek (údaje v %) bod měknutí ( C) NaCl NaCl - 75 FeCl KCl ZnCl 2-45KCl 230 MgCl KCI - 40 FeCI CaCl NaCl - 42 FeCl FeCl PbCl 2-10MgCl FeCl NaCl-51 CaCl Body měknutí některých látek a látkových směsí komunální odpady průmyslové odpady teplota spalin po výstupu z ohniště C 900 C C vlhkost spalin (H 2 O) obj. % CO 2 % 5 5 O 2 obj.% 6 až 10 6 až 12 úletový popílek g/nm HCl mg/nm HF mg/nm SO 2 mg/nm NO mg/nm CO mg/nm Pb mg/nm Zn mg/nm Cd mg/nm Hg mg/nm PCDD/F ngte/nm Orientační složení spalin z energetického využívání komunálních a průmyslových odpadů po výstupu z ohniště Graf 1 Koroze u spalovenských kotlů Z důvodů omezení vysokoteplotní chlorové koroze nemá být teplota spalin před posledním výstupním přehřívákem větší než 650 C, a to i na konci provozní periody, tedy při vysokém stupni znečištění výhřevných ploch. Dodržení této podmínky má za následek nižší teplotu spalin před přehřívákem na začátku provozní periody (kolem 550 C, při částečném výkonu kolem 500 C). Je tedy zřejmé, že se teplota přehřáté páry nedá u spalovenských kotlů volit příliš přes 400 C. Zkušení výrobci spalovenských kotlů řadí před poslední přehřívák menší plochu konvekčního výparníku, která významně pomáhá k dodržení podmínky 650 C před posledním výstupním přehřívákem. Ze zkušenosti je známo, že spalovenské kotle s parametry páry kolem 350 C, 3,0 MPa jsou bez věnovat kotli náležitou pozornost. V těchto zařízeních jsou zpracovávány pevné, pastovité a tekuté průmyslové odpady proměnlivého složení, obsahující množství nejrůznějších látek. Při termické oxidaci spalování odpadu vzniká úletový popílek, který spolu se spalinami prochází kotlem. Úletový popílek vykazuje vlivem obsahu alkálií (sodík, draslík) relativně nízký bod měknutí. K překročení bodu měknutí úletového popílku dochází při teplotách přes 700 C. Kolem 900 C má těstovitý charakter a při teplotách přes 1100 C přechází do tekutého stavu. Při provozu kotle dochází k nárazům úletového popílku na povrch jeho teplosměnných ploch. V závislosti na fyzikálním stavu popílku dochází jak k erozi teplosměnných ploch, tak i k tvorbě usazenin či nápeků (nálepů) na jejich povrchu. Tento úkaz významně zhoršuje přestup tepla ze strany spalin a zkracuje provozní dobu kotle. Problematické úletové popílky obsahující sloučeniny alkálií a korozívní složky spalin s obsahem síry a chloru jsou nejčastějšími příčinami havárií teplosměnných ploch kotlů pro energetické využívání odpadu. Příklad orientačního složení spalin z energetického využívání komunálních a průmyslových odpadů po výstupu z ohniště ukazuje dále uvedená tabulka. Z rozdílů koncentrací uvedených látek lze přibližně odvodit stupeň odlišnosti při navrhování kotlů (a systémů čištění spalin) pro energetické využívání komunálních a průmyslových odpadů. Graf 1. názorně vystihuje podmínky minimalizování rizika koroze u teplosměnných ploch spalovenských kotlů Příklad regulace výkonu spalovacího procesu u spalovenského kotle a kotle s práškovým ohništěm

5 12 Umístění ochranného výparníku Orientace síťových měření havárií výhřevných ploch desítky let v provozu. Z druhé strany je názorné uvést příklad bernského zařízení na energetické využívání odpadu, kde byl instalován kotel s parametry páry 475 C, 6,2 MPa. Jednalo se o kotel s vertikálním uspořádáním tahů, přičemž poslední přehřívák byl na vstupu do 3. tahu kotle. Havárie přehříváku na sebe nenechala dlouho čekat a z důvodů opakovaných přerušení provozu musely být oba kotle asanovány. Hlavní asanační opatření: Instalace nového přesuvného roštu. Instalace stranových desek terciární vzduch. Optimalizování výdusky stěn ohniště. Instalace mříže výparníku mezi 1. a 2. tahem kotle. Zlepšení profilu spalin na vstupu do 3. tahu kotle. Instalace ochranného výparníku před poslední přehřívák. Takto asanované kotle jsou od poloviny osmdesátých let minulého století (s menšími úpravami vstupu spalovacího vzduchu) dosud v provozu. Poznámka: V současné době se v Bernu dokončuje výstavba nového zařízení a stávající zařízení ustoupí (spolu s teplárnou) další výstavbě města. Účinek asanačních opatření Teplota v prvním tahu kotle pod C O 2 pravidelně 8 až 10 % CO cca 0,001% Výsledky síťových měření (T, O2, CO) Ověřovací síťová měření byla provedena na úrovni cca 4 metry nad posledním přívodem vzduchu. Pro měřící místa A, B, C byly využity instalované otvory ve stěně kotle a osy 1, 2, 3, 4,5 byly orientovány zprava doleva v půdorysu 1. tahu kotle ve směru toku paliva, tedy osa 3 byla uprostřed půdorysu 1. tahu kotle. Konstantní hodnota teploty spalin na výstupu kotle Použití tzv. regulačního ekonomizéru, který po celou nepřetržitou dobu provozu může umožnit konstantní teplotu spalin na konci kotle, čímž je možné minimalizovat komínovou ztrátu. V takovém případě se volí poměrně nízká teplota napájecí vody a přes tepelný výměník v bubnu kotle je část napájecí vody ohřáta (prakticky na teplotu syté páry při daném tlaku). Takto upravená napájecí voda je míchána (směšovací ventil) s neohřátou Výsledky síťových měření v ose 3 (0,1 % obj. CO = mg/nm 3 ) napájecí vodou. Teplota této směsi se volí tak, aby byla dosažena stejná a rovnoměrná teplota spalin na výstupu z kotle. V okamžiku, kdy není možné teplotu vystupujících spalin na určité úrovni udržet, musí být kotel odstaven a vyčištěn. Snižování teploty spalin V úvahu může přijít zvětšení teplosměnné plochy ekonomizéru. Nicméně se ukazuje, že pro snížení teploty spalin o 30 C je zapotřebí až více než 2 větší teplosměnná plocha ekonomizéru. Takový

6 13 Regulační ekonomizér záměr naráží na konstrukční a cenové problémy. Z křivky plochy ekonomizéru je patrný vliv středního logaritmického spádu. Snižování množství spalin. Snížení množství spalin lze dosáhnou v podstatě jen dvěma způsoby: Snížením obsahu kyslíku ve spalinách a omezení či eliminování netěsností (vyloučení tzv. falešného vzduchu). Obsah kyslíku ve spalinách není možné libovolně snižovat, z důvodů následné vysoké adiabatické teploty spalin, která je u spalovenských kotlů, z uvedených důvodů limitována. Z druhé strany je užitečné eliminovat či omezit vstupy vzduchu do technologického řetězce. Přihřívání páry V klasické energetice běžně používání přihřívání páry pomocí spalinových mezipřehříváků naráží u spalovenských kotlů na limity v souvislosti se zmíněnou problematikou korozivních úkazů. U energetického využívání odpadů lze umístit mezipřehřívák mimo kotel a páru z vysokotlakého stupně lze přihřívat ve spojení s bubnem kotle. V takovém případě je třeba volit řádově vyšší tlak páry se všemi důsledky (konstrukce, výkon napájecího čerpadla). Vliv teploty spalin na účinnost kotle při konstantní teplotě napájecí vody a proměnné ploše ekonomizéru (Zdroj: Alessio, Muck: Möglichkeiten und Grenzen der Effizienzsteigerung in Abfallverbrennungsanlagen) Vliv obsahu kyslíku ve spalinách na výstupu z kotle na adiabatickou spalovací teplotu (Zdroj: Alessio, Muck: Möglichkeiten und Grenzen der Effizienzsteigerung in Abfallverbrennungsanlagen) Přihřívání páry v T-s diagramu. Poznámka: Spalinový mezipřehřívák byl v souvislosti s energetickým využíváním odpadu instalován v zařízení ve španělském Bilbau, ale byl instalován do kotle paroplynového cyklu Další možnosti zvyšování účinnosti Obecně platí, že existuje řada dalších možností zvyšování účinnosti zařízení: Vlastní spotřeba energie, nedopal (škvára, popílek), radiační ztráty, Princip řazení vnějšího mezipřehříváku. Přihřátím páry lze očekávat zlepšení účinnosti cca 2 až 4 % teplota spalovacího vzduchu (primární, sekundární), odluh, čištění spalin, údržba. Významně, v řádu procent, lze zvýšit účinnost zařízení prodloužením fondu provozní doby, tzv. disponibility zařízení. Zdroje: Alessio, Muck: Möglichkeiten und Grenzen der Effizienzsteigerung in Abfallverbrennubgsanlagen, 10 Münsteraner Abfallwirtschafttage, Münster, D, 2007 Hyžík J.: Projektování zařízení na energetické využívání odpadu z hlediska energetické účinnosti, Kotle a energetická zařízení, Asociace výzkumných organizací, ISSN , Brno, 2009

7 14 Zařízení Bilbao - spalinový mezipřehřívák umístěný v kotli paroplynového cyklu (Zdroj: CNIM). Vnější mezipřehřívák byl instalován v zařízení AVA Amsterdam Hyžík J.: Kotle pro energetické využívání odpadu seminář, Kotle a energetická zařízení, Asociace výzkumných organizací, ISSN , Brno, 2005 Provozní údaje zařízení na energetické využívání odpadu. Firemní podklady (EWB, E.I.C. spol. s. r. o. a EIC AG) O autorovi: Jaroslav Hyžík (1944) Strojní inženýr (1967), habilitace v oblasti technické ochrany životního prostředí (1992), jmenování profesorem (2004). Od roku 1979 vlastní a vede projekční a poradenskou kancelář se zaměřením na ochranu životního prostředí (EIC, a.s.) ve švýcarském Badenu. Od roku 1992 působí v Praze kancelář se stejným zaměřením (EIC spol. s r.o.). Společnost EIC disponuje řadou referenčních projektů energetického využití odpadu ve Švýcarsku a v zemích EU. Společnost EIC byla rovněž zodpovědná za zprovoznění spalovny v Praze Malešicích, je autorem projektu libereckého zařízení Termizo na energetické využívání odpadů a působila při jeho realizaci jako technický dozor investora. V současné době se zúčastňuje přípravy projektů na energetické využívání odpadů v Karviné a v Komořanech. Jaroslav Hyžík, Technická univerzita v Liberci, EIC AG - Ecological and Industrial Consulting EIC spol. s r.o. - Ecological and Industrial Consulting, Technická univerzita v Liberci Zdroje obrázků: Interní podklady E.I.C., spol. s r.o. Úskalí a možnosti zvyšování účinnosti u energetického využívání odpadů Autor v článku se v úvodu zaměřuje na popis výchozí situace v oblasti energetického využívání odpadů (EVO), dále pokračuje s charakteristikou spalovacího procesu, přibližuje možnosti zvyšování účinnosti technologického řetězce. Blíže se přitom zaměřuje na parametry přehřáté páry, teploty spalin na výstupu z kotle, snižování teploty a množství spalin a přihřívání páry. Na závěr uvádí další možnosti zvyšování účinnosti. По Рускы... ххххххххх хххх х хххххххххх ххххххх ххх х ххххххххххххххххххххххххх х х ххххххххх хххххххх ххх х ххххххххххххх хххххххх ххххххххх хххххх хх ххххххххх ххххххххх хххх х хххххххххх ххххххх ххх х ххххххххххххххххххххххххх х х ххххххххх хххххххх ххх х ххххххххххххх хххххххх ххххххххх хххххх хх ххххххххх ххххххххх хххх х хххххххххх ххххххх ххх х ххххххххххххххххххххххххх х х хххххххххххххх хххххххх ххххххххх хххххх хх ххххххххх ххххххххх хххх х хххххххххх ххххххх ххх х ххххххххххххххххххххххххх х х ххххххххх хххххххх ххх х ххххххххххххх хххххххх ххххххххх хххххх хх ххххххххх

Odborný seminář ENVIRONMENTÁLNÍ SOUVISLOSTI NAKLÁDÁNÍ S ODPADY Císařský sál, Karolinum Ovocný trh 3, Praha 1 2. října 2012 Vybrané statě projektování

Odborný seminář ENVIRONMENTÁLNÍ SOUVISLOSTI NAKLÁDÁNÍ S ODPADY Císařský sál, Karolinum Ovocný trh 3, Praha 1 2. října 2012 Vybrané statě projektování Odborný seminář ENVIRONMENTÁLNÍ SOUVISLOSTI NAKLÁDÁNÍ S ODPADY Císařský sál, Karolinum Ovocný trh 3, Praha 1 2. října 2012 Vybrané statě projektování zařízení na energetické využívání odpadů Jaroslav Hyžík

Více

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,

Více

Moderní kotelní zařízení

Moderní kotelní zařízení Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

DNY TEPLÁRENSTVÍ A ENERGETIKY

DNY TEPLÁRENSTVÍ A ENERGETIKY Hradec Králové 2015 DNY TEPLÁRENSTVÍ A ENERGETIKY Centrální zásobování teplem a spalovny komunálních odpadů doc. Ing. Zdeněk Skála, CSc Ing. Jiří Moskalík, Ph.D. Obsah Vznik a členění produkovaných odpadů

Více

Energetické využití biomasy Hustopeče 2010 5. až 6. května. úprav vajících ch uhelných kotlů. Možnosti. EKOL, spol. s r.o., Brno.

Energetické využití biomasy Hustopeče 2010 5. až 6. května. úprav vajících ch uhelných kotlů. Možnosti. EKOL, spol. s r.o., Brno. Energetické využití biomasy Hustopeče 2010 5. až 6. května Možnosti úprav stávaj vajících ch uhelných kotlů na spalování biomasy EKOL, spol. s r.o., Brno divize kotlů Ing. Jiří Jelínek OBSAH: obecné možnosti

Více

Energetické využití odpadů. Ing. Michal Jirman

Energetické využití odpadů. Ing. Michal Jirman Energetické využití odpadů Ing. Michal Jirman KOGENERAČNÍ BLOKY A SPALOVÁNÍ ODPADŮ Propojení problematiky odpadů, ekologie a energetiky Pozitivní dopady na zlepšení životního prostředí Efektivní výroba

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.2.12 Integrovaná střední škola

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

WE MAKE YOUR IDEAS A REALITY. Odsíření kotlů K2 - K4 na Teplárně Karviná: CFB FGD technologie tzv. na klíč

WE MAKE YOUR IDEAS A REALITY. Odsíření kotlů K2 - K4 na Teplárně Karviná: CFB FGD technologie tzv. na klíč Odsíření kotlů K2 - K4 na Teplárně Karviná: CFB FGD technologie tzv. na klíč Teplárna Karviná TKV Významný producent tepla a elektrické energie v Moravskoslezském kraji Celkový tepelný výkon 248 MW Celkový

Více

Tepelné čerpadlo Excellence pro komfortní a úsporný dům

Tepelné čerpadlo Excellence pro komfortní a úsporný dům Tepelné čerpadlo Excellence pro komfortní a úsporný dům V současné době, kdy se staví domy s čím dál lepšími tepelně izolačními vlastnostmi, těsnými stavebními výplněmi (okna, dveře) a vnějším pláštěm,

Více

Zpráva o provozu spalovny environmentální profil za rok 2002

Zpráva o provozu spalovny environmentální profil za rok 2002 Zpráva o provozu spalovny environmentální profil za rok 2002 V souladu s vyhláškou MŽP č.356/2002 Sb. uveřejňujeme požadované provozní údaje za rok 2002. Tak jak je zvykem v naší firmě podáváme informace

Více

21.4.2015. Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách

21.4.2015. Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách 21.4.2015 Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách 2 SÍDLA SPOLEČNOSTÍ 3 SCHÉMA KOTELNY NA UHELNÝ PRACH sklad paliva a dávkování parní

Více

ODPADY 2014 a jak dál aneb budeme mít maskované spalovny?

ODPADY 2014 a jak dál aneb budeme mít maskované spalovny? MBÚ + RDF CHCEME TO? ODPADY 2014 a jak dál aneb budeme mít maskované spalovny? 24. dubna 2014 Jiřina Vyštejnová, Envifinance s.r.o. MBÚ nebo EVO? Obecné srovnávání MBÚ nebo EVO je zavádějící. Lze hodnotit

Více

Závěsné plynové průtokové ohřívače TV PANDA

Závěsné plynové průtokové ohřívače TV PANDA Závěsné plynové průtokové ohřívače TV PANDA PANDA 19 POG průtokový ohřívač TV na zemní plyn s výkonem 7,7 19,2 kw, odvod spalin do komína PANDA 24 POG průtokový ohřívač TV na zemní plyn s výkonem 9,8 24,4

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací

Více

Částka 128. VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie

Částka 128. VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Strana 4772 Sbírka zákonů č.349 / 2010 349 VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Ministerstvo průmyslu a obchodu (dále

Více

STAV PROJEKTŮ OBNOVY ZDROJŮ SKUPINY ČEZ V ČR A ZKUŠENOSTI S DODAVATELI

STAV PROJEKTŮ OBNOVY ZDROJŮ SKUPINY ČEZ V ČR A ZKUŠENOSTI S DODAVATELI STAV PROJEKTŮ OBNOVY ZDROJŮ SKUPINY ČEZ V ČR A ZKUŠENOSTI S DODAVATELI listopad 2013 Ing. Václav Matys manažer útvaru výstavba klasických elektráren ČEZ, a. s. OSNOVA Komplexní obnova elektrárny Tušimice

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

OCHRANA OVZDUŠÍ PŘI ENERGETICKÉM VYUŽÍVÁNÍ ODPADŮ

OCHRANA OVZDUŠÍ PŘI ENERGETICKÉM VYUŽÍVÁNÍ ODPADŮ 44 OCHRANA OVZDUŠÍ 3 4/2002 OCHRANA OVZDUŠÍ PŘI ENERGETICKÉM VYUŽÍVÁNÍ ODPADŮ Doc. Ing. Jaroslav Hyžík EIC spol. s r.o. Ecological and Industrial Consulting, Praha POPIS ZAŘÍZENÍ TVO LIBEREC Úvod Ochrana

Více

Technologie zplyňování biomasy

Technologie zplyňování biomasy Technologie zplyňování biomasy Obsah prezentace Profil společnosti Proces zplyňování Zplyňovací technologie Generátorový plyn Rozdělení technologií Typy zplyňovacích jednotek Čištění plynu Systém GB Gasifired

Více

Jiný pohled na ekonomiku MBÚ a spaloven. Ing. Jan Habart, Ph.D. Česká zemědělská univerzita v Praze CZ Biomu

Jiný pohled na ekonomiku MBÚ a spaloven. Ing. Jan Habart, Ph.D. Česká zemědělská univerzita v Praze CZ Biomu Jiný pohled na ekonomiku MBÚ a spaloven Ing. Jan Habart, Ph.D. Česká zemědělská univerzita v Praze CZ Biomu 22 % (1 mil. tun) 2007 2020 Základní schéma MBÚ MBÚ Klasická MBÚ Původce Lehké drcení Separátor

Více

Moderní způsoby vytápění domů s využitím biomasy. Ing. T. Voříšek, SEVEn, o.p.s. Seminář Vytápění biomasou 2009, Luhačovice, 13.-14.

Moderní způsoby vytápění domů s využitím biomasy. Ing. T. Voříšek, SEVEn, o.p.s. Seminář Vytápění biomasou 2009, Luhačovice, 13.-14. Moderní způsoby vytápění domů s využitím biomasy Ing. T. Voříšek, SEVEn, o.p.s. Seminář Vytápění biomasou 2009, Luhačovice, 13.-14. května 2009 Obsah Co je charakteristické pro moderní způsob vytápění

Více

Kotle na biopaliva. KSM-Multistoker XXL 350 1000 kw. dřevní štěpka, pelety, brikety

Kotle na biopaliva. KSM-Multistoker XXL 350 1000 kw. dřevní štěpka, pelety, brikety Kotle na biopaliva dřevní štěpka, pelety, brikety KSM-Multistoker XXL 350 1000 kw Plně automatické kotle na štěpku, dřevěné a slaměné pelety a brikety s výkonem 350 1000 kw Kotle značky KSM-Stoker vyrábí

Více

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ e-mail: teplozlin@volny.cz www.teplozlin.cz CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ CZT ve Zlíně má dlouholetou tradici. Zdroj tepla původně jako energetický zdroj Baťových závodů, dnes Alpiq Generation (CZ)

Více

Směřování odpadového hospodářství a postoj MŽP k energetickému využívání odpadů

Směřování odpadového hospodářství a postoj MŽP k energetickému využívání odpadů Směřování odpadového hospodářství a postoj MŽP k energetickému využívání odpadů Jaromír MANHART Odbor odpadů Ministerstvo životního prostředí ODPADY 2014 a jak dál aneb budeme mít maskované spalovny? 24.

Více

Projekt osvětlení Téryho chaty elektřinou ze slunce

Projekt osvětlení Téryho chaty elektřinou ze slunce Projekt osvětlení Téryho chaty elektřinou ze slunce Fotovoltaický systém pro Téryho chatu Energetická část projektu pro osvětlení Téryho chaty v ostrovním provozu tzn. bez připojení k rozvodné síti ( Technické

Více

Produkty a zákaznické služby

Produkty a zákaznické služby Produkty a zákaznické služby Dodavatel zařízení a služeb pro energetiku naši lidé / kvalitní produkty / chytrá řešení / vyspělé technologie Doosan Škoda Power součást společnosti Doosan Doosan Škoda Power

Více

Volba 9. pro každou. rekonstrukci VYSOKOTEPLOTNÍ TEPELNÉ ČERPADLO DAIKIN ALTHERMA - VYTÁPĚNÍ A OHŘEV TEPLÉ UŽITKOVÉ VODY

Volba 9. pro každou. rekonstrukci VYSOKOTEPLOTNÍ TEPELNÉ ČERPADLO DAIKIN ALTHERMA - VYTÁPĚNÍ A OHŘEV TEPLÉ UŽITKOVÉ VODY Volba 9 pro každou rekonstrukci VYSOKOTEPLOTNÍ TEPELNÉ ČERPADLO DAIKIN ALTHERMA - VYTÁPĚNÍ A OHŘEV TEPLÉ UŽITKOVÉ VODY 4 Ideální řešení pro jakoukoliv 9 rekonstrukci Vysokoteplotní tepelné čerpadlo Daikin

Více

ENERGETICKÉ VYUŽITÍ ODPADŮ iluze či realita?!

ENERGETICKÉ VYUŽITÍ ODPADŮ iluze či realita?! ENERGETICKÉ VYUŽITÍ ODPADŮ iluze či realita?! Od koncepčního řešení pro investiční záměry až po technologie a zařízení šité na míru Petr Stehlík Vysoké učení technické v Brně Ústav procesního a ekologického

Více

enia úspor v podnikoch rodná konferencia ENEF 2012 16.10. - 18.10. 2012 Energetický audit - príklady Michal Židek VŠB - TU Ostrava - 1 -

enia úspor v podnikoch rodná konferencia ENEF 2012 16.10. - 18.10. 2012 Energetický audit - príklady Michal Židek VŠB - TU Ostrava - 1 - Energetický audit - príklady riešenia enia úspor v podnikoch 10. medzinárodn rodná konferencia ENEF 2012 16.10. - 18.10. 2012 Michal Židek VŠB - TU Ostrava VÝZKUMNÉ ENERGETICKÉ CENTRUM - 1 - OSNOVA 1.

Více

Směřování odpadového hospodářství a postoj MŽP k energetickému vs. materiálovému využívání

Směřování odpadového hospodářství a postoj MŽP k energetickému vs. materiálovému využívání Směřování odpadového hospodářství a postoj MŽP k energetickému vs. materiálovému využívání Jaromír MANHART Ministerstvo životního prostředí odbor odpadů Kabinet odpadů MŽP/ČSPŽP 29. 5. 2014 Praha Odpad

Více

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz NOVÝ Zpětný ventil Typ 561 a 562 www.titan-plastimex.cz VÝHODY Nové zpětné ventily jsou maximálně spolehlivé a výkonné díky optimalizované geometrii proudění vede k vašemu prospěchu a vyššímu zisku. Zpětné

Více

Osvědčily se požadavky 30. BImSchV. v praxi?

Osvědčily se požadavky 30. BImSchV. v praxi? Osvědčily se požadavky 30. BImSchV (spolkové nařízení o ochraně před imisemi) v praxi? Prof. Dr.-Ing. Rainer Wallmann HAWK Vysoká škola užité vědy a umění Vysoká odborná škola Hildesheim/Holzminden/Göttingen

Více

Odborná informace. Využití spalného tepla

Odborná informace. Využití spalného tepla Odborná informace Dipl.-Ing. Matthias Raisch, Bosch Industriekessel GmbH Využití spalného tepla Provozovatelé parních a horkovodních kotelních zařízení mohou při použití dostupné a osvědčené kondenzační

Více

VIESMANN. List technických údajů VITOMAX 300 LT. Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW

VIESMANN. List technických údajů VITOMAX 300 LT. Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW VIESMANN VITOMAX 300 LT Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW List technických údajů Obj.č.: viz ceník, ceny na dotaz VITOMAX 300 LT Typ M343 Nízkoteplotní olejový/plynový

Více

Přehled produktů Alfa Laval pro přenos tepla

Přehled produktů Alfa Laval pro přenos tepla Díky více než 125 letům věnovaným výzkumu a vývoji a miliónům instalací v oblasti vytápění a chlazení po celém světě pro nás neexistují žádné hranice, žádná omezení. Kompaktní předávací stanice Alfa Laval

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Vývoj topidel spalování dřeva

Vývoj topidel spalování dřeva Vývoj topidel spalování dřeva Podmínky spalování 1. Hořlavý materiál 2. Zápalná teplota 3. Přístup vzduchu kyslík ( 0₂ ) 1. Hořlavý materiál Je palivo, které při hoření uvolňuje teplo Pro klasická topidla

Více

KATALOG 2004 MOBILNÍ VYSOKOTLAKÉ STROJE

KATALOG 2004 MOBILNÍ VYSOKOTLAKÉ STROJE MOBILNÍ VYSOKOTLAKÉ STROJE Společnost S. U. P. spol. s r. o. je výhradním distributorem mobilních vysokotlakých zařízení dánského výrobce Aquila pro Českou a Slovenskou republiku. Tyto speciální stroje

Více

Vytápění BT01 TZB II - cvičení

Vytápění BT01 TZB II - cvičení Vytápění BT01 TZB II - cvičení BT01 TZB II HARMONOGRAM CVIČENÍ AR 2012/2012 Týden Téma cvičení Úloha (dílní úlohy) Poznámka Stanovení součinitelů prostupu tepla stavebních Zadání 1, slepé matrice konstrukcí

Více

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012 Srovnání využití energetických zdrojů v hospodářství ČR Ing. Vladimír Štěpán ENA s.r.o. Listopad 2012 Spotřeba HU a ZP v ČR Celková spotřeba hnědého uhlí a zemního plynu v ČR v letech 2002-2011 2 Emise

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 91.140.10 Srpen 2014 ČSN 06 0310 Tepelné soustavy v budovách Projektování a montáž Heating systems in buildings Design and installation Nahrazení předchozích norem Touto normou

Více

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o.

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

PROSUN PLYNOVÉ KONDENZAČNÍ KOTELNY. alternative energy systems s.r.o.

PROSUN PLYNOVÉ KONDENZAČNÍ KOTELNY. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

Česká asociace odpadového hospodářství

Česká asociace odpadového hospodářství Česká asociace odpadového hospodářství SMYSLUPLNÉ MOŽNOSTI ENERGETICKÉHO VYUŽITÍ ODPADŮ V PODMÍNKÁCH ČR Ing. Petr Havelka výkonný ředitel ČESKÁ ASOCIACE ODPADOVÉHO HOSPODÁŘSTVÍ Již 17 let sdružuje podnikatelské

Více

Možnosti energetického využívání směsných komunálních odpadů v ČR - aktuální situace, výhledy a možnosti

Možnosti energetického využívání směsných komunálních odpadů v ČR - aktuální situace, výhledy a možnosti Nakládání s odpady v Moravskoslezském a Žilinském kraji konaný dne 11.9.2014, v hotelu Imperial v Ostravě Možnosti energetického využívání směsných komunálních odpadů v ČR - aktuální situace, výhledy a

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle Závěsné kondenzační kotle VU, VUW ecotec plus a Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé vody se

Více

Příprava výstavby ZEVO v Kraji Vysočina Zdeněk Chlád

Příprava výstavby ZEVO v Kraji Vysočina Zdeněk Chlád Příprava výstavby ZEVO v Kraji Vysočina Zdeněk Chlád radní pro oblast životního prostředí Kraje Vysočina Historie ISNOV Historické důvody řešení ISNOV trvalé neplnění cílů Plánu odpadového hospodářství

Více

Únor 2008 V měsíci únoru probíhala výroba kotle na pracovišti firmy Vlček tepelná a spalovací technika s.r.o, výroba turbíny u jejího dodavatele. V areálu CTZ s.r.o.. v prostorách kotelny, byly zahájeny

Více

Krajský úřad Jihomoravského kraje Odbor životního prostředí Žerotínovo náměstí 3/5, 601 82 Brno

Krajský úřad Jihomoravského kraje Odbor životního prostředí Žerotínovo náměstí 3/5, 601 82 Brno Krajský úřad Jihomoravského kraje Odbor životního prostředí Žerotínovo náměstí 3/5, 601 82 Brno Dle rozdělovníku Č.j. SpZn. Vyřizuje/ linka Brno dne: JMK 128967/2009 S JMK 128967/2009 OŽP/Ns Mariana Nosilová/2678

Více

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD Efektivní energie Jak to funguje Tepelné čerpadlo vzduch / voda získává energii z atmosféry. Tento systém vyžaduje pouze 1 kw elektrické energie k výrobě 3 až 5 kw tepelné energie. 2-4 kw ENERGIE ZE VZDUCHU

Více

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm

Více

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody.

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody. Titan Fuel Plus Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti Popis Multifunkční zušlechťující přísada do motorové nafty pro přeplňované i nepřeplňované vznětové

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPDL VZUCH - VOD www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Principem každého tepelného čerpadla vzduch - voda je přenos tepla z venkovního

Více

Technický list pro tepelné čerpadlo země-voda HP3BW-model B

Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které

Více

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva č. 34/14 Výpočet emisních faktorů znečišťujících látek pro léta 2001 až

Více

KOGENERACE PLYNOVÉ MOTORY

KOGENERACE PLYNOVÉ MOTORY KOGENERACE PLYNOVÉ MOTORY SPOLEHLIVOST ŽIVOTNOST ZÁRUKY BIOPLYNOVÉ STANICE ČISTÍRNY ODPADNÍCH VOD SKLÁDKY PRŮMYSL KOMFORT FLEXIBILITA APLIKACE VÝKONY MOTORY KONTAKTY SLYŠELI JSTE, ŽE KOGENERACE JE JEDNODUCHÁ.

Více

Katalogové číslo 2004 2005 2006 2007 2008 2009 2010. Oddělený sběr 20 01 441 814 498 976 459 789 561 028 588 874 527 316 515 206

Katalogové číslo 2004 2005 2006 2007 2008 2009 2010. Oddělený sběr 20 01 441 814 498 976 459 789 561 028 588 874 527 316 515 206 117 Kam kráčí moderní technologie pro energetické využití odpadů? Trochu tajemný název příspěvku, který přináší pohled na část odpadového hospodářství, která v dnešní době nejvíce vyvolává u laické veřejnosti

Více

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o.

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

Příprava a realizace projektu ODPADOVÉ HOSPODÁŘSTVÍ BRNO. Václav Hnaníček, vedoucí projektu SAKO Brno, a.s.

Příprava a realizace projektu ODPADOVÉ HOSPODÁŘSTVÍ BRNO. Václav Hnaníček, vedoucí projektu SAKO Brno, a.s. Příprava a realizace projektu ODPADOVÉ HOSPODÁŘSTVÍ BRNO Václav Hnaníček, vedoucí projektu SAKO Brno, a.s. Obsah Základní informace o projektu Příprava projektu Realizační fáze Rady a doporučení Konečný

Více

www.jaktridit.cz Pro více informací www.ekokom.cz

www.jaktridit.cz Pro více informací www.ekokom.cz www.jaktridit.cz Pro více informací www.ekokom.cz www.tonda-obal.cz Pro děti... www.tonda-obal.cz Děti se mohou na Tondu obracet také se svými dotazy (e-mail: tonda@ekokom.cz). Pojízdná výstava o zpracování

Více

PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA

PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA SYSTÉM OPTIHEAT OPTIHeat je ucelený systém teplovodního vytápění

Více

Kardex Remstar v technologickém svazku se společností Intertex Systémy skladování a vychystávání pro extrémní požadavky u těžkého a dlouhého zboží

Kardex Remstar v technologickém svazku se společností Intertex Systémy skladování a vychystávání pro extrémní požadavky u těžkého a dlouhého zboží Kardex Remstar by Intertex Kardex Remstar v technologickém svazku se společností Intertex Systémy skladování a vychystávání pro extrémní požadavky u těžkého a dlouhého zboží Standard Solution Vertical

Více

Požadavky tepelných čerpadel

Požadavky tepelných čerpadel Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979

Více

Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov

Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov VYTÁPĚNÍ BIOMASOU 14. května 2009, Luhačovice Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Solární energie

Více

Z e l e n á e n e r g i e

Z e l e n á e n e r g i e Z e l e n á e n e r g i e Předvídat směry vývoje společnosti ve stále více globalizované společnosti vyžaduje nejen znalosti, ale i určitý stupeň vizionářství. Při uplatnění takových předpovědí v reálném

Více

TEPELNÁ ČERPADLA VZDUCH - VODA

TEPELNÁ ČERPADLA VZDUCH - VODA TEPELNÁ ČERPADLA VZDUCH - VODA Inverter TEPELNÁ ČERPADLA VZDUCH - VODA Budoucnost patří ekologickému a ekonomickému vytápění ekologicky šetrná technologie Okolní vzuch Ventilátor Rotační kompresor Topná

Více

WolfAkademie: Nabídka seminářů z oblasti vytápění, větrání a klimatizace

WolfAkademie: Nabídka seminářů z oblasti vytápění, větrání a klimatizace WolfAkademie: Nabídka seminářů z oblasti vytápění, větrání a klimatizace Od odborníků. Pro odborníky. WolfAkademie: zažijte techniku všemi smysly V dnešní době se technický svět mění velmi rychle, produkty

Více

Ing. Vladimír Neužil, CSc. Organizace KONEKO Marketing, spol. s r. o. Název textu Zneškodňování komunálního odpadu BK2 - Emise-stacionární zdroje

Ing. Vladimír Neužil, CSc. Organizace KONEKO Marketing, spol. s r. o. Název textu Zneškodňování komunálního odpadu BK2 - Emise-stacionární zdroje Autor Ing. Vladimír Neužil, CSc. Organizace KONEKO Marketing, spol. s r. o. Název textu Zneškodňování komunálního odpadu Blok BK2 - Emise-stacionární zdroje Datum Srpen 2001 Poznámka Text neprošel redakční

Více

KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY

KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY Energie pro budoucnost Brno 8/10/2013 1/14 Michal Schrimpel, Roman Mašika Skupina ČKD GROUP je společenství inženýrských a výrobních firem podnikajících v segmentech:

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

Technický boroskop zařízení na monitorování spalovacích procesů

Technický boroskop zařízení na monitorování spalovacích procesů Technický boroskop zařízení na monitorování spalovacích procesů Katedra experimentální fyziky PřF UP Olomouc Doc. Ing. Luděk Bartoněk, Ph.D. Zvyšování účinnosti spalovacích procesů v různých odvětvích

Více

Komínové nástavce Energetický průmysl a Životní prostředí. Autoři projektu: Jakub Domitra, Ivo Veselý

Komínové nástavce Energetický průmysl a Životní prostředí. Autoři projektu: Jakub Domitra, Ivo Veselý Komínové nástavce Energetický průmysl a Životní prostředí Autoři projektu: Jakub Domitra, Ivo Veselý O čem náš projekt je? Ostrava v zimě - Foto z roku 2012 Situace v EU a světě Růst ceny za vytápění každý

Více

VIESMANN VITOCAL 300/350. List technických údajů Obj. č. aceny:vizceník VITOCAL 300 VITOCAL 350. země/voda 6,4 až 32,6 kw voda/voda 8,4 až 43,0 kw

VIESMANN VITOCAL 300/350. List technických údajů Obj. č. aceny:vizceník VITOCAL 300 VITOCAL 350. země/voda 6,4 až 32,6 kw voda/voda 8,4 až 43,0 kw VIESMANN VITOCAL 300/350 tepelné čerpadlo země/voda 6,4 až 32,6 kw voda/voda 8,4 až 43,0 kw List technických údajů Obj. č. aceny:vizceník Pokyny pro uložení: Složka Vitotec, rejstřík 11 VITOCAL 300 Typ

Více

Ceník/Cenník 2015/2016. Komínové ventilátory, regulace a příslušenství. Platnost od 1.8.2015. Ceny bez DPH

Ceník/Cenník 2015/2016. Komínové ventilátory, regulace a příslušenství. Platnost od 1.8.2015. Ceny bez DPH Ceník/Cenník 2015/2016 Komínové ventilátory, regulace a příslušenství Platnost od 1.8.2015 Ceny bez DPH EBC20 EXHAUSTO Alarm OK Reset Zajistěte si správný komínový tah Exodraft má vedoucí postavení na

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

Kombi kolte na dřevo, pelety, ETO a zemní plyn

Kombi kolte na dřevo, pelety, ETO a zemní plyn Kombi kolte na dřevo, pelety, ETO a zemní plyn Kotel na peletya zplynování dřeva ATMOS DC15EP, DC 18SP, DC 25SP, DC32SP Kombinované kotle na zplynování dřeva, pelety, zemní plyn a extra lehký topný olej

Více

ZPRACOVÁNÍ A ENERGETICKÉ VYUŽITÍ ODPADŮ V REGIONECH A MIKROREGIONECH

ZPRACOVÁNÍ A ENERGETICKÉ VYUŽITÍ ODPADŮ V REGIONECH A MIKROREGIONECH ZPRACOVÁNÍ A ENERGETICKÉ VYUŽITÍ ODPADŮ V REGIONECH A MIKROREGIONECH Petr Stehlík Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství NETME Centre Obsah Úvod Koncepční a komplexní

Více

VYHLÁŠKA. Předmět úpravy. Tato vyhláška zapracovává příslušný předpis Evropských společenství 1) a stanoví

VYHLÁŠKA. Předmět úpravy. Tato vyhláška zapracovává příslušný předpis Evropských společenství 1) a stanoví VYHLÁŠKA kterou se stanoví pravidla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energie pro vytápění a pro přípravu teplé vody a požadavky na vybavení vnitřních tepelných zařízení

Více

& S modulovaným plynovým hořákem MatriX compact pro obzvláště

& S modulovaným plynovým hořákem MatriX compact pro obzvláště Vitocrossal 300. Popis výrobku A Digitální regulace kotlového okruhu Vitotronic B Vodou chlazená spalovací komora z ušlechtilé oceli C Modulovaný plynový kompaktní hořák MatriX pro spalování s velmi nízkým

Více

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD Efektivní energie Jak to funguje Tepelné čerpadlo vzduch / voda získává energii z atmosféry. Tento systém vyžaduje pouze 1 kw elektrické energie k výrobě 3 až 5 kw tepelné energie. 2-4 kw ENERGIE ZE VZDUCHU

Více

Návod k obsluze. Zásobníkové ohřívače

Návod k obsluze. Zásobníkové ohřívače CZ Návod k obsluze Zásobníkové ohřívače CombiVal ER (200-1000) MultiVal ERR (300-1000) WPS (300-500) CombiVal ERW (200) MultiVal ESRR (500-1000) LSP (150,200) CombiVal ESR (200-500) ElectroVal E (300-500)

Více

Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna

Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna Svoboda) 5 Newsletter of the Regional Energy Agency of Moravian-Silesian

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

TECHNICKÝ LIST. - s vodním chlazením - se vzduchovým chlazením

TECHNICKÝ LIST. - s vodním chlazením - se vzduchovým chlazením TECHNICKÝ LIST POPIS VÝROBKU: Tepelně hladinové generátory: - s vodním chlazením - se vzduchovým chlazením Jedná se o elektrické zařízení, které dokáže vyrobit elektrickou energii na základě rozdílu tepelných

Více

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení:

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení: VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. č. aceny:vizceník Pokyny pro uložení: Složka Vitotec, registr 17 VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných

Více

Stacionární nekondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VK atmovit VK atmovit exclusiv VK atmocraft

Stacionární nekondenzační kotle. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. VK atmovit VK atmovit exclusiv VK atmocraft Stacionární nekondenzační kotle Proč Vaillant? Tradice, kvalita, inovace, technická podpora. atmovit atmovit exclusiv atmocraft atmovit komplexní řešení topných systémů atmovit Stacionární kotle Stacionární

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Zásobník teplé vody pro tepelné čerpadlo NIBE SPLIT NADO 500/25 v10 (HEV 500 D) Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420

Více

Projekty EPC projekty s garantovanými úsporami ve veřejném sektoru

Projekty EPC projekty s garantovanými úsporami ve veřejném sektoru Projekty EPC projekty s garantovanými úsporami ve veřejném sektoru Profil společnosti ENESA a.s. Společnost ENESA byla založena v srpnu 2005 Hlavním předmětem naší práce je vyvíjet a realizovat projekty

Více

Švýcarsko. Kam s ním? Spálit!

Švýcarsko. Kam s ním? Spálit! Švýcarsko Kam s ním? Spálit! Těžko si asi představit čistější a na ekologii zaměřenější zemi na světě než je Švýcarsko snad jen některé části Kalifornie by mohly Švýcarsku v tomto směru konkurovat. Z tohoto

Více

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné Vytápění Chlazení Čerstvý vzduch Čistý vzduch Zehnder vše pro komfortní, zdravé a energeticky úsporné vnitřní klima Vytápění, chlazení,

Více

Nyní také v provedení. Kompakt u všech. vícedeskových. otopných těles. Otopná tělesa pro úsporu energie - nyní kompletní řada.

Nyní také v provedení. Kompakt u všech. vícedeskových. otopných těles. Otopná tělesa pro úsporu energie - nyní kompletní řada. Nyní také v provedení Kompakt u všech vícedeskových otopných těles. Otopná tělesa pro úsporu energie - nyní kompletní řada. Úspora energie. Bezproblémový provoz. Úspora času. Therm X2 - inovace v oblasti

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

HSRM. dne 11. 5. 2015 Most. Kurt Dědič ředitel odboru ochrany ovzduší Ministerstvo životního prostředí

HSRM. dne 11. 5. 2015 Most. Kurt Dědič ředitel odboru ochrany ovzduší Ministerstvo životního prostředí HSRM dne 11. 5. 2015 Most Kurt Dědič ředitel odboru ochrany ovzduší Ministerstvo životního prostředí Kvalita ovzduší v Ústeckém kraji rozdílnost kraje z hlediska přírodních podmínek i hospodářství, Krušné

Více

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti Snížení energetické závislosti Naše domy mají tak malé ztráty tepla. Využívají energii ze slunce, teplo vydávané domácími spotřebiči a samotnými

Více

NÁVOD K OBSLUZE. Zimní sada SWK-20

NÁVOD K OBSLUZE. Zimní sada SWK-20 NÁVOD K OBSLUZE Zimní sada SWK-20 - plynulá regulace otáček ventilátoru - ovládání ohřívače podle okolní teploty -alarm při vysoké kondenzační teplotě - zobrazení aktuální teploty - mikroprocesorové řízení

Více