Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever"

Transkript

1 Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/ Název výukového materiálu: Slovní úlohy Vzdělávací obor RVP ZV: Matematika Období: ročník ZŠ Tvůrce výukového materiálu: Mgr. Jiřina Brejníková Klíčová aktivita: Metodická příprava výuky s využitím ICT a její pilotní ověření

2 Anotace Pracovní listy vhodné pro výuku i jako samostudium Autor Mgr. Jiřina Brejníková Jazyk Český Očekávaný výstup Procvičení a zvládnutí slovních úloh Speciální vzdělávací potřeby Žádné Klíčová slova Slovní úlohy Druh učebního materiálu Pracovní listy Druh interaktivity Kombinované Cílová skupina Žáci 8. a 9. tříd Stupeň a typ vzdělávání 2. stupeň, základní vzdělávání Typická věková skupina let Celková velikost 388 kb

3 Slovní úlohy dělíme do několika skupin: 1. úlohy řešené rovnicí nebo soustavou 2. úlohy o pohybu 3. úlohy o směsích 4. společná práce 5. úlohy s procenty Slovní úlohy Obecné řešení slovních úloh: 1. označíme neznámou 2. všechny podmínky úlohy vyjádříme pomocí neznámých 3. sestavíme soustavu, rovnici 4. řešíme soustavu 5. zkoušku děláme do textu úlohy 6. odpověď Vzorová úloha Skupina 1 Během 3 dnů navštívilo výstavu celkem 2870 lidí. Druhý den přišlo na výstavu o 140 lidí více než první den. Třetí den bylo na výstavě 1,5krát více lidí než druhý den. Kolik lidí navštívilo výstavu v jednotlivých dnech? Řešení 1. den x lidí 2. den x lidí 3. den (x + 140) * 1,5 = 1,5x celkem 2870 lidí x + x ,5x = ,5x = ,5x = 2520 x = den den = den 1,5 * = 1290

4 : = = / 1,5 = 860 Výstavu navštívilo první den 720 lidí, druhý den 860 lidí a třetí den 1290 lidí. Další příklady 1. Budík, dámské hodinky a pánské hodinky stojí celkem 1370 Kč. Kolik stojí každý z těchto předmětů, jestliže dámské hodinky jsou šestkrát dražší než budík a pánské hodinky jsou o 200 Kč dražší než dámské hodinky? 2. Ve třech skladištích bylo uloženo celkem 70 t obilí. Ve druhém skladišti bylo uloženo o 8,5 t méně než v první skladišti a ve třetím o 3,5 t více než v prvním skladišti. Kolik tun obilí je uloženo v jednotlivých skladištích? 3. Z kovové tyče byly zhotoveny tři součástky. Na první byla spotřebována polovina tyče, na druhou dvě třetiny zbytku, třetí součástka měla hmotnost 3 kg. Jaká byla hmotnost tyče? 4. Na květinovém záhonu je vysázeno 220 tulipánů a narcisů. Třetina všech tulipánů a šestina narcisů se rovná počtu všech tulipánů. Kolik je na záhonu kterých květin? l benzínu se má rozlít do 4 kanystrů tak, aby ve třetím kanystru bylo o 5 l méně než v prvním, ve čtvrtém kanystru o 10 l více než ve třetím a v druhém kanystru polovina toho, kolik je v prvním. Kolik l benzínu bylo v jednotlivých kanystrech? Řešení př. 1 Budík x Dámské hodinky...6x Pánské hodinky.6x Celkem Kč x + 6x + 6x = x = x = 1170 x = 90 Budík..90 Kč Dámské hodinky 540 Kč Pánské hodinky..6* = = 740 Kč

5 = / 6 = = 540 Budík stojí 90 Kč, dámské hodinky 540 Kč a pánské hodinky 740 Kč. Řešení př skladiště x 2. skladiště x 8,5 3. skladiště x + 3,5 celkem.70 t x + x 8,5 + x + 3,5 = 70 3x 5 = 70 3x = 75 x = skladiště skladiště 25 8,5 = 16,5 3. skladiště ,5 = 28,5 : ,5 + 28,5 = ,5 = 16,5 28,5 3,5 = 25 V prvním skladišti bylo uloženo 25 t obilí, ve druhém 16,5 t a ve třetím 28,5 t obilí. Řešení př. 3 Hmotnost tyče x 1. součástka x / 2 2. součástka 2/3 * x/2 = x/3 3. součástka 3 x/2 + x/3 + 3 = x /*6 3x + 2x + 18 = 6x 18 = x

6 1. součástka 18/2 = 9kg 2. součástka 18/3 = 6kg 3. součástka 3kg celkem = 18kg Hmotnost tyče byla 18kg. Řešení př. 4 Počet tulipánů..x Počet narcisů y x + y = 220 x/3 + y/6 = x /*6 x + y = 220 2x + y = 6x x + y = 220 /*4-4x + y = 0 4x + 4y = 880-4x + y = 0 5y = 880 y = 176 : = / /6 = ( )/6 = 264/6 = 44 Na záhoně je 176 narcisů a 44 tulipánů Řešení př kanystr x 2. kanystr x/2 3. kanystr x 5 4. kanystr x = x + 5 celkem 35 l x + x/2 + x 5 + x + 5 = 35 /*2 2x + x + 2x x + 10 = 70 7x = 70 x = 10

7 1. kanystr 10 l 2. kanystr 5 l 3. kanystr 5 l 4. kanystr 15 l : = = = / 2 = 5 V prvním kanystru bylo 10 l, ve druhém 5 l, ve třetím 5 l a ve čtvrtém 15 l. Vzorová úloha 1 Skupina 2 Z velkoskladu vyjelo nákladní auto rychlostí 40 km/h. Za 1 hodinu 30 minut vyjelo z téhož místa stejným směrem osobní auto průměrnou rychlostí 70 km/h. Za jak dlouho a v jaké vzdálenosti od velkoskladu dohoní nákladní auto? Řešení v 1 = 40 km/h v 2 = 70 km/h s = v*t t 1 = x t 2 = x 1,5 s 1 = s 2 s 1 = 40x s 2 = 70*(x-1,5) 40x = 70 (x 1,5) t = 3,5 1,5 = 2 (hod) 40x = 70x 105 s = 40 * 3,5 = 140 (km) 105 = 70x 40x 105 = 30x 3,5 = x : s 1 = 40*3,5 = 140 (km) s 2 = 70*2 = 140 (km) Osobní auto dohoní nákladní za 2 hodiny a 140 km od velkoskladu.

8 Vzorová úloha 2 Z míst A a B, vzdálených od sebe 210km, vyjeli současně proti sobě dva kamiony rychlostí 40 km/h a 30 km/h. Kdy a kde se potkají? Řešení A B v 1 = 40 km/h v 2 = 30 km/h s = v*t t 1 = x t 2 = x s = s 1 + s 2 s 1 = 40x s 2 = 30x 30x + 40x = x = 210 x = 3 : s 1 = 40*3 =120 s 2 = 30*3 = = 210 Kamiony se potkají za 3 hod a 120 km od A. Další příklady 1. V 6 hodin 40 minut vyplul z přístavu parník plující průměrnou rychlostí 12 km/h. Přesně v 10 hodin za ním vyplul motorový člun průměrnou rychlostí 42 km/h. V kolik hodin dohoní člun parník? 2. Ze dvou míst A a B vzdálených od sebe 375 km vyjedou současně proti sobě dvě auta. Z místa A jede nákladní auto rychlostí 50 km/h, z místa B jede osobní rychlostí 75 km/h. Za jak dlouho a v jaké vzdálenosti od A se setkají? 3. Honza si ujednal se svým spolužákem, který bydlí v obci vzdálené 7 km, že se v neděli sejdou. Podle ujednání vyjeli oba proti sobě v 7 hodin na kole z domova. Honza jel rychlostí 18 km/h, jeho spolužák 12 km/h. V kolik hodin se setkali? 4. Osobní vlak ujede za 3 hodiny 120 km. Za 1,5 hodiny po odjezdu vyjel za ním z téhož místa rychlík a dostihl ho ve stanici vzdálené od výchozí stanice 136 km. O kolik km/h je rychlost rychlíku větší než rychlost osobního vlaku?

9 Řešení př. 1 v 1 = 12 km/h v 2 = 42 km/h t 1 = x t 2 = x s 1 = 12x s 2 = 42x Parník sám: s = 12*3 1/3 = 12*(10/3) = 40 km 12x + 40 = 42x 40 = 42x 12x 40 = 30x 4/3 = x (hod) 10 hod + 4/3 hod = 11 hod 20 min s 1 = 12*4/ = = 56 (km) s 2 = 42/4/3 = 56 (km) Člun dohoní parník v 11 hodin 20 minut Řešení př. 2 A 375 km B v 1 = 50 km/h v 2 = 75 km/h s = v*t t 1 = x t 2 = x s = s 1 + s 2 s 1 = 50x s 2 = 75x 50x + 75x = x = 375 x = 3 s 1 = 50*3 = 150 s 2 = 75*3 = = 375 Dvě auta se setkají za 3 hodiny 150 km od místa A.

10 Řešení př. 3 7 km v 1 = 18 km/h v 2 = 12 km/h t 1 = x t 2 = x s 1 = 18x s 2 = 12x 18x + 12x = 7 30x = 7 x = 7/30 hod = 14 min s 1 = 18*(7/30) = 4,2 km s 2 = 12*(7/30) = 2,8 km s 1 + s 2 = 4,2 + 2,8 = 7 (km) Chlapci se setkají v 7 hodin 14 minut. Řešení př. 4 v 1 = 34 km/h v 2 = y t 1 = x t 2 = x s 1 = 136 s 2 = x = 136 (x 1,5)*y = 136 x = 4 (4 1,5)*y = 136 2,5y = ,4 34 = 20,4 y = 54,4 s 1 = 34*4 = 136 s 2 = 54,4*2,5 = 136 Rychlost rychlíku je o 20,4 km/h větší než osobního vlaku

11 Vzorová úloha Skupina 3 K výplatě částky 5100 Kč potřebovala pokladní 15 bankovek (některé byly pětistovky, některé dvoustovky). Jak částku vyplatila? Řešení Počet bankovek pětistovek..x Počet bankovek dvoustovek y Peníze vyplacené dvoustovkami 200x Peníze vyplacené pětistovkami..500y x + y = x + 500y = 5100 x + 7 = x 200y = x = 8 200x + 500y = y = 2100 y = =15 8* *500 = = 5100 Pokladní potřebovala k výplatě 8 dvoustovek a 7 pětistovek. Další příklady 1. V balírnách mají připravit směs kávy tak, aby 1 kg stál 240 Kč. Na skladě jsou dva druhy kávy v ceně 220 Kč za 1 kg a 300 Kč za 1 kg. Kolik kg každého druhu je třeba smíchat, abychom připravili 50 kg požadované směsi? 2. V internátě je ve 48 pokojích ubytováno celkem 173 žáků. Některé pokoje jsou třílůžkové, některé čtyřlůžkové. Určete kolik pokojů je třílůžkových a kolik čtyřlůžkových, jestliže všechny pokoje jsou plně obsazeny. 3. Do 45 plechovek, z nichž některé jsou pětilitrové a některé třílitrové, máme uskladnit 7 konví oleje po 25 litrech. Kolik musíme mít třílitrových a kolik pětilitrových plechovek? 4. Do bazénu nateče přítokem R za 3 hodiny a přítokem S za 4 hodiny celkem 2150 hl vody. Přítokem R za 4 hodiny a přítokem S za 2 hodiny by nateklo 1700 hl vody. Kolik hl vody nateče přítokem R a kolik přítokem S za 1 hodinu?

12 5. Alena kupovala lístky do kina pro dvě skupiny spolužáků. Pro první skupinu koupila 7 lístků na I. místo a 5 lístků na II. místo a zaplatila 186 Kč. Pro druhou skupinu koupila 11 lístků na I. místo a 4 lístky na II. místo a zaplatila 246 Kč. Kolik Kč stál lístek na I. místo a kolik Kč na II. místo? Řešení př. 1 Hmotnost levnější kávy x Hmotnost dražší kávy..y Cena levnější kávy.220x Cena dražší kávy 300y x + y = 50 /*(-220) 220x + 300y = x +12,5 = x 220y = x = 37,5 (kg) 220x + 300y = y = 1000 y = 12,5 (kg) 12,5 + 37,5 = *37, *12,5 = *50 = K přípravě 50 kg směsi v ceně 240 Kč za 1 kg je třeba smíchat 37,5 kg kávy v ceně 220 Kč za 1 kg a 12,5 kg kávy v ceně 300 za 1 kg. Řešení př. 2 Počet třílůžkových pokojů x Počet čtyřlůžkových pokojů y Počet žáků na třílůžkových.3x Počet žáků na čtyřlůžkových 4y x+ y = 48 /*(-3) 3x + 4y = 173-3x 3y = -144 x + 29 = 48 3x + 4y = 173 x = 19 y = 29

13 = = 173 V internátě je 19 třílůžkových a 29 čtyřlůžkových pokojů. Řešení př. 3 Počet pětilitrových plechovek x Počet třílitrových plechovek..y Počet litrů v pětilitrových plech.5x Počet litrů ve třílitrových plech..3y x+ y = 45 5x + 3y = 7*25 x + y = 45 /*(-5) 5x + 3y = 175-5x 5y = -225 x+ 25 = 45 5x + 3y = 175 x = 20-2y = -50 y = = 45 20*5 + 25*3 = 175 7*25 = 175 Pětilitrových plechovek potřebujeme 20 a třílitrových 25. Řešení př. 4 Počet hl přítokem R za 1 hodinu x Počet hl přítokem S za 1 hodinu y Počet hl přítokem R za 3 hodiny 3x Počet hl přítokem S za 4 hodiny 4y Počet hl přítokem R za 4 hodiny 4x Počet hl přítokem S za 2 hodiny 2y 3x + 4y = x + 2y = 1700 /*(-2)

14 3x + 4y = * y = x 4y = y = x = y = 1400 x = 250 (hl) y = 350 (hl) 3* *350 = = * *350 = = 1700 Přítokem R nateče za 1 hodinu 250 hl vody, přítokem S 350 hl vody. Řešení př. 5 Cena lístku za I. místo x Cena lístku za II. místo y Cena za 7 lístků na I. místo.7x Cena za 5 lístků na II. místo 5y Cena za 11 lístků na I. místo 11x Cena 4 lístků na II. místo 4y 7x + 5y = 186 x = (186-5y)/7 11x + 4y = *((186-5y)/7) + 4y = 246 ( y)/7 + 4y = 246 /* y +28y = x + 5*12 = y = x + 60 = y = x = 126 y = 12 x = 18 7*18 + 5*12 = = *18 + 4*12 = = 246 Lístek na I. místo stál 18 Kč a lístek na II. místo stál 12 Kč. Vzorová úloha Skupina 4 Jeden dělník vykoná určitou práci za 10 hodin, druhý za 15 hodin. Za jak dlouho vykonají tuto práci, když budou oba pracovat společně?

15 Řešení Společná práce x 1.dělník za hodinu práce.1/10 práce 1.dělník za x hodin práce x/10 práce 2.dělník za hodinu práce.1/15 práce 2. dělník za x hodin práce x/15 práce x/10 + x/15 = 1 /*60 6x + 4x = 60 10x = 60 x = 10 1.dělník za 6 hodin práce 6/10 práce 2.dělník za 6 hodina práce...6/15 práce 6/10 + 6/15 = (36+24)/60 = 60/60 = 1 Dělníci vykonají tuto práci za 6 hodin. Další příklady 1. Prvním kombajnem lze sklidit obilí z určitého lánu za 24 hodin, druhým, výkonnějším kombajnem za 16 hodin. Za kolik hodin bylo sklizeno obilí z tohoto lánu, jestliže se sklízelo současně oběma kombajny, ale druhý kombajn začal pracovat o 4 hodiny později než první kombajn? 2. Vodní nádrž by se naplnila prvním přívodem za 36 minut, druhým za 45 minut. Za jak dlouho se nádrž naplní, přitéká-li voda nejprve 9 minut prvním přívodem a pak oběma současně? 3. Přítokem A se naplní bazén za 10 hodin, přítokem B za 12 hodin, přítokem C za 15 hodin. Za kolik hodin se naplní bazén, budou-li otevřeny všechny tří přítoky současně? 4. Rourou A se naplní bazén za 10 hodin, rourou B za 12 hodin, rourou C za 15 hodin. Za jakou dobu se naplní dvě třetiny bazénu, bude-li voda přitékat současně všemi rourami? 5. Zásoba uhlí by stačila na vytápění většího pokoje na 12 týdnů, menšího na 18 týdnů. Zpočátku se topilo 4 týdny v obou pokojích, pak jen v menším. Jak dlouho stačila zásoba uhlí?

16 Řešení př. 1 Hledaný počet hodin společné práce x 1.kombajn za 1 hod.1/24 lánu 2.kombajn za 1 hod..1/16 lánu 1.kombajn pracuje.x hodin 1.kombajn sklidí x/24 lánu 2.kombajn pracuje.x-4 hodin 2.kombajn sklidí (x-4)/16 lánu x/24 + (x-4)/16 = 1 /*48 2x + 3*(x-4) = 48 2x + 3x 12 = 48 5x = 60 x = kombajn 12/24 lánu = ½ lánu 2. kombajn (12-4)/16 = 8/16 = ½ lánu ½ + ½ = 1 Obilí z lánu bylo sklizeno za 12 hodin. Řešení př. 2 Společná práce.x 1.přítok 36 min 1.přítok.x+9 min 1.přítok naplní..(x+9)/36 nádrže 2.přítok.45 min 2.přítok.x/45 nádrže (x+9)/36 + x/45 = 1 /*180 5*(x+9) + 4x = 180 5x x = 180 9x = 135 x = přítok..(15+9)/36 = 24/36 = 2/3 (nádrže) 2. přítok..15/45 = 1/3 (nádrže)

17 2/3 + 1/3 = 1 Nádrž se naplní za 15 hodin. Řešení př. 3 Společná práce.x Přítok A..x/10 bazénu Přítok B..x/12 bazénu Přítok C x/15 bazénu x/10 + x/12 + x/15 = 1 /*60 6x + 5x + 4x = 60 15x = 60 x = 4 Přítok A 4/10 = 2/5 bazénu Přítok B 4/12 = 1/3 bazénu Přítok C 4/15bazénu 2/5 + 1/3 + 4/15 = (6+5+4) / 15 = 15/15 = 1 Bazén se naplní za 4 hodiny. Řešení př. 4 Společná práce x Roura A.x/10 bazénu Roura B.x/12 bazénu Roura C.x/15 bazénu x/10 + x/12 + x/15 = 2/3 /*60 6x + 5x + 4x = 40 15x = 40 x = 40/15 hod = 2 hod 40 min Roura A..(8/3)*(1/10) = 4/15 bazénu Roura B..(8/3)*(1/12) = 2/9 bazénu Roura C..(8/3)*(1/15) = 8/45 bazénu 4/15 + 2/9 + 8/45 = ( )/45 = 30/45 = 2/3 (bazénu) 2/3 bazénu se naplní za 2 hodiny 40 minut.

18 Řešení př. 5 Společná práce.4 týdny 1. pokoj 12 týdnů 2. pokoj.18 týdnů po 4 týdnech jen ve druhém pokoji x 4/12 + x/18 = 1 /* x = 36 2x = 24 x = pokoj.4/12 = 1/3 zásoby 2. pokoj..12/18 = 2/3 zásoby 1/3 + 2/3 = 3/3 = 1 Zásoba uhlí stačila na 12 týdnů Vzorová úloha Skupina 5 Ovocný sad byl vysázen během tří let. Ve druhém roce bylo vysázeno o 15 % více stromků než v prvním roce. Ve třetím roce bylo vysázeno o 40 % méně stromků ne v prvním a druhém roce dohromady. Celkem bylo vysázeno 4128 stromků. Kolik stromků bylo vysázeno v jednotlivých letech? Řešení 1. rok x 2. rok x + 0,15x 3. rok (x+(x + 0,15x))*0,6 celkem.4128 x + x + 0,15x + (x+(x + 0,15x))*0,6 = ,15x + 2,15x*0,6 = ,44x = 4128 x = rok rok ,15*1200 = rok..(1200+(1200+0,15*1200))*0,6 = 1548

19 Další příklady 1. Pracovník zkontroloval během tří dnů 2950 výrobků. Druhý den zkontroloval o 25 % výrobků více než první den. Třetí den o 15 % výrobků více než druhý den. Kolik výrobků zkontroloval v jednotlivých dnech? 2. Za práci na opravách si tří spolupracovníci vydělali celkem 4720 Kč. Rozdělili se tak, že první dostal o 20 % více druhý a třetí o 15 % více než druhý. Kolik dostal každý? 3. Zemědělské družstvo vlastní půdu, z níž 55 % je půda orná, zbytek, tj. 270 ha, je les. Kolik ha půdy vlastní zemědělské družstvo? 4. Družstvo sklidilo 390 tun obilí. Pšenice bylo o 15 % více než ječmene, žita bylo o 126 tun méně než pšenice a ječmene dohromady. Kolik tun ječmene, pšenice, žita družstvo sklidilo? 5. Při první cestě autem se spotřebovalo 20 % benzínu, který byl v nádrži, při druhé cestě se spotřebovalo 10 % benzínu z množství, které zůstalo po první cestě. Po obou cestách zůstalo v nádrži 9 litrů. Kolik litrů benzínu bylo v nádrži na začátku? Řešení př. 1 1 x 2 x + 0,25x = 1,25x 3 1,25x + 0,15*1,25x = 1,25x + 0,1875x = 1,4375x celkem 2950 výrobků x + 1,25x + 1,4375x = ,6875x = 2950 x = den den 1,25*800 = den 1,4375*800 = = 2950 x 1 = (1000*100)/800 = 125 % (o 25 % více) x 2 = (1150*100)/1000 = 115 % (o 15 % více) První den pracovník zkontroloval 800 výrobků, druhý den 1000 výrobků a třetí den 1150 výrobků.

20 Řešení př. 2 Celkem.4720 Kč 1 x + 0,2x = 1,2x 2 x 3 x + 0,15x = 1,15x 1,2x + x + 1,15x = ,35x = 4720 x = pracovník.1,2*1409 = pracovník pracovník..1,15*1409 = = 4720 x 1 = (100*1691)/1409 = 120 % (o 20 % více) x 2 = (100*1620)/1409 = 115 % (o 15 % více) První pracovník si vydělal 1691 Kč, druhý 1409 Kč a třetí 1620 Kč. Řešení př. 3 Celková rozloha půdy x Orná půda.0,55x Zbytek..270 ha 0,55x = x 270 = 0,45x 600 = x Celková půda 600 ha Orná půda..600*0,55 = 330 ha Zbytek 270 ha Zemědělská družstvo vlastní 600 ha půdy.

21 Řešení př. 4 Celkem 390 tun obilí Pšenice.1,15x Ječmen x Žito.2,15x 126 1,15x + x + 2,15x 126 = 390 4,3x = 516 x = 120 pšenice 1,15*120 = 138 tun ječmen..120 tun žito 2,15* = = 132 tun = 390 x 1 = (138*100)/120 = 115 % (o 15 % více) ( ) 132 = = 126 tun Družstvo sklidilo 138 tun pšenice, 120 tun ječmene a 132 tun žita. Řešení př. 5 Celkové množství v nádrži.x 1. cesta 0,2x 2. cesta 0,80*0,10x = 0,08x zbytek po 1. a 2. cestě 9 litrů 0,20x + 0,08x + 9 = x 0,28x + 9 = x 9 = 0,72x 12,5 = x 1.cesta..0,2*12,5 = 2,5 (litru) 2.cesta..0,1*(12,5-2,5) = 0,1*10 = 1 (litr) 12,5 (1 + 2,5) = 12,5 3,5 = 9 litrů Na začátku bylo v nádrži 12,5 litru benzínu.

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička Rozcvička A B 1 Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? celkem... 28 žáků chlapci... x 4...12 chlapců dívky... x... 16 dívek 2 Celková výměra

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

RNDr. Zdeněk Horák 23. 11. 2013 VII.

RNDr. Zdeněk Horák 23. 11. 2013 VII. Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

M - Slovní úlohy řešené rovnicí - pro učební obory

M - Slovní úlohy řešené rovnicí - pro učební obory M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Ekvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých:

Ekvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých: Soustava rovnic o dvou neznámých Soustavou rovnic nazýváme dvojici rovnic, která má platit současně. Řešením takové soustavy je uspořádaná dvojice kořenů [x, y],která splňuje obě rovnice. Ekvivalentní

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

SLOVNÍ Matematizace reálné MATEMATICKÁ ÚLOHA situace ÚLOHA. VÝSLEDEK Interpretace VÝSLEDEK SLOVNÍ výsledku MÚ MATEMATICKÉ ÚLOHY do reality ÚLOHY

SLOVNÍ Matematizace reálné MATEMATICKÁ ÚLOHA situace ÚLOHA. VÝSLEDEK Interpretace VÝSLEDEK SLOVNÍ výsledku MÚ MATEMATICKÉ ÚLOHY do reality ÚLOHY SLOVNÍ ÚLOHY ŘEŠENÉ ROVNICEMI Růžena Blažková, Irena Budínová Slovní úlohy jsou úlohy, ve kterých jsou vztahy mezi známými a neznámými údaji vyjádřeny slovní formulací. Úkolem řešení slovních úloh je najít

Více

Slovní úlohy řešené rovnicemi 4 různé - řešení

Slovní úlohy řešené rovnicemi 4 různé - řešení Slovní úlohy řešené rovnicemi 4 různé - řešení 1. Sud s vodou váží 63kg. Když odlijeme 60% vody, má sud se zbývající vodou hmotnost 33kg. Jakou hmotnost má sud? sud x kg voda..63-x -60% vody 33kg 0,4.

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka,

1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, 1. Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? 2. Jana uspořila dvakrát více než Jitka, Alena o 27 Kč méně než Jana. Celkem uspořily 453 Kč. Kolik

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

Metodický list. Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základní

Metodický list. Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základní Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

Slovní úlohy řešené rovnicí pro učební obory

Slovní úlohy řešené rovnicí pro učební obory Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_ARITMETIKA+ALGEBRA17 Rovnice

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

MATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu

MATEMATIKA STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. Mgr. Miloslav Janík. Výukový materiál zpracován v rámci operačního projektu Výukový materiál zpracován v rámci operačního projektu EU peníze školám REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0512 STŘEDNÍ ŠKOLA EKONOMIKY, OBCHODU A SLUŽEB SČMSD BENEŠOV, S.R.O. MATEMATIKA SLOVNÍ

Více

RNDr. Zdeněk Horák IX.

RNDr. Zdeněk Horák IX. Jméno RNDr. Zdeněk Horák Datum 24. 9. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Řešení náročnějších slovních

Více

Slovní úlohy na procenta

Slovní úlohy na procenta Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_

Více

Rovnice ve slovních úlohách

Rovnice ve slovních úlohách Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (

Více

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč 2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč

Více

P íklad desetinných ísel : 0,7 1,4 1,5 0,789 128,456

P íklad desetinných ísel : 0,7 1,4 1,5 0,789 128,456 4. Desetinná ísla 4.1. ád desetinného ísla V praktickém život nehovo íme jen o 5 kg jablek, 8 metr, 7 0 C, ale m žeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých ísel existují

Více

Metodický list. Ověření materiálu ve výuce: Datum ověření: 30. 3. 2012 Třída: 5. B Ověřující učitel: Jana Kuchtíková

Metodický list. Ověření materiálu ve výuce: Datum ověření: 30. 3. 2012 Třída: 5. B Ověřující učitel: Jana Kuchtíková Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické

Více

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

1.1.5 Poměry a úměrnosti II

1.1.5 Poměry a úměrnosti II 1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická

Více

Úlohy soutěže MaSo, 23. listopadu 2007

Úlohy soutěže MaSo, 23. listopadu 2007 Úlohy soutěže MaSo, 23. listopadu 2007 1. Jednou v noci král Honza III. Hrozný nemohl spát, a proto šel do královské kuchyně, kde našel balíček lupínků. Snědl 1/8 lupínků. Za chvíli přišla hladová královna

Více

Slouží k procvičení slovních úloh řešených rovnicí. list/anotace

Slouží k procvičení slovních úloh řešených rovnicí. list/anotace Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Mgr. Lenka Jančová 20. 3. 2014 IX.

Mgr. Lenka Jančová 20. 3. 2014 IX. Jméno Mgr. Lenka Jančová Datum 20. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o pohybu, soustavy

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

VÝPOČET DANĚ Z POZEMKŮ

VÝPOČET DANĚ Z POZEMKŮ VÝPOČET DANĚ Z POZEMKŮ Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu VY_32_INOVACE_UCE1418 Autor Ing. Martina Macháčková

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Přímá

Více

Metodický list. Název materiálu: Úlohy ze sadu a ze zahrady Autor materiálu: Jana Kuchtíková

Metodický list. Název materiálu: Úlohy ze sadu a ze zahrady Autor materiálu: Jana Kuchtíková Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Válec - slovní úlohy

Válec - slovní úlohy Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

Přepočty cukrářských receptur. Ing. Miroslava Teichmanová

Přepočty cukrářských receptur. Ing. Miroslava Teichmanová Přepočty cukrářských receptur Ing. Miroslava Teichmanová Tento materiál vznikl v projektu Inovace ve vzdělávání na naší škole v rámci projektu EU peníze středním školám OP 1.5. Vzdělání pro konkurenceschopnost..

Více

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď. MATEMATIKA 5 M5PID16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm 1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Hospodářské výpočty I Společná pro celou sadu

Více

Úlohy pro 52. ročník fyzikální olympiády kategorie G

Úlohy pro 52. ročník fyzikální olympiády kategorie G FO52G1: Kolik naložíme Automobilový přívěs, který využívají chalupáři k přepravě materiálu, má nákladovou plochu o rozměrech: šířka 1,40 m, délka 1,60 m a výška hrazení 40 cm. Přívěs má nosnost 560 kg.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_10 ŠVP Podnikání RVP 64-41-L/51

Více

Matematika a její aplikace. Matematika a její aplikace. Náklady na cestování

Matematika a její aplikace. Matematika a její aplikace. Náklady na cestování Šablona FG č. I, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Náklady na cestování Ročník 4. Anotace Pracovní

Více

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2:

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2: Řešení Příklad 1: Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51

Více

Přímá nepřímá úměrnost Sbírka příkladů k procvičování

Přímá nepřímá úměrnost Sbírka příkladů k procvičování Přímá nepřímá úměrnost Sbírka příkladů k procvičování. 8 Trysek naplní bazén za 2 a půl hodiny. Za jak dlouho naplní bazén 5 trysek? 2. 24 zedníků vypije za den na stavbě 72 lahví nápoje. Kolik lahví by

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,

Více

Anotace Metodický list

Anotace Metodický list ZÁKLADNÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRUPČICE, okres Chomutov Autor výukového Materiálu Datum (období) vytvoření materiálu Ročník, pro který je materiál určen Vzdělávací obor tématický okruh Název materiálu,

Více

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. . Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..

Více

Slovní úlohy III. DIGITÁLNÍ UČEBNÍ MATERIÁL VY_42_INOVACE_JA_01-33_MA-8. autor Hana Jahodová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

Slovní úlohy III. DIGITÁLNÍ UČEBNÍ MATERIÁL VY_42_INOVACE_JA_01-33_MA-8. autor Hana Jahodová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Slovní

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_07 ŠVP Podnikání RVP 64-41-L/51

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ17 Soutěž zlomky, procenta, mocniny a odmocniny, převody

Více

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace

Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vytvořeno 18.6.2013 Určeno pro Přílohy VÝUKOVÝ MATERIÁL Vyšší odborná škola a Střední

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7.

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7. Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Marie Smolíková Datum: 7. 02. - 10. 2. 2012 Ročník: 7. Vzdělávací oblast: Vzdělávací obor: Tematický okruh:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/4.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_2_INOVACE_CH29_1_06 ŠVP Podnikání RVP 64-41-L/51

Více

Mgr. Lenka Jančová 3. 3. 2014 IX.

Mgr. Lenka Jančová 3. 3. 2014 IX. Jméno Mgr. Lenka Jančová Datum 3. 3. 2014 Ročník IX. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh SLOVNÍ ÚLOHY Téma klíčová slova Slovní úlohy o společné práci,

Více

4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde?

4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde? 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka

Příklad : Číslo 547,382 5 4 7, 3 8 2..stovky desítky jednotky, desetiny setiny tisíciny.. desetinná čárka 4. Desetinná čísla 4.1. Řád desetinného čísla V praktickém životě nehovoříme jen o 5 kg jablek, 8 metrů, 7 0 C, ale můžeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých čísel existují

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Prohlédni si obrázek a vyber správnou

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1 2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.

Více

MATEMATIKA 7. ročník II. pololetí

MATEMATIKA 7. ročník II. pololetí MATEMATIKA 7. ročník II. pololetí Racionální čísla A) Vypočítejte a výsledek zapište v základním tvaru popř. ve tvaru smíšeného čísla 5-7 - - 8 + 5 4 ( 9 7 + ) ( - 9 ) (- 0,) ( - ) + ( - 4 ) B) Vypočítejte

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

EU peníze školám. Inovace školství. Mateřská škola, Základní škola a Praktická škola Horní Česká 15, Znojmo. Matemaka. Mgr.

EU peníze školám. Inovace školství. Mateřská škola, Základní škola a Praktická škola Horní Česká 15, Znojmo. Matemaka. Mgr. Mateřská škola, Základní škola a Praktická škola Horní Česká 15, Znojmo EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.1044 Název projektu: Šablona číslo/název: Zpracoval: Předmět: Název

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

Název: Autor: Číslo: Květen 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Autor: Číslo: Květen 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Ostatní speciální motory Hybridní stroje a

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

ANALYTICKÉ INFORMACE ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 2006

ANALYTICKÉ INFORMACE ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 2006 ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 26 Výměra zemědělské půdy V roce 26 byla výměra zemědělské půdy v Pardubickém kraji 231,9 tis. ha, z čehož 78,5 % zaujímala orná půda a 21,1 % trvalé travní porosty.

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

APLIKOVANÉ PŘÍKLADY II

APLIKOVANÉ PŘÍKLADY II APLIKOVANÉ PŘÍKLADY II 1) Záhon tvaru rovnostranného trojúhelníku o straně 8 m byl vysypán kamennou drtí. Kolik drti bylo spotřebováno, jestliže na 1 m plochy záhonu je jí třeba 5 kg? ) Kruhový park má

Více

Určete všechna čísla z množiny {0,2,3,4,5,6,7,8,9,10}, která jsou děliteli čísel: a) 24 b) 210 c) 240 d) 216 e)7560

Určete všechna čísla z množiny {0,2,3,4,5,6,7,8,9,10}, která jsou děliteli čísel: a) 24 b) 210 c) 240 d) 216 e)7560 Dělitelnost čísel Prvočíslo je přirozené číslo, které je beze zbtku dělitelné právě dvěma různými čísl, a to číslem jedna a sebou samým (ted není prvočíslo). Přirozená čísla různá od jedné, která nejsou

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Více

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH. 15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/4.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_2_INOVACE_CH29_1_01 ŠVP Podnikání RVP 64-41-L/51

Více