Elektronický výstup z projektu Perspektiva 2010 reg. č. CZ.1.07/1.3.05/

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektronický výstup z projektu Perspektiva 2010 reg. č. CZ.1.07/1.3.05/11.0019"

Transkript

1 Elektronický výstup z projektu Perspektiva 2010 reg. č. CZ.1.07/1.3.05/ Vydalo s podporou Evropského sociálního fondu a státního rozpočtu České republiky Krajské zařízení pro další vzdělávání pedagogických pracovníků a informační centrum, Nový Jičín, příspěvková organizace, Štefánikova 7/826, Nový Jičín. Autor na originále závěrečné práce stvrdil svým podpisem prohlášení, že tento materiál vypracoval samostatně a to včetně grafických a zvukových příloh, a dílo splňuje podmínky uvedené v 31 zákona č. 121/2000 Sb., autorského zákona. (CC BY-NC-ND 3.0) Uveďte autora-neužívejte dílo komerčně-nezasahujte do díla 3.0 Česko

2 ÚVODNÍ SLOVO Mgr. Blanka Kozáková Projekt Perspektiva 2010 reg. č. CZ.1.07/1.3.05/ , financovaný z operačního programu Vzdělávání pro konkurenceschopnost, probíhal v období let Tento projekt byl vyústěním dlouhodobé a systematické metodické podpory pedagogickým pracovníkům, kteří se zaměřují na rozvoj ICT ve školách Moravskoslezského kraje, poskytované Krajským zařízením pro další vzdělávání pedagogických pracovníků a informačním centrem, Nový Jičín, příspěvkovou organizací. Významnou vzdělávací aktivitu projektu tvořilo dlouhodobé vzdělávání ICT lídrů. Jedním z výstupů procesu zvyšování jejich digitální gramotnosti byla závěrečná práce, která postihovala oblast, které se v ICT detailněji věnovali. Její úvodní část vždy popsala teoretická východiska a v další části se pak autoři zaměřili na praktické aspekty problému ve školské praxi. Protože se jednalo o práce rozsáhlejšího charakteru, které měly vazbu na současný stav využívání ICT ve školách Moravskoslezského kraje, shrnuli jsme tyto výstupy do motivačního sborníku zajímavých řešení, návodů, postupů a dáváme je tímto k dispozici pedagogickým pracovníkům základních a středních škol Moravskoslezského kraje. Vlastní příprava závěrečných prací byla řízena v Learning Management System Moodle. Díky tomuto nástroji jsme mohli sledovat postup při zpracování, a to jak u autora práce, tak i u jeho vedoucího. Pro tento účel měli oba v prostředí LMS připraveny komunikační nástroje (fórum, chat) a termínované odevzdávání jednotlivých verzí závěrečné práce. V konečné fázi zpracování dostal do prostředí LMS přístup také oponent práce pro zpracování a vložení svého posudku. Všichni zúčastnění tak měli přehled o aktuálním stavu komunikace a zpracovaného materiálu a mohli neprodleně reagovat, pokud si to situace vyžádala. Děkujeme touto cestou všem pedagogickým pracovníkům, kteří se nechají uváděnými příklady inspirovat ke své další pedagogické práci podpořené využitím ICT ve své škole. Poděkování za vedení přípravy závěrečných prací patří celému realizačnímu týmu projektu Perspektiva 2010.

3 Využití programu dynamické geometrie GeoGebra při výuce geometrie na 2. stupni ZŠ Ing. Ladislav Pleva

4 Obsah 1 ÚVOD OBECNÝ POPIS A VYUŽITÍ PROGRAMŮ DYNAMICKÉ GEOMETRIE Co je program dynamické geometrie Moţnosti vyuţití programů dynamické geometrie ve výuce Organizace vyučování Vhodné metody vyučování Technické příprava učitele na výuku s programy dynamické geometrie POROVNÁNÍ JEDNOTLIVÝCH PROGRAMŮ DYNAMICKÉ GEOMETRIE A PŘEDNOSTI GEOGEBRY Cabri Geometrie II Plus GeoGebra Geonext C.a.R Dynamická geometrie v rovině Shrnutí porovnání a závěrečné zhodnocení Výhody GeoGebry APLIKACE GEOGEBRY VE VÝUCE Výběr učiva z geometrie pro 9. ročník Podobnost Tělesa Úlohy na podobnost Určení a použití poměru podobnosti Dělení úsečky s využitím podobnosti trojúhelníků Planimetrie Souvislost mezí Ludolfovým číslem a obvodem kruhu, vztah mezi radiány a stupni Tělesa Jehlan Kužel Koule Ostatní zdroje z internetu ZÁVĚR SEZNAM POUŽITÝCH ZDROJŮ A LITERATURY

5 1 Úvod Trendem v současné výuce, nejen matematiky, je všeobecné pronikání výpočetní techniky do vyučovacího procesu. Často je důvodem snaha zatraktivnit a zpestřit výuku pro naše málo motivované ţáky a přinést jim jiný pohled na právě probíranou látku. Výsledkem by však mělo být, dle mého názoru, zejména zefektivnění výuky. Tedy dosáhnout toho, aby ţáci lépe a rychleji chápali probíranou látku a aby si ji dokázali vybavit i po delším časovém období. Při výuce matematiky na naší škole jiţ pouţíváme několik programů pro výuku probíraného učiva, ale stále nám chyběl software, který by dokázal zefektivnit výuku geometrie. Po krátkém seznámení s programem Cabri II jsem nabyl přesvědčení, ţe tento typ programu nám skutečně v naší plejádě programů pro výuku matematiky schází. Vzhledem k tomu, ţe finanční prostředky malých základních škol, určené na nákup výukových pomůcek, jsou velmi skromné, jsem se rozhodl prozkoumat, zda existují srovnatelné varianty programů dynamické geometrie, které by pro výuku na základní škole byly vhodné a které by školu nic nestály. Výsledkem byla volba programu Geo Gebra a následně výběr tohoto tématu pro mou práci. Tato práce bude také podkladem pro vyuţití programu GeoGebra na naší škole při výuce geometrie na druhém stupni. Současně by měla poskytnout určitý didaktick ý základ pro učitele, který se rozhodne tento program při výuce vyuţít, ať uţ formou demonstrace či jako nástroj pro praktickou výuku konstrukce geometrických útvarů. 3

6 2 Obecný popis a využití programů dynamické geometrie 2.1 Co je program dynamické geometrie Dynamická geometrie je moderní, rychle se rozvíjející oblast geometrie, která je s úspěchem začleňována do výuky na všech typech škol. Počítačové programy umoţňují oprostit se od statické geometrie, ve školní praxi reprezentované rýsováním do sešitu respekt ive na tabuli, kde jednou narýsované objekty jiţ dále nelze výrazně měnit. Základním rysem dynamické geometrie je více neţ jen její interaktivnost, neboli moţnost změny parametrů (např. polohy, rozměrů, barvy) narýsovaných objektů. Interaktivní jsou v podstatě téměř všechny geometrické programy, neboť umoţňují vzájemné ovlivňování uţivatele a geometrické situace na displeji. Zde je jedna z moţných definicí programů dynamické geometrie včetně popisu jejich klíčové vlastnosti. Software, v němţ nejsou sestrojené objekty statické, ale lze s nimi po jejich vytvoření dále manipulovat, měnit jejich tvar, velikost a polohu v nákresně i pozici vzhledem k ostatním objektům (při zachování určitých invariantů, jimiţ jsou definované vztahy mezi objekty), nazýváme progra my dynamické geometrie. Tu oblast geometrie, v níţ má pohyb některého objektu podstatný vliv na vhled do situace, na řešení úlohy, pak nazývejme geometrií dynamickou. [ 1 ] Nejdůleţitější charakteristikou je tedy zachování zadaných vztahů mezi objekty během pohybu. Dynamický přístup umoţňuje hlubší pochopení souvislostí a snadné zobrazení zadané konstrukce při změně výchozích parametrů. Schopností podněcovat představivost a kreativnost je dynamická geometrie předurčena k výuce, zároveň je však vhodným prostředkem pro výzkumnou činnost v různých oblastech. O dynamické geometrii pojednává například Jiří Vaníček. 1 1 VANÍČEK, Jiří. Dynamická geometrie. [Online] leden

7 Dynamická geometrie nutí ţáky dodrţovat správný postup konstrukce daného objektu proto, ab y byly dodrţeny návaznosti a vztahy jednotlivých elementárních částí objektu. Výsledkem pak je, ţe při změně některého parametru se nám objekt překresluje, ale jsou zachovány jeho základní vlastnosti. Tyto parametry, jako je změna polohy, velikosti částí, tvaru, se mění metodou táhni a pusť. Pro ilustraci mohu uvést jako příklad některé důsledky výše uvedeného: rovnostranný trojúhelník mění současně délku všech stran stejně, tedy zůstává stále rovnostranným trojúhelníkem; obecný čtyřúhelník můţe přejít v čtverec, ovšem (řádně sestrojený) čtverec nemůţe přejít v obecný čtyřúhelník ; správně sestrojená tečna ke kruţnici je tečnou i při změně poloměru či změně polohy kruţnice Obrázek 1 stopa obecného a rovnostranného trojúhelníku. Vlevo je stopa obecného trojúhelníku bez zadaných podmínek při konstrukci a vpravo je stopa rovnostranného trojúhelníku při manipulaci s vrcholem C. 5

8 2.2 Možnosti využití programů dynamické geometrie ve výuce Vyuţití programů dynamické geometrie ve výuce vyţaduje od ţáků základní dovednosti spojené s ovládáním počítače a dodrţování pravidel a návazností v konstrukci konkrétních objektů. Na učitele je pak kladen poţadavek vysvětlit a naučit ţáky ovládat a samostatně pouţívat program dynamické geometrie. Je třeba dát dětem dostatek času, aby mohly objevit, jak program funguje a jaké je jeho ovládání, aby jej mohli zaţít a některé činnosti zautomatizovat. Při této seznamovací činnosti není nutno ţáky úkolovat, jejich badatelská činnost tak bude více podporová na, bude-li se učitel zajímat, co jiţ který ţák objevil. Odměnou je pak atraktivnější výuka, soustředění dětí na vlastní proces konstrukce, jednoduchá zpětná vazba při konstrukci, rychlejší a trvalejší pochopení relačních vztahů dané konstrukce, také větší motivace ţáků atd. Jednoduchým pohnutím objekty dané konstrukce si učitel můţe snadno ověřit, zda ţák postupoval při konstrukci správně, coţ při klasické konstrukci pomocí rýsovacích potřeb lze velmi obtíţně. Tím se u ţáků pěstuje logické myšlení, představivost a smysl pro pravidla konstrukce a její souvislosti, a to účinněji, neţ při klasické konstrukci. Nasazení programů interaktivní geometrie do výuky přináší moţnost či nutnost změnit styl vyučování, jeho organizaci, přípravu učitele na vyučování atd. Teprve změnou stylu výuky lze uplatnit výhody a eliminovat nevýhody pouţití dynamické geometrie při vyučovací hodině Organizace vyučování Práce s geometrickými programy, tak jako jiná činnost na počítači, podporuje samostatnou práci dítěte. Je vhodná i pro skupinovou výuku po dvou u počítače (např. ţák matematicky zdatnější vede slabšího, který při práci ovládá počítač nebo dvojice schopnějších ţáků pracuje na obtíţnějším úkolu). Velmi příjemným jevem je individualizace učebního procesu, kdy ţák můţe dostávat úlohy adekvátní jeho schopnostem. Učitel se zabývá ţákem, 6

9 který nejvíce potřebuje jeho pomoc, neboť má na to časový prostor. To je obecný charakter práce při výuce pomocí počítačů. Ţáci se nebojí učitele zeptat, protoţe v tu chvíli nejsou sledováni celou třídou. Vyšší motivace je příčinou větší kázně při hodině a vytvoření aktivního a motivovaného pracovního prostředí, které přináší dobré učební výsledky. Programy dynamické geometrie lze také vyuţít k zadávání domácích úkolů. To nám umoţňuje nasazení programů dynamické geometrie s volnou licencí, kdy si je ţák můţe zdarma nainstalovat na svůj počítač doma nebo můţe vyuţívat k přípravě počítače ve školní učebně během hodin k tomu vyhrazených. Díky zpětnovazební vlastnosti těchto programů můţe ţák dojít ke správnému řešení kombinací získaných znalostí a metody pokus -omyl, coţ jej vede k experimentování Vhodné metody vyučování Paleta metod vyučování, pouţitelných s programy dynamické geometrie, je velmi široká. Od vyuţití při výkladu nové látky, přes instruktáţ a demonstraci nové konstrukce k řešení neproblémových a problémových úloh. Velmi silným momentem je moţnost experimentování s tímto programem, coţ zdůrazní objevnou činnost ţáků a ve výsledku bohatší a trvalejší znalosti a dovednosti v oblasti geometrie. Programy interaktivní geometrie usnadňují práci a není nutno učit ţáky náročný matematický jazyk zápisu postupu geometrické konstrukce. Pomocí menu a ukazování na zvolené objekty se také ţáci mohou vyhnout sloţitému popisování bodů a obrazců. Toto má význam především u slabších ţáků neschopných se dostatečně rychle naučit pouţívat formální matematický jazyk pro zápis postupu. Vlastní zápisy postupu konstrukce v matematickém jazyce si mohou ţáci bezprostředně zkontrolovat jejím sestrojením, případně mohou provést konstrukci podle postupu daného učitelem či knihou. Při výkladu nové látky lze vyuţít dynamických konstrukcí k demonstraci obrázků, které znají ţáci z učebnice, a které jsou přímo určeny k dynamizaci (zvláště u důkazů některých vět, při hledání nových poznatků). 7

10 Mnoho jich je k dispozici ke staţení na stránkách podpory jednotlivých programů dynamické geometrie. Má-li dostatečné technické vybavení, má tak učitel pomůcku, s níţ můţe při svém zaţitém a vyzkoušeném způsobu práce pracovat efektivněji neţ s tabulí. V současné době lze pro tuto metodu s výhodou vyuţít interaktivních tabulí. Jako příklad je moţné pouţít důkaz Pythagorovy věty. Obrázek 2 grafický důkaz Pythagorovy věty. Metoda problémového vyučování se přímo nabízí, neboť nástroje interaktivní geometrie, jsou velmi vhodným prostředkem k řešení geometrických problémů. Například příklady 1, 2, níţe, kde je zde vţdy srozumitelný úkol, sada nástrojů k dispozici a chybějící řešení. 1. Sestroj rovnostranný trojúhelník, tak aby bylo moţno měnit pomocí jednoho bodu velikost všech tří stran současně. 2. Za jakých podmínek se průsečík výšek bude nacházet uvnitř trojúhelníku a kdy vně trojúhelníku. Obrázek 3 výšky a těžnice trojúhelníku. 8

11 Všechny základní geometrické konstrukce lze pomocí programů interaktivní geometrie učit různými způsoby a tyto způsoby kombinovat. 1. Můţeme zkoumat hotovou konstrukci a manipulovat s ní a provést následný rozbor pomocí jiţ vytvořeného návodného příkladu, v němţ: a. je hotova jen část konstrukce, b. nebo v něm lze objevit novou informaci, poznatek, který ţák v konstrukci můţe pouţít (např. při hledání středu kruţnice lze ukázat, ţe střed leţí na ose těti vy, nebo např. při motivaci ke studiu Thaletovy věty apod.), c. je konstrukce provedena špatně a ţák má za úkol najít chybu v konstrukci a opravit ji. 2. Je také moţno provést konstrukci podle zadaného postupu, ať uţ slovního či matematicky zapsaného. 3. Ţák provede vlastní konstrukci na základě jiţ získaných znalostí a dovedností kombinovaných se samostatným objevováním nových postupů a souvislostí. Rozbor úlohy s diskusí moţných řešení významně usnadňuje právě systém práce s dynamicky se měnícími objekty, kdy ţák můţ e manipulací s těmito objekty měnit různé vstupní parametry konstrukce, a tak nacházet nová řešení. Současně s tím vnímá vztahy mezi jednotlivými objekty jako je např. kolmost, rovnoběţnost, průnik a další Technická příprava učitele na výuku s programy dynamické geometrie Technická příprava učitele spočívá v přípravě materiálů pro výuku s respektováním zvolené metody. Je třeba mít nejen připravená zadání úkolů, ale také jejich řešení. Pro demonstraci a experimentální manipulaci je vhodné mít připravený objekt ve formátu, který manipulaci umoţní, ale současně neposkytne moţnost ţákům objekt smazat či ho nevhodně pozměnit. Z tohoto hlediska je důleţité, aby daný program umoţnil export ve formátu tzv. java appletů. Je to velmi uţitečný prvek www stránky, po skytující komfort, interaktivitu i kvalitní zobrazení. Stačí mít k dispozici internetový prohlíţeč 9

12 a nainstalovanou tzv. Java konzoli a je pak jiţ bez jakýchkoliv problémů moţné tyto java applety spouštět a pouţívat, ať jsou umístěny na vašem počítači, v sítí nebo na internetových stránkách. V současné době je na internetu k dispozici mnoho geometrických aplikací v java appletech, takţe učitelé mohou z počátku, alespoň pro demonstraci, vyuţívat jiţ hotové dynamické obrázky. Samozřejmě další výhodou je, ţe nezáleţí, ve kterém programu byly tyto java applety vytvořeny. 10

13 3 Porovnání jednotlivých programů dynamické geometrie a přednosti GeoGebry V současné době existuje na trhu softwaru více programů dynamické geometrie. K porovnání těchto programů jsem vyb ral ty, které jsou dostupné na našem trhu v české jazykové variantě. V porovnávání jsem se zaměřil na následující vlastnosti: cena, rychlost vykreslování, moţnosti exportu, on-line provoz, mnoţství nástrojů, uţivatelská přívětivost, tvorba maker (nových nástrojů), uţivatelská podpora softwaru. 3.1 Cabri Geometrie II Plus Nejznámější software hojně propagovaný v našem školství za cenu Kč v neomezené multilicenci. Při srovnávání programů dynamické geometrie se pouţívá jako srovnávací standard. Má kompletně počeštěná menu a nástroje. Manuál je k dispozici v elektronické formě v češtině a je výborně zpracovaný. Rychlost vykreslování je výborná a nástroje velmi dobře rozmístěné a kombinované s textem. Paleta nástrojů je velmi bohatá, a pokud by nějaký chyběl, lze jej vytvořit pomocí makroinstrukcí. Obsahuje nástroje pro body, přímky, mnohoúhelníky, křivky, měření délek a úhlů. Nechybí také nástroje pro konstrukce jako kolmice, rovnoběţky, osy, středy úseček, nástroje pro různá zobrazení a moţnost vkládání textu. Lze také nastavit různé grafické atributy jako tloušťku bodů, tloušťku a typ čar. Je moţné ukládat vytvořené projekty ve formě souboru Cabri, v bitmapovém a vektorovém formátu. Pro export k vytvoření java appletů je třeba stáhnout a pouţít software CabriJava. Pro vytváření webových stránek s CabriJava applety je třeba nainstalovat program CabriWeb. U nás je výborná podpora i s rozcestníkem na webu Jihočeské univerzity. 2 2 VANÍČEK, Jiří. Odkazy do světa Cabri. Cabri Geometrie český výukový portál. [Online]

14 3.2 GeoGebra Tento software vytvořil student Markus Hohenwarter jako svou diplomovou práci na univerzitě v Salcburku v roce V současnosti je vyvíjený pod vedením autora na Floridské univerzitě v Tallahassee. Program je k dispozici v licenci GPU, tedy volně šiřitelný software. Získala i několik mezinárodních ocenění. Nejnovější verze je Je moţné vyuţít instalovanou verzi WebStart, která umoţní práci i v reţimu offline nebo verzi AppletStart (bez instalace), která otevře plně funkční java applet GeoGebry v internetovém prohlíţeči. Vývoj programu i nadále pokračuje. Má také kompletně počeštěná menu a nástroje. Příklady lze nalézt na velmi dobře provedeném webu podpory, který je i v české mutaci. 3 Manuál je k dispozici v elektronické formě v češtině a je dobře zpracovaný. Rychlost vykreslování je výborná a nástroje velmi dobře rozmístěné a také kombinované s textem. Jsou větší a lépe viditelné neţ v Cabri. Paleta nástrojů je velmi bohatá, a pokud by nějaký chyběl, lze jej vytvořit pomocí volby Vytvořit nový nástroj. Obsahuje nástroje pro body, přímky, mnohoúhelníky, křivky, kuţelosečky, měření délek a úhlů. Nechybí také nástroje pro konstrukce jako kolmice, rovnoběţky, osy, středy úseček, nástroje pro různá zobrazení a moţnost vkládání textu. Lze také nastavit různé grafické atributy jako tloušťku a typ bodů, tloušťku a typ čar. Je moţné ukládat vytvořené projekty ve formě souboru GeoGebra, v bitmapovém a otevřeném vektorovém formátu. Pro export k vytvoření java appletů není třeba nic instalovat, neboť GeoGebra umí vyexportovat webovou stránku i s java appletem přímo v programu. Má velmi dobře udělaný algebraický vstup, coţ umoţňuje vykreslovat nejen geometrické objekty pomocí vzorců či zadávání vektorů. Taktéţ umí vygenerovat postup konstrukce, coţ je vhodný nástroj pro kontrolu správnosti postupu ţáků při konstrukci. Velmi dobrý program, který více neţ zdatně konkuruje Cabri Geometrii. 3 Hohenwarter, Markus. GeoGebra Domovská stránka programu. [Online]

15 3.3 Geonext 1.73 Geonext je freewarový program vyvinutý na německé Universität Bayreuth a šířený pod GNU General Public License. Instalace je bezproblémová a je moţné také on-line spouštění. 4 Má také kompletně počeštěná menu a nástroje. Manuál je k dispozici v elektronické formě v češtině, ale je velmi stručný. 5 V programu je obsah nápovědy v češtině, ale jednotlivé popisy jsou v angličtině. Podpora uţivatelských materiálů je u nás malá, je nutné pátrat na internetu po materiálech kolegů. Rychlost vykreslování je velmi dobrá a pro aplikace v geometrii na ZŠ je dostatečná. Nástroj e jsou velmi dobře rozmístěné a také kombinované s textem. Paleta nástrojů je velmi bohatá, ale nenašel jsem nástroj pro tvorbu maker. Obsahuje nástroje pro body, přímky, mnohoúhelníky, křivky, měření délek a úhlů. Nechybí také nástroje pro konstrukce jako kolmice, rovnoběţky, osy, středy úseček a moţnost vkládání textu. Chybí mi tu bohatší nástroje pro zobrazení, má jen nástroj pro osově a bodově souměrný bod. Lze také nastavit různé grafické atributy jako tloušťku a typ bodů, tloušťku a typ čar. Je moţné ukládat vytvořené projekty ve formě souboru Geonext, v bitmapovém a otevřeném vektorovém formátu. Pro export k vytvoření java appletů není třeba nic instalovat, neboť Geonext umí vyexportovat webovou stránku i j ava appletem přímo v programu. Algebraický vstup je omezen pouze na zadávání funkcí. Taktéţ umí vygenerovat protokol konstrukce, coţ je vhodný nástroj pro kontrolu správnosti postupu ţáků při konstrukci. Stejně jako GeoGebra jej umí vygenerovat i s jiţ hotových souborů, které je moţné stáhnout z webu tvůrce. Velmi slušný program, který sice nedosahuje zcela kvalit programu Cabri Geometrie, ale je zdarma a má dostatečné nástroje pro výuku geometrie 4 Bayreuth, Univerzita. GEONEXT Domovská stránka. [Online] - bayreuth.de/index.php?id= PRIKNER, Milan. Geonext dynamická geometrie zdarma. Milan Prikner ZŠ Filosofská. [Online] 22. březen ec38b 13

16 na ZŠ. V současné době je k dispozici verze z roku 2008, z čehoţ plyne, ţe se program pravděpodobně dále nevyvíjí. 3.4 C.a.R. Autorem program je profesor René Grothmann z Katholische Universität Eichstätt. Je k dispozici v licenci GNP, tedy volně šiřitelný software. 6 Na rozdíl od ostatních programů je tento ve slovenské jazykové verzi. To samozřejmě není ideální, ale domnívám se, ţe by děti neměl y s porozuměním ovládacích prvků výraznější problémy. Pro ovládání je k dispozici pouze kontextová nápověda, která není v podstatě rozumně pouţitelná. Program lze spouštět i on-line na internetu z domovského webu bez instalace na počítač. Rychlost vykreslování je velmi dobrá. Nástroje jsou však oproti předchozím programům trochu nepřehledně rozmístěné, ale jsou naštěstí kombinované s textem. Při častějším pouţití by si však uţivatel měl na rozmístění zvyknout. Naproti tomu jsou větší a lépe viditelné neţ v Cabri. Paleta nástrojů je velmi bohatá, a kdyby nějaký chyběl, lze jej vytvořit pomocí volby Makrá. Obsahuje nástroje pro body, přímky, mnohoúhelníky, křivky, měření délek a úhlů. Nechybí také nástroje pro konstrukce jako kolmice, rovnoběţky, osy, středy úseče k, nástroje pro různá zobrazení a moţnost vkládání textu. Lze také nastavit různé grafické atributy jako tloušťku a typ bodů, tloušťku a typ čar. Je moţné ukládat vytvořené projekty ve formě souboru C.a.R., v bitmapovém a otevřeném vektorovém formátu a také do formátu pdf. Pro export k vytvoření java appletů není třeba nic instalovat, neboť C.a.R. umí vyexportovat webovou stránku i s java appletem přímo v programu s bohatým nastavením ovládacích prvků. Umoţňuje vykreslovat funkce zadané algebraicky. Postup konstrukce se zaznamenává postupně v levém okně, a to volitelně, coţ lze pouţít jako nástroj pro kontrolu správnosti postupu ţáků při konstrukci. Velmi dobrý program, který v mnohém Cabri Geometrii můţe nahradit. Tutoriál je velmi příjemným bonusem tohoto programu. 6 GROTHMANN, René. C.a.R., Compass and Ruler, Construct and Rule. [Online]

17 3.5 Dynamická geometrie v rovině 3.1 Český výukový software z dílny RNDr. Petra Branta. Distributorem softwaru je stejně jako u Cabri firma Pachner. Za cenu 1690 Kč jej lze získat jako školní multilicenci. 7 Program je samozřejmě v češtině. Pro uţivatelskou podporu je na instalačním CD video průvodce. Nápověda programu je sice srozumitelná, ale poněkud stručná s minimem příkladů. Webová podpora k programu není. Program nelze spouštět on-line. Rychlost vykreslování je velmi dobrá. Nástroje jsou však oproti předchozím programům poněkud skromnější a neobsahuje makroinstrukce. Obsahuje nástroje pro body, přímky a kruţnice, měření délek a úhlů, kalkulačku. Nechybí také nástroje pro konstrukce jako kolmice, rovnoběţky, osy, středy úseček. Nástroje pro různá zobrazení chybí, je třeba tato zobrazení klasicky zkonstruovat. Je zde i moţnost vkládání textu. Lze také nastavit různé grafické atributy jako tloušťku a typ bodů, tloušťku a typ čar. Neumí nastavit barvu pozadí ani vybarvení objektů. Je moţné ukládat vytvořené projekty pouze ve formátu tohoto programu a ve formě animace, kterou lze však přehrát pouze v mateřském programu. Ostatní moţnosti exportu chybí. Zadávání funkcí neumí a záznam konstrukce nelze vygenerovat, lze jej vysledovat pouze při přehrávání konstrukce, coţ by se také dalo pouţít pro kontrolu správnosti postupu ţáků. Velmi jednoduchý program ve srovnání s ostatními, coţ můţe být i s cenou určitá výhoda pro učitele, kteří by dali přednost jednoduchosti před bohatostí výbavy. Kaţdopádně by v mnohém postačoval pro výuku geometrie na 2. stupni ZŠ. Video-průvodce je jistě přínosným bonusem tohoto programu. 3.6 Shrnutí porovnání a závěrečné zhodnocení Abych mohl tyto programy zhodnotit a seřadit dle vhodnosti pro pouţití na naší škole, pouţil jsem následující kritéria. Hodnotil jsem vlastnosti 7 PACHNER. ABC vzdělávání e-shop. [Online] /. 15

18 jednotlivých programů dle jejich váhy pro mé rozhodnutí for mou udělovaných bodů (2-10 bodů). Zvaţoval jsem následující vlastnosti: cena, rychlost vykreslování, moţnosti exportu, on -line provoz, mnoţství nástrojů a uţivatelská přívětivost, tvorba maker (nových nástrojů), uţivatelská podpora softwaru (viz. Tabulka 1). Tabulka 1 porovnání progra mů dyna mické geometrie. Vlastnosti Váha Cabri GeoGebra Geonext C.a.R. D.G. v rovině % body váţené body váţené body váţené body váţené body váţené Cena ,5 10 2,5 10 2,5 10 2,5 8 2 Rychlost ,6 8 1,6 7 1, Export ,05 9 1,35 8 1,2 9 1,35 2 0,3 On-line ,4 8 0,4 6 0,3 0 0 Ovládání ,8 8 1,6 6 1,2 8 1,6 Podpora ,9 6 0,6 5 0,5 0 0 Makra ,5 10 0, ,5 0 0 Celkem , , ,9 53 7, ,9 Umístění Ze srovnání vyplývá, ţe nejlepším produktem pro účely nasazení v naší škole dle zadaných kritérií je program GeoGebra. 3.7 Výhody GeoGebry Program GeoGebra jsem tedy vybral pro instalaci na naší škole a také pro aplikaci v této práci pro výuku geometrie na 2. stupni ZŠ. Tento program má mnoho předností a zde bych uvedl jen výčet těch nejdůleţitějších: je zdarma a díky tomu je vhodný i pro domácí přípravu ţáků a učitelů, má online i offline verzi, je i v českém jazyce, existuje poměrně velké mnoţství jiţ hotových prací na internetu, 16

19 má přehledné pracovní prostředí, má bohatou škálu nástrojů, umoţňuje krokování, zápis konstrukce, je v současné době velmi rozšířen ve výuce v USA, Francii a Německu, ale i v dalších státech, je v současnosti i nadále vyvíjen a podporován. 4 Aplikace GeoGebry ve výuce Aplikace programů do výuky geometrie můţe být velmi široká. Vzhledem k tomu, ţe budu příští školní rok pravděpodobně znova učit ţáky 9. a 8. tříd, jsem se rozhodl, ţe se budu věnovat didaktické aplikaci právě pro tyto ročníky. Je to záruka toho, ţe vytvořené materiály budou prakticky vyuţity a případně doplňovány a vylepšovány. V kaţdém zvoleném tématu bych rád vytvořil objekty vhodné pro demonst raci a ilustraci daného učiva, zadání různých úloh dle obtíţnosti a způsobu řešení a samozřejmě také hotové vyřešené úlohy. Demonstrační obrázky budou ve formátu tzv. java appletu, aby je bylo moţno jednoduše prohlíţet a manipulovat s nimi v jakémkoliv internetovém prohlíţeči s nainstalovaným doplňkem Java. 4.1 Výběr učiva z geometrie pro 9. ročník Současně v této kapitole uvádím i ročníkové výstupy, které lépe vystihují účel a cíl tvořených objektů a úloh pro výuku s programy dynamické geometrie Podobnost Učivo: Podobnost, poměr podobnosti, dělení úsečky v daném poměru, věty o podobnosti trojúhelníků. Ročníkové výstupy: Ţák určí podobné útvary. Ţák určí a pouţije poměr podobnosti. 17

20 Ţák rozdělí úsečku v daném poměru. Ţák zvětší nebo zmenší útvar v rovině v daném poměru. Ţák uţívá poměr podobnosti při práci s mapou a plány. Ţák vyuţívá podobnosti trojúhelníků v příkladech z praxe Tělesa Učivo: Jehlan, kuţel, koule. Ročníkové výstupy: Ţák odhadne a vypočítá povrch a objem těles jehlan, kuţel, koule. Ţák načrtne a sestrojí sítě základních těles. Ţák načrtne a sestrojí obraz jednoduchých těles v rovině. Ţák určuje a charakterizuje základní prostorové útvary (těles a), analyzuje jejich vlastnosti. Ţák odhaduje a vypočítá objem a povrch těles. Ţák analyzuje a řeší aplikační geometrické úlohy s vyuţitím osvojeného matematického aparátu. 4.2 Úlohy na podobnost Určení a použití poměru podobnosti Následující dva pracovní listy slouţí k samostatné práci ţáků, kde objevují poměry při podobnosti trojúhelníků. Na obrázku níţe je pracovní list, na kterém si ověří pomocí výpočtu, ţe při jakékoliv změně trojúhelníků zůstávají poměry stran zachovány stejně jako jejich podobnost. Na tomto pracovním listě si ověří i podobnost podle vět sus a uu. 18

21 Obrázek 4 pracovní list "Podobnost trojúhelníků". Pracovní list Neznámá strana u podobných trojúhelníků slouţí k poznávání, jak lze u podobných útvarů vypočítat neznámý rozměr, známe -li poměr a rozměr na vzorovém útvaru. Obrázek 5 pracovní list "Nezná má strana u podobných trojúhelníků". 19

22 Pracovní list Podobný čtyřúhelník na příkladu obecného čtyřúhelníku demonstruje podobnost geometrických útvarů s tím, ţe úkolem ţáka je manipulací s objekty nastavit příslušný poměr podobnosti, porovnávat podobné objekty při překrytí a stanovit minimální počet shodných úhlů pro zjištění podobnosti čtyřúhelníků. Obrázek 6 pracovní list Podobný čtyřúhelník Dělení úsečky s využitím podobnosti trojúhelníků Dalším praktickým modelem je dynamický pracovní list vhodný pro demonstraci konstrukce dělení úsečky s vyuţitím podobnosti trojúhelníků. Je moţné konstrukci krokovat, spustit animaci a pohybovat. Výhodou těchto typů java appletů je, ţe poslouţí učiteli pro vysvětlení postupu, pravidel, souvislostí a současně mohou být pouţity samotnými ţáky pro objevování vztahů a postupů při konstrukci. Na pracovním listu Dělení úsečky je zadání příkladu podobného výše uvedenému s tím rozdílem, ţe jde o java applet bez konstrukce a ţák provede konstrukci samostatně nebo ve dvojici. Navíc má vyvodit při konstrukci odpovědi na doplňující otázky o této konstrukci. Pro případ nutné nápovědy 20

23 je přiloţen postup konstrukce v symbolické textové podobě, dle kterého se ţák můţe řídit, či jen do něj nahlíţet pro kontrolu postupu. Obrázek 7 pracovní list Dělení úsečky. 21

24 4.3 Planimetrie Souvislost mezí Ludolfovým číslem a obvodem kruhu, vztah mezi radiány a stupni. Připravil jsem téma jako dokumentační java applet (obrázek 13) a připomenutí co je to π. Nastavením úhlu se zobrazí tento úhel na obrázku a současně se přepočítá na radiány. Změnou r si pouze ţák ověří, ţe na poloměru nezávisí počet radiánů úhlu. Je to příprava na učivo o povrchu a objemu těles a na goniometrické funkce. Obrázek 8 pracovní list Radiány a π. 22

25 4.4 Tělesa Jehlan Následující obrázek je z java appletu francouzského profesora matematiky, Daniela Mentranda 8. Vypracoval více témat, která ve formátu html nabízejí univerzální pouţití. Jedinou chybičkou je francouzský jazyk, ale i to se dá překonat v dnešní době pomocí on-line překladačů. Tento java applet umoţňuje modelovat i víceboké jehlany s nastavením základních rozměrů. Zajímavá je také moţnost natáčení v prostoru, coţ podpoří prostorovou představivost ţáků. Obrázek 9 jehlan 8 MENTRAND, Daniel Les Pyramides a bases Polygonales. LES MATHEMATIQUES AVEC GEOGEBRA. [Online] mentrard.free.fr/geogebra/maths/espace/lespyramide.html 23

26 Následující konstrukce je zajímavá tím, ţe modeluje čtyřboký jehlan a na něj v návaznosti síť tohoto jehlanu. Síť jehlanu j e opatřena nastavitelnými okraji ke slepení pro případ, ţe dáme ţákům za úkol jehlan z papíru vyrobit. Opět jsou zde uvedeny úkoly, které ţák poté musí splnit. Obrázek 10 jehlan a jeho síť Na dalším obrázku je ilustrační příklad zadání konstrukce s výpočtem povrchu. Je na učiteli, zda ţákům dá k dispozici postup konstrukce či nikoli. V případě motivovaných ţáků slouţí postup konstrukce jen jako kontrola správnosti postupu jak pro ţáka, tak i pro učitele, kt erý si aktuální postup konstrukce vygeneruje přímo na ţákově ploše, nebo si konstrukci jen přehraje. To však učitel provádí jen tehdy, není -li z dynamické konstrukce při manipulaci s ní zřejmé, zda je konstrukce provedena správně. 24

27 Obrázek 11 síť a povrch trojbokého jehlanu 25

28 Následující příklad slouţí k samostatnému zkoumání vztahů u objemu a povrchu čtyřbokého jehlanu. Ţákům lze zadat v tomto případě různé úlohy na výpočet objemu či povrchu jehlanu, a pomocí java appletu si ţáci sami ověřují správnost řešení. Nebo ke konkrétnímu objemu či povrchu ţáci hledají optimální rozměry atd. Obrázek 12 objem a povrch jehlanu 26

29 4.4.2 Kužel Další java applet je z dílny Daniela Mentranda. 9 Pracovní list umoţňuje modelovat pomocí animace rotaci pravoúhlého trojúhelníku tak, ţe vzniká rotační kuţel. Vyuţívá zde nastavení stopy na přeponu a stojící odvěsnu, které pak svými stopami před očima ţáků vytvářejí obraz kuţelu. Je zde moţné nastavit i základní rozměry. Zajímavá je také moţnost přizpůsobení rychlosti otáčení a automatická animace. Obrázek 13 rotující, pravoúhlý trojúhelník (kužel) Následující obrázek je z java appletu, v němţ si ţáci vyzkouší, jak se mění s parametry kuţelu i jeho síť. Je to spíše demonstrační java applet, který můţe být doplněn úkolem na téma obsah a povrch kuţelu. 9 MENTRAND, Daniel Cone de révolution. [Online] mentrard.free.fr/geogebra/maths/espace/cone.html. 27

30 Obrázek 14 kužel a jeho síť 28

31 4.4.3 Koule Třetí produkt z ruky Daniela Mentranda. 10 Java applet poskytuje animaci vyplnění vnitřního prostoru koule s následným vypsáním příslušného vzorce pro výpočet objemu koule. I kdyţ je tento java applet poněkud jednodušší, je dle mého názoru vhodný pro demonstraci zobrazení koule a jejího vnitřního prostoru. Obrázek 15 animace koule Poslední java applet, který zde představím, je z kategorie dynamických pracovních listů. Jedná se o vzorce a výpočty objemu a povrchu koule. Ţák má pro poznání látky splnit úkoly, které jsou uvedené pod vygenerovaným java appletem. Jedná se o úkoly nejprve na hledání ob jemů k daným různým poloměrům, poté k opačnému postupu. K hledání poloměru, kdyţ známe 10 MENTRAND, Daniel Volume d une Boule. LES MATHEMATIQUES AVEC GEOGEBRA. [Online] mentrard.free.fr/geogebra/maths/espace/volboule.html 29

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

I C T V M A T E M A T I C E

I C T V M A T E M A T I C E I C T V M A T E M A T I C E Dynamická geometrie v interaktivních metodách výuky Mgr. Horáčková Bronislava Ostrava 2009 Využití dynamické geometrie Geometrie, ať rovinná či prostorová patří k velmi obtížným

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Ze středních příček konstruuj trojúhelník

Ze středních příček konstruuj trojúhelník VY_32_INOVACE_098 Matematika a její aplikace_matematika Obrácená úloha vlastnosti trojúhelníku Ze středních příček konstruuj trojúhelník Obrácená úloha konstrukce trojúhelníku ze zadaných středních příček

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Informace k realizaci projektu Kvalitní výuka (Operační program Vzdělávání pro konkurenceschopnost -EU)

Informace k realizaci projektu Kvalitní výuka (Operační program Vzdělávání pro konkurenceschopnost -EU) Informace k realizaci projektu Kvalitní výuka (Operační program Vzdělávání pro konkurenceschopnost -EU) Projekt Kvalitní výuka v ZŠ Senohraby (dále jen projekt) bude realizován v předpokládaném termínu

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE

Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE Kurz č.: KV01 Karlovy Vary 12. 12. 2006 17. 4. 2007 ZÁVĚREČNÁ PRÁCE Žákovský projekt v hodinách matematiky 8.ročníku základní školy na téma: Geometrie mého okolí Karlovy Vary, 2007 Mgr. Jaroslava Janáčková

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

EU peníze školám. Základní škola Jablunkov, Lesní 190, příspěvková organizace. Žadatel projektu: 2 834 891Kč

EU peníze školám. Základní škola Jablunkov, Lesní 190, příspěvková organizace. Žadatel projektu: 2 834 891Kč Základní škola Jablunkov, Lesní 190, příspěvková organizace P R O J E K T O V Ý Z Á M Ě R EU peníze školám Žadatel projektu: Název projektu: Název operačního programu: Prioritní osa programu: Název oblasti

Více

Matematika-průřezová témata 6. ročník

Matematika-průřezová témata 6. ročník Matematika-průřezová témata 6. ročník OSV 1: OSV 2 žák umí správně zapsat desetinnou čárku, orientuje se na číselné ose celých čísel, dovede rozpoznat základní geometrické tvary a tělesa, žák správně používá

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

5.3.1. Informatika pro 2. stupeň

5.3.1. Informatika pro 2. stupeň 5.3.1. Informatika pro 2. stupeň Charakteristika vzdělávací oblasti Vzdělávací oblast Informační a komunikační technologie umožňuje všem žákům dosáhnout základní úrovně informační gramotnosti - získat

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Metodická pomůcka ke zpracování ročníkových prací

Metodická pomůcka ke zpracování ročníkových prací Metodická pomůcka ke zpracování ročníkových prací Význam ročníkové práce Ročníková práce je zadávána se záměrem, aby žák prokázal své vědomosti a dovednosti získané studiem, schopnost využít je k samostatnému

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

ANOTACE vytvořených/inovovaných materiálů. 01: Stažení, instalace, nastavení programu, tvorba základních entit (IV/2_M1_01)

ANOTACE vytvořených/inovovaných materiálů. 01: Stažení, instalace, nastavení programu, tvorba základních entit (IV/2_M1_01) ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 IV/2 Inovace a

Více

Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz

Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Tato aplikace je koncipována jako hra, může být použita k demonstraci důkazu. Může žáky učit, jak manipulovat s dynamickými objekty,

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

STRUČNÝ POPIS E LEARNINGOVÝCH KURZŮ

STRUČNÝ POPIS E LEARNINGOVÝCH KURZŮ STRUČNÝ POPIS E LEARNINGOVÝCH KURZŮ A) KURZY ZAMĚŘENÉ NA METODIKU DISTANČNÍHO VZDĚLÁVÁNÍ A E LEARNINGU. Metodika on line vzdělávání E learning v distančním vzdělávání B) KURZY ZAMĚŘENÉ NA PRAVIDLA VEDENÍ

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

Průvodní list kurzu. Název kurzu: Autor kurzu: Vyučovací předmět: Ročník: Téma: Účel; co kurzem řeším: Kapaliny a plyny. Mgr.

Průvodní list kurzu. Název kurzu: Autor kurzu: Vyučovací předmět: Ročník: Téma: Účel; co kurzem řeším: Kapaliny a plyny. Mgr. Průvodní list kurzu Název kurzu: Kapaliny a plyny Autor kurzu: Mgr. Leon Machek Vyučovací předmět: Fyzika (případně informatika seznámení se s prostředím LMS Moodle) Ročník: Kurz je určen žákům 7. (případně

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu CZ.1.07/1.5.00/34.0797 Číslo a název šablony klíčové aktivity III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Tematická oblast 2M1 Slovní úlohy

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Dodatek k ŠVP ZV č. 1

Dodatek k ŠVP ZV č. 1 Dodatek k ŠVP ZV č. 1 Název školního vzdělávacího programu: Škola dobré pohody Školní vzdělávací program pro základní vzdělávání Ředitelka školy: Mgr. Dagmar Bičová Koordinátor ŠVP ZV: Mgr. Magdalena Krausová

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

PROJEKTOVÝ ZÁMĚR. Operační program Vzdělávání pro konkurenceschopnost. Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách

PROJEKTOVÝ ZÁMĚR. Operační program Vzdělávání pro konkurenceschopnost. Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách PROJEKTOVÝ ZÁMĚR Operační program Vzdělávání pro konkurenceschopnost Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách Žadatel projektu: Základní škola a Mateřská škola Žalany Název

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

RESTART nový začátek pro pedagogy 39 škol

RESTART nový začátek pro pedagogy 39 škol RESTART nový začátek pro pedagogy 39 škol Blanka Kozáková 1 e-mail: blanka.kozakova@kvic.cz 1 Krajské zařízení pro další vzdělávání pedagogických pracovníků a informační centrum, Nový Jičín, příspěvková

Více

6.7 Matematicko-fyzikální seminář

6.7 Matematicko-fyzikální seminář VZDĚLÁVACÍ OBLAST : VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: Matematika a její aplikace Matematika a její aplikace 6.7 Matematicko-fyzikální seminář CHARAKTERISTIKA PŘEDMĚTU: Vyučovací předmět Matematicko-fyzikální

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Autor Použitá literatur a zdroje Metodika. Pořadové číslo IV-2-M-II- 1-7.r. Název materiálu

Autor Použitá literatur a zdroje Metodika. Pořadové číslo IV-2-M-II- 1-7.r. Název materiálu Pořadové číslo 1-7.r. Název materiálu Celá čísla 1 Autor Použitá literatur a zdroje Metodika CSc. : Matematika 2 pro 7.ročník základní školy, Prometheus 2.díl,ISBN 80-7196-126-4 1. vydání,1998 Mgr. Slavomír

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

PROJEKTOVÝ ZÁMĚR. Operační program Vzdělávání pro konkurenceschopnost. Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách

PROJEKTOVÝ ZÁMĚR. Operační program Vzdělávání pro konkurenceschopnost. Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách PROJEKTOVÝ ZÁMĚR Operační program Vzdělávání pro konkurenceschopnost Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách Ţadatel projektu: Název projektu: Škola Tobě Název operačního

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

PROJEKTOVÝ ZÁMĚR. Základní škola a Mateřská škola Verneřice, příspěvková organizace Název projektu: Moderní škola 2011 Název operačního programu:

PROJEKTOVÝ ZÁMĚR. Základní škola a Mateřská škola Verneřice, příspěvková organizace Název projektu: Moderní škola 2011 Název operačního programu: PROJEKTOVÝ ZÁMĚR Operační program Vzdělávání pro konkurenceschopnost Oblast podpory 1.4 Zlepšení podmínek pro vzdělávání na základních školách Ţadatel projektu: Základní škola a Mateřská škola Verneřice,

Více

Ministerstvo školství, mládeže a tělovýchovy. Dana Pražáková

Ministerstvo školství, mládeže a tělovýchovy. Dana Pražáková Ministerstvo školství, mládeže a tělovýchovy Dana Pražáková Kdo a co můţe ţádat: Oprávněný žadatel: základní škola se sídlem mimo hl. město Praha Jedna ZŠ může podat pouze 1 projekt Maximální možná částka

Více

ZŠ a MŠ, Brno, Horníkova 1 - Školní vzdělávací program

ZŠ a MŠ, Brno, Horníkova 1 - Školní vzdělávací program 4.3. Informační a komunikační technologie Charakteristika předmětu Vzdělávací oblast je realizována prostřednictvím vyučovacího předmětu Informatika. Informatika je zařazena do ŠVP jako povinný předmět

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

IV/1 Individualizace výuky pro rozvoj matematické gramotnosti žáků středních škol

IV/1 Individualizace výuky pro rozvoj matematické gramotnosti žáků středních škol IV/1 Individualizace výuky pro rozvoj matematické gramotnosti žáků středních škol Číslo klíčové aktivity Název klíčové aktivity IV/1 Individualizace výuky pro zvýšení efektivity rozvoje matematické gramotnosti

Více

1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie

1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie 1 Projekt SIPVZ Tvorba a implementace softwarové podpory výuky matematiky na gymnáziu s využitím CABRI Geometrie 1.1 Úvod Mohutný rozvoj didaktické techniky v posledních letech vyvolává vznik zcela nových

Více

P ř e d m ě t : M A T E M A T I K A

P ř e d m ě t : M A T E M A T I K A 04-ŠVP-Matematika-P,S,T,K strana 1 (celkem 11) 1. 9. 2014 P ř e d m ě t : M A T E M A T I K A Charakteristika předmětu: Matematika vytváří postupným osvojováním matematických pojmů, útvarů, algoritmů a

Více

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7.

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Seznam šablon Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Číslo Označení Název Využití Očekávané výstupy Klíčové kompetence 1 CČ1

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

Podklady pro ICT plán

Podklady pro ICT plán Podklady pro ICT plán Škola: ICT - Hodnocení: Vstupní hodnocení Indikátor Aktuální stav k 1.3.2012 Plánovaný stav k 28.2.2014 1. řízení a plánování Na vizi zapojení ICT do výuky pracuje jen omezená skupina

Více

E-learningový systém pro podporu výuky algoritmů

E-learningový systém pro podporu výuky algoritmů Úvod E-learningový systém pro podporu výuky algoritmů řešitel: Roman Hocke vedoucí práce: Mgr. Petr Matyáš 1 implementace e-learningového řešení Cíle práce přizpůsobení k výuce Teoretické informatiky a

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE

VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE RNDr. Kateřina Dvořáková Gymnázium, Bučovice, Součkova 500, 685 01 Bučovice Abstrakt: Příspěvek pojednává o e-learningovém kurzu s názvem Úvod do planimetrie. Kurz

Více

CZ.1.07/1.5.00/34.0527

CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Moodle uživatelská příručka

Moodle uživatelská příručka Moodle uživatelská příručka Učební text pro studenty dálkového studia OSŠPo Kolín Projekt Zavádění nových forem výuky do dálkového studia, využití e-learningového prostředí pro zefektivnění práce studentů

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Metodika. doc. RNDr. Oldřich Odvárko, DrSc. -

Metodika. doc. RNDr. Oldřich Odvárko, DrSc. - Pořadové číslo III-2-M-III- 1-8.r. III-2-M-III- 2-8.r. Název materiálu ČTYŘÚHELNÍKY A JEJICH VLASTNOSTI ROVNOBĚŽNÍKY Autor Použitá literatura a zdroje 2003. ISBN 80-7196-129-9. ISBN 978-80-7358-083-4.

Více

Učební pomůcky. Didaktická technika

Učební pomůcky. Didaktická technika pro výuku zeměpisu Učební pomůcky zprostředkování žákům poznání skutečností a slouží k osvojování jejich vědomostí a dovedností jsou to takové předměty a materiály, které jsou používány ve vyučovacími

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více