1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1."

Transkript

1 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí: p) = P X = ) = p, p) = P X = ) = p, < p <. EX) = p, αx) = DX) = p p), X) = p p), 2p p p, εx) = 6p p) p p) Rozptyl je maximální pro p =, 5, pak EX) =, 25 a X) =, 5. Rozdělení se používá v situacích, kdy má náhodný proces pouze dva možné výsledky ANO a NE. 2. Binomické rozdělení Bin,p) Binomial) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k =,, 2,..., n, s pravděpodobnostmi pk) = P X = k) = n p k p) n k, k =,, 2,..., n, < p <. k Je pak EX) = np, DX) = np p) a X) = np p). Pro šikmost a špičatost dostaneme αx) = 2p a εx) = 6p p) np p) np p). V případě symetrického rozdělení pro p = /2 je EX) = n/2, DX) = n/4, αx) = a εx) = 2/n. Pro n 3 a p, je možné binomické rozdělení Bin, p) nahradit Poissonovým rozdělením s parametrem λ = np. Jestliže mají náhodné veličiny X i, i n rozdělení Ap) a jsou nezávislé, má pak výběrový úhrn X = n X i binomické rozdělení Bin, p). i= 3. Poissonovo rozdělení Poλ) Poisson) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k =,, 2,... s pravděpodobnostmi pk) = P X = k) = λk k! e λ, k =,, 2,..., λ >. Jestliže mají náhodné veličiny X i, i n Poissonovo rozdělení P oλ) a jsou nezávislé, má pak výběrový úhrn X = n i= X i Poissonovo

2 rozdělení P onλ). Pro tuto vlastnost se Poissonovo rozdělení vyskytuje v problémech z hromadné obsluhy, kde doby mezi příchody zákazníků mají Poissonovo rozdělení Spojitá rozdělení 4. Rovnoměrné rozdělení v intervalu a, b) uniform) je rozdělení určené hustotou f s distribuční funkci F, kde fx) = b a, a < x < b,, jinde. F x) =, x < a, x a b a, a x b,, x > b. Toto rozdělení má náhodná veličina X, která nabývá hodnot z intervalu a, b) a všechny hodnoty mají stejnou pravděpodobnost výskytu. Bývá také charakterizováno svou střední hodnotou EX) = µ = 2 a + b) a hodnotou h = 2 b a). Je pak a = µ h, b = µ + h, h >. Rozptyl této náhodné veličiny je roven DX) = 3 h2. Pro kvantily x p tohoto rozdělení dostaneme F x p ) = 2h x µ + h) = p x p = µ + 2p )h. Je tedy x = x,5 = EX) = µ a x p + x p = 2µ. Na obrázku Obr. 4a je znázorněn průběh distribuční funkce F spojitého rovnoměrného rozdělení v intervalu, ) a na obrázku Obr. 4b je průběh hustoty f tohoto rozdělení. y F x) y fx) x x Obr. 4a Obr 4b 5. Normální Gaussovo) rozdělení. 5.. Definice: Normální Gaussovo) rozdělení Nµ, 2 ) normal) s parametry µ a > je rozdělení určené hustotou ) fx) = x µ) 2 e 2 2, x, ). 2

3 Rozdělení N; ) s parametry µ = a = se nazývá normované normální rozdělení. V dalším textu budeme náhodnou veličinu, která má rozdělení N; ) obvykle označovat písmenem U. Její hustota je pak ) ϕx) = e x2 2, x, ). Distribuční funkci rozdělení N; ), která je definovaná vztahem ) Φx) = x e t 2 budeme vždy označovat symbolem Φ. Graf hustoty ϕ normovaného normálního rozdělení N; ) znázorníme na obrázku Obr. 5. a graf distribuční funkce Φ je znázorněn na obrázku Obr ϕx) 2 dt Φx) x x Obr. 5.. Obr Poznámka: Normované normální rozdělení N; ) je symetrické, ϕx) = ϕ x). Je tedy EX) = a dále je DX) =. Odtud plyne, že pro distribuční funkci Φ platí: Φx) + Φ x) = Φ x) = Φx) a Φ) =, 5. Obecné normální rozdělení Nµ; 2 ) je posunuté o hodnotu µ, je tedy symetrické vzhledem k této hodnotě. Je tedy EX) = µ a dále je DX) = 2. Směrodatná odchylka X) =. Rozdělení je koncentrováno ke střední hodnotě. I když nabývá náhodná veličina s tímto rozdělením teoreticky všech reálných hodnot je P X µ < 3) =, 999 a P X µ < 3, 5) =, Poznámka: Normální rozdělení si zachovává svůj charakter při lineární transformaci. Platí totiž následující tvrzení. 3

4 5.2. Věta: Jestliže má náhodná veličina X rozdělení Nµ, 2 ), má pak náhodná veličina Y = αx + β rozdělení Nαµ + β, α 2 2 ). Speciálně platí, že náhodná veličina U = X µ má normované normální rozdělení N, ). Důkaz: Je-li X náhodná veličina, která má rozdělení Nµ, 2 ) a je-li f její hustota a F je její distribuční funkce, pak pro hustotu g a distribuční funkci G náhodné veličiny Y platí: Gy) = P Y y) = P αx + β y) = P αx y β) = = P X y β α ) = F y β α ) α > ), α <. P X y β α ) = F y β α Potom pro hustotu g rozdělení náhodné veličiny Y dostaneme: gy) = G y) = = d dy d dy F y β α e α )) = α fy β α ) F y β α )) = α fy β y β α µ)2 2 2 = α ) α y αµ+β)) 2 e 2α) 2. To je ovšem hustota normálního rozdělení Nαµ + β; α) 2 ). = α fy β α ) = Jestliže zvolíme α = a β = µ dostaneme αµ + β = a α =. Náhodná veličina U má tudíž normované normální rozdělení N; ). Poznámka: Transformace na normované rozdělení. Jestliže má náhodná veličina X normální rozdělení Nµ; 2 ), pak má náhodná veličina U = X µ X = U + µ normované normální rozdělení N; ). Pro její distribuční funkci F a hustotu f platí: a x µ F x) = Φ ) F u + µ) = Φu) fx) = ) x µ ϕ fu + µ) = ϕu). 4

5 Je tedy b µ P a < X < b) = F b) F a) = Φ ) a µ Φ kde hodnoty funkce Φ odečteme z tabulek hodnot distribuční funkce Φ Kvantily normálního rozdělení. Pro kvantily u p normovaného normálního rozdělení N; ) platí, že: Φu p ) = p, < p < u p = Φ p) a jejich hodnoty nalezneme v tabulkách kvantilů. Všimneme si, že platí: Pro kvantily x p u,5 = a u p = u p. obecného normálního rozdělení Nµ; 2 ) platí: xp µ F x p ) = p Φ Odtud plyne, že ) = p x p µ x = x,5 = ˆx = EX) = µ. ), = u p x p = u p + µ. Význam kvantilů si znázorníme na obrázku hustoty ϕ a distribuční funkce Φ normovaného normálního rozdělení. Obsah obrazce vyznačeného šrafováním je roven p. ϕx) p Φx), u p 2 3 x 3 2 u p 2 3 x Obr Obr Výpočet distribuční a kvantilové funkce normálního rozdělení. I. Přímý výpočet hustota normovaného rozdělení N; ): ϕx) = e x2 2, x R; 5

6 pro rozdělení Nµ; 2 ) s parametry µ, je : fx) = ) x µ ϕ, x R; distribuční funkce normovaného rozdělení N; ): Φx) = x e t 2 2 dt, x R; pro rozdělení Nµ; 2 ) s parametry µ, je : ) x µ F x) = Φ, x R; kvantilovou funkci Q dostaneme jako řešení rovnice: kde Φu p ) = p, u p = Qp) x p = µ + u p, < p <. II. Pomocí aproximací distribuční funkce normovaného rozdělení: a) Φx) = + erf x ) ), x R, 2 2 kde erfx) = 2 x e t2 dt, x R. π b) pro x je: Φx). = ϕx) 5 k= a k w k, w = + a x, a =, , a =, , a 2 =, , a 3 =, , a 4 =, , a 5 =, Pro x je Φx) = Φ x). Pro x 6 je Φx) = a pro x < 6 je Φx) =. Maximální chyba aproximace je menší než 6. kvantilová funkce Q: pro < p 2 je Qp) = Φ p) = u p. = w k= 3 k= a k w k b k w k,

7 kde w = 2 ln p, a = 2, 55 57, a =, , a 2 =, 328 b =, b =, , b 2 =, , b 3 =, 38 Pro 2 < p < je u p = u p. Přesnost aproximace je, 45 pro, 999 < p <, 999. Odvození: Φx) = Φ) + x = 2 + x/ 2 e t2 2 dt = t = z 2, dt = 2dz, x x/ 2 e z2 2dz = 2 + x/ 2 π V programu MAPLE withstats) : ϕx) = statevalf[pdf, normald]x); fx) = statevalf[pdf, normald[µ, ]]x); Φx) = statevalf[cdf, normald]x); F x) = statevalf[cdf, normald[µ, ]]x); u p = Φ p) = statevalf[icdf, normald]p); x p = F p) = statevalf[icdf, normald[µ, ]]p). = e z2 dz = erfx/ 2) Intervaly spolehlivosti. Ve statistice se setkáváme s úlohou, kdy potřebujeme k dané pravděpodobnosti určit interval, ve kterém se hodnota náhodné veličiny vyskytuje. Vyřešíme tuto úlohu pro normované normální rozdělení. Pro jiná rozdělení se princip řešení zachová, jenom hraniční hodnoty hledaného intervalu se určí z kvantilů odpovídajícího rozdělení Příklad: K danému číslu α, < α <, určete interval tak, aby pro náhodnou veličinu U, která má normované normální rozdělení N; ) platilo: a) ) P U < a) = α; b) ) P U < a) = α; c) ) P U > a) = α. Řešení: a) Z podmínky vyplývá α = P a < U < a) = Φa) Φ a) = Φa) Φa)) = 2Φa) Φa) = α 2. Odtud plyne, že a = u α kvantil. Je tedy 2 7

8 a < U < a u α < U < u 2 α. Viz obr b) Obdobně jako v a) dostaneme α = P U < a) = Φa) a = u α. Je tedy U < a U < u α. Viz obr c) Z podmínky pro interval plyne α = P U > a) = Φa) Φa) = α a = u α. Je tedy U > a U > u α. Viz obr Poznámka: Číslo α volíme malé, obvykle < α, a číslo α se nazývá koeficient spolehlivosti konfidenční koeficient). Získaný interval nazýváme α) procentním intervalem spolehlivosti. Interval ) je oboustranný interval, intervaly ) a ) jsou jednostranné.první je pravostranný a druhý levostranný. Jsou to intervaly, ve kterých se hodnota náhodné veličiny bude vyskytovat s pravděpodobností α), tedy ve α)% případech. ϕx) ϕx) 3 2 u α 2 u α 2 3 x Obr Obr ϕx) u α 2 3 x 3 2 u α 2 3 x Obr Sčítání náhodných veličin. Důležitou vlastnost má normální rozdělení při sčítaní náhodných veličin. Pro nezávislé náhodné veličiny platí, že i po sčítaní mají normální rozdělení. Tvrzení se odvodí pomocí charakteristické funkce. Uvedeme tuto vlastnost ve formě věty. 8

9 5.7. Věta: Jsou-li X, resp. Y nezávislé náhodné veličiny s normálními rozděleními Nµ, 2 ), resp. Nµ 2, 2 2), pak má náhodná veličina X + Y normální rozdělení s parametry Nµ + µ 2, ) Náhodný výběr. Ve statistice zpracováváme data, která jsou souborem výsledků náhodného pokusu. Jeho náhodnost se projeví v tom, že při jeho opakování se objeví různé výsledky. Je-li charakter náhody popsán tím, že výsledky náhodného pokusu odpovídají hodnotám náhodné veličiny s daným rozdělením, pak soubor dat je realizací uspořádané n tice náhodných veličin {X, X 2,..., X n }. Všechny náhodné veličiny mají shodné rozdělení a jsou na sobě nezávislé. Takovou uspořádanou n tici náhodných veličin nazýváme prostým náhodným výběrem z daného rozdělení. Z vět 8.6 a 8.2 vyplývá toto tvrzení Věta: Jestliže mají nezávislé náhodné veličiny X i, i n normální rozdělení Nµ, 2 ) náhodný výběr z normálního rozdělení), má pak výběrový úhrn X = n X i normální rozdělení Nnµ, n 2 ) i= a výběrový průměr X = n n X i normální rozdělení Nµ, 2 i= n ). Poznámka: O náhodné veličině, která je funkcí náhodného výběru mluvíme jako o statistice. Častou úlohou je nalezení vhodné statistiky, z jejíchž hodnot můžeme odvodit vlastnosti sledovaného rozdělení. Z vlastností normálního rozdělení vidíme, že statistika X, výběrový průměr je dobrým odhadem střední hodnoty µ, neboť při dostatečně rozsáhlém výběru, velké hodnotě n, se bude hodnota X jen velmi málo lišit od střední hodnoty µ. 6. Exponenciální rozdělení ExpA, δ) exponential) je rozdělení náhodné veličiny s hustotou f a distribuční funkcí F, kde, x < A, fx) = x A δ e δ, x A;, x A, F x) = e x A δ, x A, kde A R a δ >. Je pak EX) = A + δ a DX) = δ 2. Pro kvantily dostaneme vyjádření x p = A δ ln p). Je-li A =, pak rozdělení označujeme symbolem Expδ) a je to rozdělení, které se objevuje v úlohách kde sledujeme spolehlivost práce zařízení v čase. Je to tzv. rozdělení bez paměti. Je totiž P X a + b X a) = P X b), a, b >. 9

10 Poznamenejme, že má-li náhodná veličina X exponenciální rozdělení ExpA; δ), pak má náhodná veličina X A rozdělení Exp; δ) a náhodná veličina Y = X A δ má rozdělení Exp; ), kterému se někdy říká normované exponenciální rozdělení. Podobně jako pro normální rozdělení se linearní transformací zachovává charakter exponenciálního rozdělení. Jestliže má náhodná veličina X rozdělení ExpA; δ), pak má náhodná veličina V = X A)/δ normované exponenciální rozdělení Exp; ). 7. Rozdělení chí kvadrát χ 2 n) o n stupních volnosti chi square) je rozdělení, které má náhodná veličina X = n i= U 2 i, kde U i, i n jsou nezávislé náhodné veličiny s normovaným normálním rozdělením N, ). Pro toto rozdělení je EX) = n a DX) = 2n. Hustota f tohoto rozdělení je dána předpisem, x, fx) = x n 2n Γ n 2 ) 2 e x 2, x >. Rozdělení je výrazně asymetrické, kvantily jsou kladné a jsou tabelovány. Až pro výrazně veliké hodnoty parametru n je možné toto rozdělení nahradit rozdělením normálním Nn, 2n). Pro velké hodnoty n má náhodná veličina U = X n 2n přibližně normované normální rozdělení N, ). Pro kvantily pak platí přibližný vzorec x. p = n + up 2n. Průběh hustoty rozdělení pravděpodobnosti je pro hodnoty parametru n = 3 a n = 5 znázorněn na obrázku Obr. 7.. n > 3 y n = 3 n < 5 n = x x Obr.8.. Obr

11 8. Studentovo rozdělení t- rozdělení) tn) o n stupních volnosti students) má náhodná veličina T = U n Z, kde náhodná veličina U má normované normální rozdělení N, ) a náhodná veličina Z má rozdělení χ 2 n). Rozdělení je symetrické vzhledem k počátku, je ET ) =, DT ) = n n 2, n > 2 a pro hodnoty n > 3 jej nahrazujeme normovanýn normálním rozdělením N, ). Pro kvantily platí t p = t p. Hustota f Studentova rozdělení je dána vzorcem fx) = Γn+ 2 ) Γ n 2 ) πn + x2 n n+ 2, x R. Průběh hustoty pro některé hodnoty stupňů volnosti je znázorněn na obrázku Fischerovo-Snedecorovo rozdělení F rozdělení) F m,n o m a n stupních volnosti ratio) má náhodná veličina F = Xn Y m, kde náhodná veličina X má rozdělení χ 2 m) a náhodná veličina Y má rozdělení χ 2 n). Náhodná veličina F nabývá pouze kladných hodnot a je EF ) = n n 2, n > 2 a DF ) = 2n2 n + m 2), n > 4. Hustota f mn 2) 2 n 4) náhodné veličiny F je dána vzorcem fx) = ) m m 2 B m 2, n 2 ) n x m 2 + m ) m+n n x 2, x >. Poznamenejme, že pokud má náhodná veličina F rozdělení F m, n), pak má náhodná veličina F rozdělení F n, m). Tato skutečnost plyne bezprostředně, z definice F rozdělení a jejím důsledkem je následující vlastnost kvantilů: Pro kvantily F p m, n) rozdělení F m, n) platí, že F p m, n) = F p n, m), < p <. 2

12 p kvantil F p podmínkou Odtud plyne, že náhodné veličiny s rozdělením F m, n) je totiž určen P F m, n) F p ) = p P P Y m = P F p Xn ) Xn Y m F p = p. Y m Xn = p F p P Y m Xn = P F n, m) = p, F p F p což je podmínka pro pkvantil náhodné veličiny s rozdělením F n, m). Je tedy F p n, m) = F p m,n). Pro modus ˆx náhodné veličiny s rozdělením F m, n) platí vyjádření nm 2) ˆx = mn + 2), m > 2.. Beta rozdělení Bp, q), p, q > beta) je spojité rozdělení určené hustotou fx) = Bp, q) xp x) q, x, ). Náhodná veličina X s tímto rozdělením má střední hodnotu EX) = p p+q pq a rozptyl DX) =. Pro p, q > je rozdělení jednomodální a p+q) 2 p p+q+) p+q 2 pro jeho modus je ˆx =. Pro tuto vlastnost se používá v ekonomických modelech. Takové rozdělení mají souřadnice a rozpětí uspořádaného výběru z rovnoměrného rozdělení. Lineární transformací Y = a + b a)x = µ h + 2hX dostaneme zobecněné rozdělení beta, které má hodnoty z intervalu a; b) = µ h; µ + h). Střední hodnotu a ostatní charakteristiky snadno odvodíme z předchozích. Poznámka. Funkce Γ a B jsou tzv. Eulerovy funkce a je: Γz) = x z e x dx pro z >, Bp, q) = xp x) q dx, p >, q >. Je Γ) = Γ2) =, Γn + ) = n! a Γz + ) = zγz), z > a Bp, q) = Γp)Γq) Γp + q). 22

13 Dále platí: Bp, q) = Bq, p), B, n) = Bn, ) = n Bp +, q) = p Bp, q + ). q m )!n )!, Bm, n) =. m + n )! Poznámka: Generování náhodné veličiny s danným rozdělením Nechť je funkce F : a, b) R, a < b, distribuční funkcí spojitého rozdělení. Platí tedy a) F je spojitá a rostoucí v intervalu a, b); b) F a+) =, F b ) =. Potom má funkce F funkci inverzní F, která zobrazuje interval, ) na interval a, b). Věta: Jestliže má náhodná veličina X rovnoměrné rozdělení v intervalu, ), pak má náhodná veličina Y = F X) rozdělení určené distribuční funkcí F. Je-li X, ), pak je Y = F X) a, b). Pro distribuční funkci G náhodné veličiny Y dostaneme: a < y < b : Gy) = P Y y) = P F X) y) = P X F y)) = HF y)), kde H je distribuční funkce rovnoměrného rozdělení v intervalu, ). ta je ovšem identitou, t.j. Hz) = z, < z <. Je tedy Gy) = F y), y a, b). Označme si nyní hodnotu náhodné veličiny X = p, < p <. Pak je Y = F X) = F p) Y = y, F y) = p Y = y p, kde y p je p kvantil rozdělení náhodné veličiny, které má rozdělení určené distribuční funkcí F. To znamená, že generujeme-li posloupnost náhodných čísel {p k } z intervalu, ), pak posloupnost kvantilů {x pk } je náhodná posloupnost z rozdělení s distribuční funkcí F. 23

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

Přehled pravděpodobnostních rozdělení

Přehled pravděpodobnostních rozdělení NSTP097Statistika Zima009 Přehled pravděpodobnostních rozdělení Diskrétní rozdělení. Alternativní(Bernoulliovo, nula-jedničkové) rozdělení X Alt(p) p (0, ) X {0,} Hustota: P[X= j]=p j ( p) j, j {0,} Středníhodnota:

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Diskrétní rozdělení Vilém Vychodil KMI/PRAS, Přednáška 6 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 6) Diskrétní rozdělení Pravděpodobnost a

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Významná diskrétní rozdělení pravděpodobnosti

Významná diskrétní rozdělení pravděpodobnosti Alternativní rozdělení Příklad Střelec vystřelí do terče, pravděpodobnost zásahu je 0,8. Náhodná veličina X udává, jestli trefil: položíme X = 1, jestliže ano, a X = 0, jestliže ne. Alternativní rozdělení

Více

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2)

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2) Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 5. listopadu 2007 1(178) binomické rozdělení Poissonovo rozdělení normální rozdělení

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Ing. Jana Šenkapoulová VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a.s. Brno, Soběšická 156, 638 1 Brno ÚVOD Každé rekonstrukci

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

TEORIE MATIC. Tomáš Vondra

TEORIE MATIC. Tomáš Vondra TEORIE MATIC Tomáš Vondra 2 Obsah 1 Opakování 5 1.1 Základní operace s maticemi..................... 5 1.2 Determinant matice......................... 7 1.2.1 Cauchyův-Binedův vzorec..................

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot Rozdělení Náhodná veličina Náhodná veličina je vyjádření výsledku náhodného pokusu číselnou hodnotou. Jde o reálnou funkci definovanou na množině. Rozdělení náhodné veličiny udává jakých hodnot a s jakou

Více

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Masarykova univerzita. Základy konvexní analýzy a optimalizace v R n.

Masarykova univerzita. Základy konvexní analýzy a optimalizace v R n. Masarykova univerzita Ondřej Došlý Základy konvexní analýzy a optimalizace v R n. První vydání Brno 2004 Došlý Ondřej Název knihy c prof. RNDr. Ondřej Došlý, DrSc., 2005 Největší životní umění je neoptimalizovat

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče

Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I RNDr. Tomáš Mrkvička, Ph.D. 16. března 2009 Literatura [1] J. Anděl: Statistické metody, Matfyzpress, Praha 1998 [2] V. Dupač, M. Hušková: Pravděpodobnost a matematická

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.)

Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.) Operační program Vzdělávání pro konkurenceschopnost Masarykova univerzita Brno Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.) doc. RNDr. PhMr. Karel

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií STATISTIKA pro TZP Modul : Pravděpodobnost a náhodné veličiny Prof

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Elektrotechnická fakulta

Elektrotechnická fakulta ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Elektrotechnická fakulta OPTIMÁLNÍ ROZHODOVÁNÍ A ŘÍZENÍ Jan Štecha Katedra řídicí techniky 1999 Předmluva Toto skriptum je určeno posluchačům 4. ročníku oboru technická

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

NEPARAMETRICKÉ TESTY

NEPARAMETRICKÉ TESTY NEPARAMETRICKÉ TESTY Výhodou neparametrických testů je jejich použitelnost bez ohledu na typ rozdělení, z něhož výběr pochází. K testování se nepoužívají parametry výběru (např.: aritmetický průměr či

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Náhodná procházka a její aplikace

Náhodná procházka a její aplikace MASARYKOVA UNIVERZITA Přírodovědecká fakulta Náhodná procházka a její aplikace Bakalářská práce Vedoucí bakalářské práce RNDr. Martin Kolář, Ph. D. Brno 2007 Michaela Bartuňková Poděkování Chtěla bych

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Úvod do optimalizace

Úvod do optimalizace Přednáška Ú-Opt, February 19, 2006:1324 Petr Lachout 1 Úvod do optimalizace Prof. RNDr. Jitka Dupačová, DrSc. Doc. RNDr. Petr Lachout, CSc. KPMS MFF UK Verze 19. února 2006 2 Obsah 1 Úvod 5 2 Optimalizace

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

PROTOKOL. č. C2858c. Masarykova univerzita PF Ústav chemie Chemie konzervování a restaurování 1 POPIS PRAKTICKÉHO CVIČENÍ. 1.

PROTOKOL. č. C2858c. Masarykova univerzita PF Ústav chemie Chemie konzervování a restaurování 1 POPIS PRAKTICKÉHO CVIČENÍ. 1. PROTOKOL č. C2858c Masarykova univerzita PF Ústav chemie Chemie konzervování a restaurování Předmět: Znehodnocování a povrchové úpravy materiálů - cvičení Datum: Téma: Kvantifikace koroze a stanovení tolerancí

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka.

Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka. Testování Menu: QCExpert Testování Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka. Síla a rozsah výběru Menu: QCExpert Testování Síla a rozsah výběru

Více