1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1."

Transkript

1 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí: p) = P X = ) = p, p) = P X = ) = p, < p <. EX) = p, αx) = DX) = p p), X) = p p), 2p p p, εx) = 6p p) p p) Rozptyl je maximální pro p =, 5, pak EX) =, 25 a X) =, 5. Rozdělení se používá v situacích, kdy má náhodný proces pouze dva možné výsledky ANO a NE. 2. Binomické rozdělení Bin,p) Binomial) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k =,, 2,..., n, s pravděpodobnostmi pk) = P X = k) = n p k p) n k, k =,, 2,..., n, < p <. k Je pak EX) = np, DX) = np p) a X) = np p). Pro šikmost a špičatost dostaneme αx) = 2p a εx) = 6p p) np p) np p). V případě symetrického rozdělení pro p = /2 je EX) = n/2, DX) = n/4, αx) = a εx) = 2/n. Pro n 3 a p, je možné binomické rozdělení Bin, p) nahradit Poissonovým rozdělením s parametrem λ = np. Jestliže mají náhodné veličiny X i, i n rozdělení Ap) a jsou nezávislé, má pak výběrový úhrn X = n X i binomické rozdělení Bin, p). i= 3. Poissonovo rozdělení Poλ) Poisson) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k =,, 2,... s pravděpodobnostmi pk) = P X = k) = λk k! e λ, k =,, 2,..., λ >. Jestliže mají náhodné veličiny X i, i n Poissonovo rozdělení P oλ) a jsou nezávislé, má pak výběrový úhrn X = n i= X i Poissonovo

2 rozdělení P onλ). Pro tuto vlastnost se Poissonovo rozdělení vyskytuje v problémech z hromadné obsluhy, kde doby mezi příchody zákazníků mají Poissonovo rozdělení Spojitá rozdělení 4. Rovnoměrné rozdělení v intervalu a, b) uniform) je rozdělení určené hustotou f s distribuční funkci F, kde fx) = b a, a < x < b,, jinde. F x) =, x < a, x a b a, a x b,, x > b. Toto rozdělení má náhodná veličina X, která nabývá hodnot z intervalu a, b) a všechny hodnoty mají stejnou pravděpodobnost výskytu. Bývá také charakterizováno svou střední hodnotou EX) = µ = 2 a + b) a hodnotou h = 2 b a). Je pak a = µ h, b = µ + h, h >. Rozptyl této náhodné veličiny je roven DX) = 3 h2. Pro kvantily x p tohoto rozdělení dostaneme F x p ) = 2h x µ + h) = p x p = µ + 2p )h. Je tedy x = x,5 = EX) = µ a x p + x p = 2µ. Na obrázku Obr. 4a je znázorněn průběh distribuční funkce F spojitého rovnoměrného rozdělení v intervalu, ) a na obrázku Obr. 4b je průběh hustoty f tohoto rozdělení. y F x) y fx) x x Obr. 4a Obr 4b 5. Normální Gaussovo) rozdělení. 5.. Definice: Normální Gaussovo) rozdělení Nµ, 2 ) normal) s parametry µ a > je rozdělení určené hustotou ) fx) = x µ) 2 e 2 2, x, ). 2

3 Rozdělení N; ) s parametry µ = a = se nazývá normované normální rozdělení. V dalším textu budeme náhodnou veličinu, která má rozdělení N; ) obvykle označovat písmenem U. Její hustota je pak ) ϕx) = e x2 2, x, ). Distribuční funkci rozdělení N; ), která je definovaná vztahem ) Φx) = x e t 2 budeme vždy označovat symbolem Φ. Graf hustoty ϕ normovaného normálního rozdělení N; ) znázorníme na obrázku Obr. 5. a graf distribuční funkce Φ je znázorněn na obrázku Obr ϕx) 2 dt Φx) x x Obr. 5.. Obr Poznámka: Normované normální rozdělení N; ) je symetrické, ϕx) = ϕ x). Je tedy EX) = a dále je DX) =. Odtud plyne, že pro distribuční funkci Φ platí: Φx) + Φ x) = Φ x) = Φx) a Φ) =, 5. Obecné normální rozdělení Nµ; 2 ) je posunuté o hodnotu µ, je tedy symetrické vzhledem k této hodnotě. Je tedy EX) = µ a dále je DX) = 2. Směrodatná odchylka X) =. Rozdělení je koncentrováno ke střední hodnotě. I když nabývá náhodná veličina s tímto rozdělením teoreticky všech reálných hodnot je P X µ < 3) =, 999 a P X µ < 3, 5) =, Poznámka: Normální rozdělení si zachovává svůj charakter při lineární transformaci. Platí totiž následující tvrzení. 3

4 5.2. Věta: Jestliže má náhodná veličina X rozdělení Nµ, 2 ), má pak náhodná veličina Y = αx + β rozdělení Nαµ + β, α 2 2 ). Speciálně platí, že náhodná veličina U = X µ má normované normální rozdělení N, ). Důkaz: Je-li X náhodná veličina, která má rozdělení Nµ, 2 ) a je-li f její hustota a F je její distribuční funkce, pak pro hustotu g a distribuční funkci G náhodné veličiny Y platí: Gy) = P Y y) = P αx + β y) = P αx y β) = = P X y β α ) = F y β α ) α > ), α <. P X y β α ) = F y β α Potom pro hustotu g rozdělení náhodné veličiny Y dostaneme: gy) = G y) = = d dy d dy F y β α e α )) = α fy β α ) F y β α )) = α fy β y β α µ)2 2 2 = α ) α y αµ+β)) 2 e 2α) 2. To je ovšem hustota normálního rozdělení Nαµ + β; α) 2 ). = α fy β α ) = Jestliže zvolíme α = a β = µ dostaneme αµ + β = a α =. Náhodná veličina U má tudíž normované normální rozdělení N; ). Poznámka: Transformace na normované rozdělení. Jestliže má náhodná veličina X normální rozdělení Nµ; 2 ), pak má náhodná veličina U = X µ X = U + µ normované normální rozdělení N; ). Pro její distribuční funkci F a hustotu f platí: a x µ F x) = Φ ) F u + µ) = Φu) fx) = ) x µ ϕ fu + µ) = ϕu). 4

5 Je tedy b µ P a < X < b) = F b) F a) = Φ ) a µ Φ kde hodnoty funkce Φ odečteme z tabulek hodnot distribuční funkce Φ Kvantily normálního rozdělení. Pro kvantily u p normovaného normálního rozdělení N; ) platí, že: Φu p ) = p, < p < u p = Φ p) a jejich hodnoty nalezneme v tabulkách kvantilů. Všimneme si, že platí: Pro kvantily x p u,5 = a u p = u p. obecného normálního rozdělení Nµ; 2 ) platí: xp µ F x p ) = p Φ Odtud plyne, že ) = p x p µ x = x,5 = ˆx = EX) = µ. ), = u p x p = u p + µ. Význam kvantilů si znázorníme na obrázku hustoty ϕ a distribuční funkce Φ normovaného normálního rozdělení. Obsah obrazce vyznačeného šrafováním je roven p. ϕx) p Φx), u p 2 3 x 3 2 u p 2 3 x Obr Obr Výpočet distribuční a kvantilové funkce normálního rozdělení. I. Přímý výpočet hustota normovaného rozdělení N; ): ϕx) = e x2 2, x R; 5

6 pro rozdělení Nµ; 2 ) s parametry µ, je : fx) = ) x µ ϕ, x R; distribuční funkce normovaného rozdělení N; ): Φx) = x e t 2 2 dt, x R; pro rozdělení Nµ; 2 ) s parametry µ, je : ) x µ F x) = Φ, x R; kvantilovou funkci Q dostaneme jako řešení rovnice: kde Φu p ) = p, u p = Qp) x p = µ + u p, < p <. II. Pomocí aproximací distribuční funkce normovaného rozdělení: a) Φx) = + erf x ) ), x R, 2 2 kde erfx) = 2 x e t2 dt, x R. π b) pro x je: Φx). = ϕx) 5 k= a k w k, w = + a x, a =, , a =, , a 2 =, , a 3 =, , a 4 =, , a 5 =, Pro x je Φx) = Φ x). Pro x 6 je Φx) = a pro x < 6 je Φx) =. Maximální chyba aproximace je menší než 6. kvantilová funkce Q: pro < p 2 je Qp) = Φ p) = u p. = w k= 3 k= a k w k b k w k,

7 kde w = 2 ln p, a = 2, 55 57, a =, , a 2 =, 328 b =, b =, , b 2 =, , b 3 =, 38 Pro 2 < p < je u p = u p. Přesnost aproximace je, 45 pro, 999 < p <, 999. Odvození: Φx) = Φ) + x = 2 + x/ 2 e t2 2 dt = t = z 2, dt = 2dz, x x/ 2 e z2 2dz = 2 + x/ 2 π V programu MAPLE withstats) : ϕx) = statevalf[pdf, normald]x); fx) = statevalf[pdf, normald[µ, ]]x); Φx) = statevalf[cdf, normald]x); F x) = statevalf[cdf, normald[µ, ]]x); u p = Φ p) = statevalf[icdf, normald]p); x p = F p) = statevalf[icdf, normald[µ, ]]p). = e z2 dz = erfx/ 2) Intervaly spolehlivosti. Ve statistice se setkáváme s úlohou, kdy potřebujeme k dané pravděpodobnosti určit interval, ve kterém se hodnota náhodné veličiny vyskytuje. Vyřešíme tuto úlohu pro normované normální rozdělení. Pro jiná rozdělení se princip řešení zachová, jenom hraniční hodnoty hledaného intervalu se určí z kvantilů odpovídajícího rozdělení Příklad: K danému číslu α, < α <, určete interval tak, aby pro náhodnou veličinu U, která má normované normální rozdělení N; ) platilo: a) ) P U < a) = α; b) ) P U < a) = α; c) ) P U > a) = α. Řešení: a) Z podmínky vyplývá α = P a < U < a) = Φa) Φ a) = Φa) Φa)) = 2Φa) Φa) = α 2. Odtud plyne, že a = u α kvantil. Je tedy 2 7

8 a < U < a u α < U < u 2 α. Viz obr b) Obdobně jako v a) dostaneme α = P U < a) = Φa) a = u α. Je tedy U < a U < u α. Viz obr c) Z podmínky pro interval plyne α = P U > a) = Φa) Φa) = α a = u α. Je tedy U > a U > u α. Viz obr Poznámka: Číslo α volíme malé, obvykle < α, a číslo α se nazývá koeficient spolehlivosti konfidenční koeficient). Získaný interval nazýváme α) procentním intervalem spolehlivosti. Interval ) je oboustranný interval, intervaly ) a ) jsou jednostranné.první je pravostranný a druhý levostranný. Jsou to intervaly, ve kterých se hodnota náhodné veličiny bude vyskytovat s pravděpodobností α), tedy ve α)% případech. ϕx) ϕx) 3 2 u α 2 u α 2 3 x Obr Obr ϕx) u α 2 3 x 3 2 u α 2 3 x Obr Sčítání náhodných veličin. Důležitou vlastnost má normální rozdělení při sčítaní náhodných veličin. Pro nezávislé náhodné veličiny platí, že i po sčítaní mají normální rozdělení. Tvrzení se odvodí pomocí charakteristické funkce. Uvedeme tuto vlastnost ve formě věty. 8

9 5.7. Věta: Jsou-li X, resp. Y nezávislé náhodné veličiny s normálními rozděleními Nµ, 2 ), resp. Nµ 2, 2 2), pak má náhodná veličina X + Y normální rozdělení s parametry Nµ + µ 2, ) Náhodný výběr. Ve statistice zpracováváme data, která jsou souborem výsledků náhodného pokusu. Jeho náhodnost se projeví v tom, že při jeho opakování se objeví různé výsledky. Je-li charakter náhody popsán tím, že výsledky náhodného pokusu odpovídají hodnotám náhodné veličiny s daným rozdělením, pak soubor dat je realizací uspořádané n tice náhodných veličin {X, X 2,..., X n }. Všechny náhodné veličiny mají shodné rozdělení a jsou na sobě nezávislé. Takovou uspořádanou n tici náhodných veličin nazýváme prostým náhodným výběrem z daného rozdělení. Z vět 8.6 a 8.2 vyplývá toto tvrzení Věta: Jestliže mají nezávislé náhodné veličiny X i, i n normální rozdělení Nµ, 2 ) náhodný výběr z normálního rozdělení), má pak výběrový úhrn X = n X i normální rozdělení Nnµ, n 2 ) i= a výběrový průměr X = n n X i normální rozdělení Nµ, 2 i= n ). Poznámka: O náhodné veličině, která je funkcí náhodného výběru mluvíme jako o statistice. Častou úlohou je nalezení vhodné statistiky, z jejíchž hodnot můžeme odvodit vlastnosti sledovaného rozdělení. Z vlastností normálního rozdělení vidíme, že statistika X, výběrový průměr je dobrým odhadem střední hodnoty µ, neboť při dostatečně rozsáhlém výběru, velké hodnotě n, se bude hodnota X jen velmi málo lišit od střední hodnoty µ. 6. Exponenciální rozdělení ExpA, δ) exponential) je rozdělení náhodné veličiny s hustotou f a distribuční funkcí F, kde, x < A, fx) = x A δ e δ, x A;, x A, F x) = e x A δ, x A, kde A R a δ >. Je pak EX) = A + δ a DX) = δ 2. Pro kvantily dostaneme vyjádření x p = A δ ln p). Je-li A =, pak rozdělení označujeme symbolem Expδ) a je to rozdělení, které se objevuje v úlohách kde sledujeme spolehlivost práce zařízení v čase. Je to tzv. rozdělení bez paměti. Je totiž P X a + b X a) = P X b), a, b >. 9

10 Poznamenejme, že má-li náhodná veličina X exponenciální rozdělení ExpA; δ), pak má náhodná veličina X A rozdělení Exp; δ) a náhodná veličina Y = X A δ má rozdělení Exp; ), kterému se někdy říká normované exponenciální rozdělení. Podobně jako pro normální rozdělení se linearní transformací zachovává charakter exponenciálního rozdělení. Jestliže má náhodná veličina X rozdělení ExpA; δ), pak má náhodná veličina V = X A)/δ normované exponenciální rozdělení Exp; ). 7. Rozdělení chí kvadrát χ 2 n) o n stupních volnosti chi square) je rozdělení, které má náhodná veličina X = n i= U 2 i, kde U i, i n jsou nezávislé náhodné veličiny s normovaným normálním rozdělením N, ). Pro toto rozdělení je EX) = n a DX) = 2n. Hustota f tohoto rozdělení je dána předpisem, x, fx) = x n 2n Γ n 2 ) 2 e x 2, x >. Rozdělení je výrazně asymetrické, kvantily jsou kladné a jsou tabelovány. Až pro výrazně veliké hodnoty parametru n je možné toto rozdělení nahradit rozdělením normálním Nn, 2n). Pro velké hodnoty n má náhodná veličina U = X n 2n přibližně normované normální rozdělení N, ). Pro kvantily pak platí přibližný vzorec x. p = n + up 2n. Průběh hustoty rozdělení pravděpodobnosti je pro hodnoty parametru n = 3 a n = 5 znázorněn na obrázku Obr. 7.. n > 3 y n = 3 n < 5 n = x x Obr.8.. Obr

11 8. Studentovo rozdělení t- rozdělení) tn) o n stupních volnosti students) má náhodná veličina T = U n Z, kde náhodná veličina U má normované normální rozdělení N, ) a náhodná veličina Z má rozdělení χ 2 n). Rozdělení je symetrické vzhledem k počátku, je ET ) =, DT ) = n n 2, n > 2 a pro hodnoty n > 3 jej nahrazujeme normovanýn normálním rozdělením N, ). Pro kvantily platí t p = t p. Hustota f Studentova rozdělení je dána vzorcem fx) = Γn+ 2 ) Γ n 2 ) πn + x2 n n+ 2, x R. Průběh hustoty pro některé hodnoty stupňů volnosti je znázorněn na obrázku Fischerovo-Snedecorovo rozdělení F rozdělení) F m,n o m a n stupních volnosti ratio) má náhodná veličina F = Xn Y m, kde náhodná veličina X má rozdělení χ 2 m) a náhodná veličina Y má rozdělení χ 2 n). Náhodná veličina F nabývá pouze kladných hodnot a je EF ) = n n 2, n > 2 a DF ) = 2n2 n + m 2), n > 4. Hustota f mn 2) 2 n 4) náhodné veličiny F je dána vzorcem fx) = ) m m 2 B m 2, n 2 ) n x m 2 + m ) m+n n x 2, x >. Poznamenejme, že pokud má náhodná veličina F rozdělení F m, n), pak má náhodná veličina F rozdělení F n, m). Tato skutečnost plyne bezprostředně, z definice F rozdělení a jejím důsledkem je následující vlastnost kvantilů: Pro kvantily F p m, n) rozdělení F m, n) platí, že F p m, n) = F p n, m), < p <. 2

12 p kvantil F p podmínkou Odtud plyne, že náhodné veličiny s rozdělením F m, n) je totiž určen P F m, n) F p ) = p P P Y m = P F p Xn ) Xn Y m F p = p. Y m Xn = p F p P Y m Xn = P F n, m) = p, F p F p což je podmínka pro pkvantil náhodné veličiny s rozdělením F n, m). Je tedy F p n, m) = F p m,n). Pro modus ˆx náhodné veličiny s rozdělením F m, n) platí vyjádření nm 2) ˆx = mn + 2), m > 2.. Beta rozdělení Bp, q), p, q > beta) je spojité rozdělení určené hustotou fx) = Bp, q) xp x) q, x, ). Náhodná veličina X s tímto rozdělením má střední hodnotu EX) = p p+q pq a rozptyl DX) =. Pro p, q > je rozdělení jednomodální a p+q) 2 p p+q+) p+q 2 pro jeho modus je ˆx =. Pro tuto vlastnost se používá v ekonomických modelech. Takové rozdělení mají souřadnice a rozpětí uspořádaného výběru z rovnoměrného rozdělení. Lineární transformací Y = a + b a)x = µ h + 2hX dostaneme zobecněné rozdělení beta, které má hodnoty z intervalu a; b) = µ h; µ + h). Střední hodnotu a ostatní charakteristiky snadno odvodíme z předchozích. Poznámka. Funkce Γ a B jsou tzv. Eulerovy funkce a je: Γz) = x z e x dx pro z >, Bp, q) = xp x) q dx, p >, q >. Je Γ) = Γ2) =, Γn + ) = n! a Γz + ) = zγz), z > a Bp, q) = Γp)Γq) Γp + q). 22

13 Dále platí: Bp, q) = Bq, p), B, n) = Bn, ) = n Bp +, q) = p Bp, q + ). q m )!n )!, Bm, n) =. m + n )! Poznámka: Generování náhodné veličiny s danným rozdělením Nechť je funkce F : a, b) R, a < b, distribuční funkcí spojitého rozdělení. Platí tedy a) F je spojitá a rostoucí v intervalu a, b); b) F a+) =, F b ) =. Potom má funkce F funkci inverzní F, která zobrazuje interval, ) na interval a, b). Věta: Jestliže má náhodná veličina X rovnoměrné rozdělení v intervalu, ), pak má náhodná veličina Y = F X) rozdělení určené distribuční funkcí F. Je-li X, ), pak je Y = F X) a, b). Pro distribuční funkci G náhodné veličiny Y dostaneme: a < y < b : Gy) = P Y y) = P F X) y) = P X F y)) = HF y)), kde H je distribuční funkce rovnoměrného rozdělení v intervalu, ). ta je ovšem identitou, t.j. Hz) = z, < z <. Je tedy Gy) = F y), y a, b). Označme si nyní hodnotu náhodné veličiny X = p, < p <. Pak je Y = F X) = F p) Y = y, F y) = p Y = y p, kde y p je p kvantil rozdělení náhodné veličiny, které má rozdělení určené distribuční funkcí F. To znamená, že generujeme-li posloupnost náhodných čísel {p k } z intervalu, ), pak posloupnost kvantilů {x pk } je náhodná posloupnost z rozdělení s distribuční funkcí F. 23

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX.

1/30. Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení. 31.3.2006 Seminář z aktuárských věd. Slides by LATEX. 1/30 31.3.2006 Seminář z aktuárských věd Slides by LATEX Mgr. Jan Šváb Zobecněný lineární model a jeho použití v povinném ručení 2/30 Obsah 1 Zobecněné lineární modely (GLZ 1 ) Obecný lineární model (GLM)

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Statistika v příkladech

Statistika v příkladech Verlag Dashöfer Statistika v příkladech Praktické aplikace řešené v MS Ecel Ukázkové tety z připravované učebnice Doc. Ing. Jan Kožíšek, CSc. Ing. Barbora Stieberová, Ph.D. Praha 0 Obsah Obsah. Předmluva

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

BAKALÁŘSKÁ PRÁCE. Lorenzova křivka

BAKALÁŘSKÁ PRÁCE. Lorenzova křivka UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Lorenzova křivka Vedoucí bakalářské práce: Mgr. Ondřej Vencálek Rok odevzdání:

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více