Klasifikace a predikce. Roman LUKÁŠ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Klasifikace a predikce. Roman LUKÁŠ"

Transkript

1 1/28 Klasfkace a predkce Roman LUKÁŠ

2 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké skupny patří) určení pravdel, podle nchž bude klasfkace prováděna II. Pravdla z kroku I. sou testována na ných vzorech, následně použta pro zařazování nových dat Predkce = předpověď sté hodnoty (ze spoté funkce) pro daný obekt

3 3/28 I. Fáze: Klasfkace: Ilustrace Trénovací data Klasfkační algortmus Jméno Jan Novák Ota Tesař Vít Tomšů Leoš Nový Věk <= > Příem malý velký střední velký Úvěryschopnost špatná dobrá špatná dobrá Klasfkační pravdla: If Věk = and Příem = velký then Úvěryschopnost = dobrá II. Fáze: Trénovací data Klasfkační pravdla Nová data Jméno Věk Příem Úvěryschopnost (Jan Ryba, , velký,?) Petr Malý velký dobrá Jakub Král <= 30 malý špatná? = dobrá

4 4/28 Příprava dat pro klasfkac Čštění dat = Redukce šumu v datech, upravení dat z chyběící hodnotou Významnostní analýza = odstranění nepotřebných atrbutů v datech pro danou klasfkac Transformace dat = zobecnění dat, například číselných na dskrétní hodnoty Příklad: Konkrétní zsk malý/velký Specální případ transformace: Normalzace dat Příklad: obecný nterval nterval <0, 1>

5 5/28 Porovnávání klasfkačních metod Přesnost předpovědí = schopnost dobře třídt neznámá data Rychlost = výpočetní složtost pro vygenerování a používání klasfkačních pravdel Robustnost = schopnost vytvořt správný model, pokud daná data obsahuí šum a chyběící hodnoty Stablta = schopnost vytvořt správný model pro velké množství dat Interpretovatelnost = ak e model složtý pro pochopení

6 6/28 Příklad: Rozhodovací strom Zařazení osoby do tříd: (Koupí počítač/nekoupí počítač) Věk <= > 40 Student ANO Příem ne ano malý velký NE ANO NE ANO

7 7/28 Vytvoření rozhodovacího stromu functon nduce_tree(example_set, Propertes) : TTree; begn f all entres n Example_set are n the same class then return leaf node labeled wth ths class else f Propertes s empty then return leaf node labeled wth most common class else begn select a property P, delete t from Propertes and make t the root of the current tree; for each value V of P do begn create a branch of the tree labeled wth V; Ex_V = elements of Example_set wth V for property P call nduce_tree(ex_v, Propertes) and attach result to branch V; end; end;

8 8/28 Výběr vhodné vlastnost P Nechť S e množna vzorků rozdělovaných do tříd C 1,, C m Nechť s e počet vzorků z množny S ve třídě C Defnume očekávanou nformac I(s 1,, s m ) ako: m = 1,..., sn) p log2( p ) = 1 I( s p = s / S Nechť stá vlastnost P má může nabývat hodnot a 1,, a v. Proveďme rozklad S na vzáemně dsunktní podmnožny S 1,, S v S S, S ={x: vlastnost P prvku x má hodnotu a } pro = 1..v Nechť s e počet vzorků ze třídy C ve množně S Defnume entrop E(P) ako: v s m ( ) sm E P = ( p log2 p ) p = s / S S = 1 = 1 Vybereme vlastnost P s nevětší hodnotou I(s 1,, s m ) E(P)!

9 9/28 Ořezání stromu 2 metody pro ořezání stromu: Preprunng = ž v průběhu vytváření stromu nesou generovány větve, které maí malý význam pro rozhodování Postprunng = nedříve vytvořen strom ako celek, teprve pak sou větve s malým významem odstraněny

10 10/28 Rozhodovací strom klasf. pravdla Příklad: Věk <= > 40 Student ANO Příem ne ano malý Zařazení osoby do tříd: (Koupí počítač/nekoupí počítač) velký NE ANO NE ANO f Věk = <= 30 and Student = ne f Věk = <= 30 and Student = ano f Věk = f Věk = > 40 and Příem = malý f Věk = > 40 and Příem = velký then result = NE then result = ANO then result = NE then result = NE then result = ANO

11 11/28 Bayesova klasfkace 1/3 Označení pravděpodobností P(X) = pravděpodobnost evu X P(H X) = pravděpodobnost evu H, pokud víme, že nastal ev X Bayessův teorém: P ( H X ) = P( X H ) P( H P( X ) )

12 12/28 Bayesova klasfkace 2/3 Nechť e dán stý vzorek dat X = (x 1,, x n ), který má být zařazen do edné z tříd C 1,, C m. Zařadíme e do třídy C, pro kterou platí: P(C X ) e maxmální. Protože P( X C ) P( C ) P( C X ) =, kde P(X) e konst. P( X ) hledáme maxmální P(C X) P(C )

13 13/28 Bayesova klasfkace 3/3 P( C ) = s s s = počet trénovacích vzorů ve třídě C s = počet všech trénovacích vzorů P( X C P(x k C ) ) = n k = 1 P( x k C ) x k e dskrétní atrbut: P ( x C ) = kde s k e počet trénovacích vzorů ze třídy C splňuící podmínku, že eho k-tý atrbut = x k x k e spotý atrbut: k s s P(x k C ) = g(x k, µ C, σ C ) kde g(x k, µ C, σ C ) e Gaussova normální funkce k

14 14/28 Klasfkace: NS Backpropagaton Čnnost ednoho neuronu: x 1 x 2 w 2 x n w n w 1 θ Schéma neuronové sítě: x 1 n = 1 x w + θ f x 2 O O k x w w k

15 15/28 NS Backpropagaton: Algortmus 1/2 Incalzační část: Incalzu všechny váhy w a basy θ lbovolným malým hodnotam Šíření vstupu k výstupu: Postupně pro každý trénovací vzor děle: Pro každý neuron ve skryté vrstvě spočíte: I = w Pro každý neuron ve výstupní vrstvě spočíte: O = O 1 I + θ

16 16/28 NS Backpropagaton: Algortmus 2/2 Zpětné šíření chyby: Pro každý neuron výstupní vrstvy spočíte: Err = O ( 1 O )( T O Poznámka: T e výstup, který měl vyít Pro každý neuron skryté vrstvy spočíte: Err = O (1 O ) Errk Každou váhu w modfku následovně: w = ( l) Err θ = (l) Err O w Každý bas θ modfku následovně: θ = w = θ k + w + θ Poznámka: (l) <0, 1> e tzv. koefcent učení ) w k

17 17/28 Další metody klasfkace k-shlukování Založeno na vytvoření k-tříd. Každá třída má svého reprezentanta. Neznámý prvek e zařazen do té třídy ehož reprezentant e nepodobněší neznámému prvku. Genercké algortmy využtí myšlenek přírodního vývoe. Fuzzy logka pravdla pro rozdělování do tříd nemaí dskrétní charakter ale spotý.

18 18/28 Predkce: Lneární regrese 1/2 Metoda nemenších čtverců: Y = ax + b = skutečné hodnoty x 1 x 2 x 3 x 4 Snaha naít koefcenty a, b tak, aby součet znázorněných čtverců dosáhl co nemenší hodnoty:

19 Predkce: Lneární regrese 2/2 19/28 = = = s s x x y y x x a ) ( ) )( ( Soubor hodnot: (x 1, y 1 ), (x 2, y 2 ),, (x s, y s ) Výpočet koefcentů a, b pro regresní přímku Y = ax + b: x a y b = Poznámka: = = s x s x 1 1 = = s y s y 1 1

20 20/28 Y = ax 1 + bx 2 + cx 3 + d Kde: X 1 = X 3, X 2 = X 2, X 1 = X Vícenásobná a nelneární regrese Vícenásobná regrese výsledná hodnota y e závslá na více parametrech x 1, x 2,, x n Regresní funkce e potom ve tvaru: Y = a 1 X 1 + a 2 X a n X n + b Nelneární regrese většnou transformueme na lneární regres Příklad: Y = ax 3 + bx 2 + cx + d

21 21/28 Testování vytvořených modelů Bloková metoda Data sou náhodně rozdělena do dvou množn: Data z 1. množny sou použta k trénovaní Data z 2. množny sou použta k testování Křížová metoda Data sou náhodně rozdělena do k množn S 1, S 2,, S k. Data z S 2,, S k sou použta k trénovaní a testování e prováděno na datech z množny S 1 Data z S 1, S 3,, S k sou použta k trénovaní a testování e prováděno na datech z množny S 2 Data z S 1,, S k-1 sou použta k trénovaní a testování e prováděno na datech z množny S k

22 22/28 Ukázka SAS-EM: Defnce problému Defnce problému: Předmět IFJ měl v letošním roce celkem 383 studentů. Bodové rozdělení tohoto předmětu e následuící: 1) Půlsemestrální zkouška 20b. 2) Proekt 25b. 3) Závěrečná zkouška 55b. Úkoly: 1) Pokusíme se předpovědět zda student udělal kvaltně proekt (dostal za ně mnmálně 20 bodů) pouze za předpokladu znalostí eho výsledků z 1) & 3) 2) Pokusíme se předpovědět zda student dostane z IFJ ednčku (celkový počet bodů 90) pouze za předpokladu znalostí eho výsledků z 1) & 2)

23 23/28 Celkový náhled na mplementac Úkol 2 Úkol 1

24 24/28 Data a transformace dat Dopočítané proměnné Proměnné získané z DB

25 25/28 Nastavení atrbutů Nastavení atrbutů pro úkol 1. Nastavení atrbutů pro úkol 2.

26 26/28 Úkol 1: Výsledky

27 27/28 Úkol 2: Výsledky

28 28/28 Zhodnocení výsledků Pro řešení obou úloh e nehorší alternatva použít rozhodovací strom (dskrétní charakter!) Použtí neuronové sítě regresní funkce e srovnatelné Příčny nepřesnost predkce: 1) Student má dostatečný počet bodů během semestru a nenaučí se na závěrečnou zkoušku 2) Student má naopak málo bodů během semestru a o to více se na závěrečnou zkoušku přpraví 3) Student zvládá učvo en teoretcky (hodně bodů ze zkoušek), ale neovládá prax (málo bodů z proektu)

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Softwarová podpora matematických metod v ekonomice a řízení

Softwarová podpora matematických metod v ekonomice a řízení Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s

Více

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

InnoDB transakce, cizí klíče, neumí fulltext (a nebo už ano?) CSV v textovém souboru ve formátu hodnot oddělených čárkou

InnoDB transakce, cizí klíče, neumí fulltext (a nebo už ano?) CSV v textovém souboru ve formátu hodnot oddělených čárkou MySQL Typy tabulek Storage Engines MyISAM defaultní, neumí transakce, umí fulltext InnoDB transakce, cizí klíče, neumí fulltext (a nebo už ano?) MEMORY (HEAP) v paměti; neumí transakce ARCHIVE velké množství

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc.

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc. Unverzta Pardubce Fakulta ekonomcko-správní Modelování predkce časových řad návštěvnost web domény pomocí SVM Bc. Vlastml Flegl Dplomová práce 2011 Prohlašuj: Tuto prác jsem vypracoval samostatně. Veškeré

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

NÁVRH A TVORBA HUDEBNÍ DATABÁZE

NÁVRH A TVORBA HUDEBNÍ DATABÁZE Středoškolská technika 2011 Setkání a prezentace prací středoškolských studentů na ČVUT NÁVRH A TVORBA HUDEBNÍ DATABÁZE Michael Mašek EDUCAnet - gymnázium a střední odborná škola České Budějovice, s.r.o.

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí

Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí Rozhodování v podnikatelství za podpory fuzzy logiky a neuronových sítí Dostál Petr Vysoké učení technické v Brně Mezinárodní letní škola SoftProcessing SoftCop reg. č. CZ.1.07/2.3.00/20.0072 Fuzzy logika

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2 Koncept pokročilého návrhu ve VHDL INP - cvičení 2 architecture behv of Cnt is process (CLK,RST,CE) variable value: std_logic_vector(3 downto 0 if (RST = '1') then value := (others => '0' elsif (CLK'event

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

2 Rozhodovací problém

2 Rozhodovací problém Rozhodovaí problém Rozhodovaí problém je problém s víe možným řešením. Jde tedy o problémy se kterým se setkáváme v běžném žvotě. Základním krokem každého rozhodování je proes volby, tedy poszování jednotlvýh

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Využití Fuzzy Match algoritmu pro čištění dat

Využití Fuzzy Match algoritmu pro čištění dat Využtí Fuzzy Match algortmu pro čštění dat Ing. Davd Pejčoch, DS. Úsek pojštění motorových vozdel, Kooperatva, pojšťovna, a.s., Venna Insurance Group, dpejcoch@koop.cz, Templová 747, 110 01 Praha 1, Czech

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Správa klí (key management)

Správa klí (key management) Tonda Beneš Ochrana nformace aro 2011 Správa klí (key management) významná ást bezpenostní stratege nad danou doménou Základním úkolem správy klí e kontrola klíového materálu po celou dobu eho exstence,

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Stolní počítač. Mobilní telefon. Síť. Skladování léků. Monitorování chlazení. Monitorování mražení. Monitoring skladování. Software Winlog.

Stolní počítač. Mobilní telefon. Síť. Skladování léků. Monitorování chlazení. Monitorování mražení. Monitoring skladování. Software Winlog. Skladování léků Monitorování chlazení Stolní počítač Mobilní telefon Monitorování mražení Síť Monitoring skladování EBI 25-T / / Vysoká přesnost měření teploty / vlhkosti Ukládání sledovaných dat i v případě

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Matematické modely spontánní aktivity mozku

Matematické modely spontánní aktivity mozku Matematické modely spontánní aktivity mozku Jaroslav Hlinka Ústav informatiky, Akademie věd ČR Oddělení nelineární dynamiky a složitých systémů http://ndw.cs.cas.cz/ FJFI ČVUT, Seminář současné matematiky,

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

MS Excel 2010. Základy maker. Operační program Vzdělávání pro konkurenceschopnost. Projekt Zvyšování IT gramotnosti zaměstnanců vybraných fakult MU

MS Excel 2010. Základy maker. Operační program Vzdělávání pro konkurenceschopnost. Projekt Zvyšování IT gramotnosti zaměstnanců vybraných fakult MU MS Excel 2010 Základy maker Operační program Vzdělávání pro konkurenceschopnost Projekt Zvyšování IT gramotnosti zaměstnanců vybraných fakult MU Registrační číslo: CZ.1.07/2.2.00/15.0224, Oblast podpory:

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

The Czech education system, school

The Czech education system, school The Czech education system, school Pracovní list Číslo projektu Číslo materiálu Autor Tematický celek CZ.1.07/1.5.00/34.0266 VY_32_INOVACE_ZeE_AJ_4OA,E,L_10 Mgr. Eva Zemanová Anglický jazyk využívání on-line

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Pokročilé programování v jazyce C pro chemiky (C3220) Statické proměnné a metody, šablony v C++

Pokročilé programování v jazyce C pro chemiky (C3220) Statické proměnné a metody, šablony v C++ Pokročilé programování v jazyce C pro chemiky (C3220) Statické proměnné a metody, šablony v C++ Globální konstantní proměnné Konstantní proměnné specifikujeme s klíčovým slovem const, tyto konstantní proměné

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

ios Cvičení RSS čtečka

ios Cvičení RSS čtečka strana 1 ios Cvičení RSS čtečka Jiří Kamínek Kaminek.jiri@stoneapp.com strana 2 Vytvoření nového projektu v XCode Název RSSLesson Navigation-based Application use Core Data for storage nezaškrtávat strana

Více

Plantronics Explorer 50. Návod k obsluze

Plantronics Explorer 50. Návod k obsluze Plantronics Explorer 50 Návod k obsluze Obsah Vítejte 3 Obsah balení 4 Přehled náhlavní soupravy 5 Buďte opatrní 5 Pair and Charge 6 Get Paired 6 Activate pair mode 6 Use two phones 6 Reconnect 6 Charge

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

Průvodce. PX Bonusové certifikáty

Průvodce. PX Bonusové certifikáty Průvodce PX Jiná dimenze investování RDX Bonus Certificate 2 Příležitosti Rizika Atraktivní zisky na trzích, které nemají trend, nebo lehce klesají Částečná ochrana kapitálu Neomezené příležitosti zisku

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah:

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah: - - Zdeněk Havel, Jan Hnízdl Cvčení z Antropomotorky Obsah: Úvod... S Základní charakterstky statstckých souborů...3 S Charakterstka základních výběrových technk a teoretcká rozložení četností...9 S 3

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

Evaluation of Interferograms Using a Fourier-Transform Method

Evaluation of Interferograms Using a Fourier-Transform Method ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra fzk Vhodnocování nterferogramů metodou Fourerov transformace Evaluaton of Interferograms Usng a Fourer-Transform Method dplomová práce Studní

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Funkcionální rovnice

Funkcionální rovnice Funkcionální rovnice Úlohy k procvičení In: Ljubomir Davidov (author); Zlata Kufnerová (translator); Alois Kufner (translator): Funkcionální rovnice. (Czech). Praha: Mladá fronta, 1984. pp. 88 92. Persistent

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Semestrální práce z DAS2 a WWW

Semestrální práce z DAS2 a WWW Univerzita Pardubice Fakulta elektrotechniky a informatiky Semestrální práce z DAS2 a WWW Databázová část Matěj Trakal 8.12.2009 Kapitola 1: Obsah KAPITOLA 1: OBSAH 2 KAPITOLA 2: ZÁKLADNÍ CHARAKTERISTIKA

Více

Univerzita Pardubice. Fakulta elektrotechniky a informatiky

Univerzita Pardubice. Fakulta elektrotechniky a informatiky Univerzita Pardubice Fakulta elektrotechniky a informatiky Semestrální práce do předmětu IDAS2 Radek Fryšták st32304 / IT 2012 / 2013 Základní charakteristika Téma této smíšené semestrální práce pro předmět

Více

Abstraktní datové typy

Abstraktní datové typy Datové struktury a algoritmy Část 4 Abstraktní datové typy Petr Felkel Data structures and algorithms Part 4 Abstract data types Petr Felkel Abstraktní datové typy Zdůrazňují vnější chování datové struktury

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav

Inovace a zkvalitnění výuky prostřednictvím ICT. Základní seznámení s MySQL Ing. Kotásek Jaroslav Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Databáze Základní seznámení s MySQL

Více

24.5.2008 Jaku b Su ch ý 1

24.5.2008 Jaku b Su ch ý 1 Drupal API 24.5.2008 Jaku b Su ch ý 1 Témata Práce s databází Bezpečnost práce s Drupalem Forms API Jak udělat vlastní modul Hooks Lokalizace 24.5.2008 Jaku b Su ch ý 2 Práce s databází Drupal poskytuje

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

series Awards program

series Awards program 733 series Awards program Č AV Č e s k o m o r a v š t í a m a t é ř i v y s í l a č i Č A V P O D P O R U J E Q - K L U B V e ř e j n á s b í r k a Osvědčení ve smyslu Zákona č.117/2001 Sb. vydal Krajský

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

PROČ UŽ SE NEOBEJDETE BEZ ANALÝZY DAT

PROČ UŽ SE NEOBEJDETE BEZ ANALÝZY DAT PROČ UŽ SE NEOBEJDETE BEZ ANALÝZY DAT JAKUB CHOVANEC - IDG KONFERENCE 3.6.2015 KDO JSME #1 v poskytování datové analytiky a služeb v oblasti Business Analytics a Business Intelligence 39 let na trhu 16

Více

MySQL. mysql> CREATE DATABASE nova CHARACTER SET latin2 COLLATE latin2_czech_cs; Query OK, 1 row affected (0.02 sec)

MySQL. mysql> CREATE DATABASE nova CHARACTER SET latin2 COLLATE latin2_czech_cs; Query OK, 1 row affected (0.02 sec) MySQL přes MySQL Command Line Client Zobrazení existujících databází mysql> SHOW DATABASES; Database test Vytvoření databáze mysql> CREATE DATABASE krouzek; Query OK, 1 row affected (0.00 sec) mysql> SHOW

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Tematický celek 03 - Cvičné příklady

Tematický celek 03 - Cvičné příklady Tematický celek 03 - Cvičné příklady Cvičný 1 Dim a As Object Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click 'Proceruda tlačítka "Vlož obsah

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Enterprise Java (BI-EJA) Technologie programování v jazyku Java (X36TJV)

Enterprise Java (BI-EJA) Technologie programování v jazyku Java (X36TJV) Příprava studijního programu Informatika je podporována projektem financovaným z Evropského sociálního fondu a rozpočtu hlavního města Prahy. Praha & EU: Investujeme do vaší budoucnosti Enterprise Java

Více

Jakub Čermák jakub@jcermak.cz, http://www.jcermak.cz Microsoft Student Partner

Jakub Čermák jakub@jcermak.cz, http://www.jcermak.cz Microsoft Student Partner Jakub Čermák jakub@jcermak.cz, http://www.jcermak.cz Microsoft Student Partner Co paralelizace přinese? Jak paralelizovat? Jak si ušetřit práci? Jak nedělat běžné paralelizační chyby? Race condition, deadlocky

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Radek Krej í. rkrejci@cesnet.cz. NETCONF a YANG NETCONF. 29. listopadu 2014 Praha, IT 14.2

Radek Krej í. rkrejci@cesnet.cz. NETCONF a YANG NETCONF. 29. listopadu 2014 Praha, IT 14.2 Radek Krej í rkrejci@cesnet.cz NETCONF a YANG NETCONF 29. listopadu 2014 Praha, IT 14.2 Jak funguje protokol NETCONF Radek Krej í NETCONF a YANG 29.11. 2014 1 / 28 Základní charakteristiky klient-server

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_038.ICT.34 Tvorba webových stránek SQL stručné minimum OA a JŠ Jihlava, VY_32_INOVACE_038.ICT.34 Číslo

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

ť Á Ě ňé Ý ť ť Á Č Á Č ť Ý Ť Č ď Ý Á Á ň É ň ť ť ť ť Č Ý ť ť ť ť ď ň Ď ď ň Ý Ť ň Ď Ů Č Ť ň Ý ň ň Ý Ú ť ň Í Í Ý Ď Č É É ď ť ť ň ď Ď Š Č ň Ú ň ň Ý Ň Č Ď Ů ň ň Ů Ď Ť Ý Ř ď Ď Č Ď ň Ů Ď ň Ý Š Ť Šť Ď ň ň ť Š

Více

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 WSH Windows Script Hosting OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 Co je skript? Skriptování nástroj pro správu systému a automatizaci úloh Umožňuje psát skripty jednoduché interpretované programové

Více

Pro kontrolu správného formátu hodnoty N použijeme metodu try-catch.

Pro kontrolu správného formátu hodnoty N použijeme metodu try-catch. 1. ŘEŠENÉ PŘÍKLADY 1.2 PŘÍKLAD 24-2-8-2_DOKONALÉ ČÍSLO Napište program, který má na vstupu přirozené číslo N > 1. Výstupem je informace o tom, zda toto číslo je/není dokonalé. (Dokonalé číslo je takové

Více

ŽÁDOST O UZNÁNÍ ZAHRANIČNÍHO VYSOKOŠKOLSKÉHO VZDĚLÁNÍ A KVALIFIKACE APPLICATION FOR THE RECOGNITION OF FOREIGN EDUCATION IN THE CZECH REPUBLIC

ŽÁDOST O UZNÁNÍ ZAHRANIČNÍHO VYSOKOŠKOLSKÉHO VZDĚLÁNÍ A KVALIFIKACE APPLICATION FOR THE RECOGNITION OF FOREIGN EDUCATION IN THE CZECH REPUBLIC Otisk podacího razítka VŠE Vysoká škola ekonomická v Praze PRÁVNÍ ODDĚLENÍ nám. W. Churchilla 4 Praha 3 130 67 ŽÁDOST O UZNÁNÍ ZAHRANIČNÍHO VYSOKOŠKOLSKÉHO VZDĚLÁNÍ A KVALIFIKACE APPLICATION FOR THE RECOGNITION

Více

TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl HTG Economy díl SLEVA BEZ dph AGN APK, AQY, AEG AGU, ARZ, AUM, ARX AZJ AZF AQW AQV ATZ

TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl HTG Economy díl SLEVA BEZ dph AGN APK, AQY, AEG AGU, ARZ, AUM, ARX AZJ AZF AQW AQV ATZ Economy sortiment Material Přední díl výfuku Přední díl výfuku 1997-2005 Přední díl výfuku 19997-2005 Přední díl výfuku I Přední díl výfuku TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl

Více

Citis SN h a n d b o o k

Citis SN h a n d b o o k handbook Kancelářský systém Úvod Pevná varianta stolového systému CITIS je vhodná do běžného administrativního provozu pro vybavování všech druhů kanceláří, call center, zasedacích či školicích místností

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

ČTENÍ. M e t o d i c k é p o z n á m k y k z á k l a d o v é m u t e x t u :

ČTENÍ. M e t o d i c k é p o z n á m k y k z á k l a d o v é m u t e x t u : ČTENÍ Jazyk Úroveň Autor Kód materiálu Anglický jazyk 9. třída Mgr. Martin Zicháček aj9-kap-zic-cte-01 Z á k l a d o v ý t e x t ( 1 5 0 2 5 0 s l o v ) : Christmas Christmas is for many people in the

Více

Ji!í Kade!ábek From an unshot movie. for cimbalom and piano 2008

Ji!í Kade!ábek From an unshot movie. for cimbalom and piano 2008 ií Kadeábek From an unshot movie or cimbalom and iano 2008 Onen nenato"en# ilm má název Berani a autorem nám$tu i scénáe e m% ítel an Míka ml, zárove otenciální re'isér tohoto snímku V roce 2006 sem slo'il

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

194/2007 Sb. Vyhláška

194/2007 Sb. Vyhláška 194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravdla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energe pro vytápění a pro přípravu teplé vody a požadavky na

Více

Database systems. Normal forms

Database systems. Normal forms Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice

Více

Návštěvy. Jul 1, 2012 - Jul 31, 2012. www.businessinfo.cz. This report shows the number of visits to your web site during the selected period.

Návštěvy. Jul 1, 2012 - Jul 31, 2012. www.businessinfo.cz. This report shows the number of visits to your web site during the selected period. Návštěvy This report shows the number of visits to your web site during the selected period. Week Visits Visits % Week 26, Jun 25-Jul 01 2012 110 6.45% Week 27, Jul 02-Jul 08 2012 628 36.81% Week 28, Jul

Více

POKROČILÉ ZPRACOVÁNÍ TEXTU

POKROČILÉ ZPRACOVÁNÍ TEXTU POKROČILÉ ZPRACOVÁNÍ TEXTU Hana Rohrová, Roman Rohr Cíle kurzu Po ukončení tohoto kurzu budete schopni: používat pokročilé formátování textu, odstavců, sloupců a tabulek, převádět text na tabulku a naopak,

Více

První krůčky se SAS Enterprise Miner 6.2. Zaškrtněte Personal Workstation a přihlašte se jako localhost\sasdemo.

První krůčky se SAS Enterprise Miner 6.2. Zaškrtněte Personal Workstation a přihlašte se jako localhost\sasdemo. Zaškrtněte Personal Workstation a přihlašte se jako localhost\sasdemo. New Project Pojmenujte projekt a vyberte fyzickou cestu adresář na disku (s právem zápisu pro uživatele sasdemo), kde budou uložena

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Learning Technologies

Learning Technologies Learning Technologies e-learningový kurz Mgr. Lenka Nováková E-moderator 2012 Co je to Learning Technologies? Learning Technologies for the Classroom je on-line kurz Britské Rady (BC) Kurz představí základní

Více