stavební kostičky, z těch vše sestaví TESELACE chybí měřítko na velikosti kostiček nezáleží Pyrit krychle pentagonalní dodekaedr granát trapezoedr
|
|
- Otakar Fišer
- před 9 lety
- Počet zobrazení:
Transkript
1
2 René Hauy otec moderní krystalografie islandský živec stejné částečky (stejné úhly, plochy) 1781 prezentace pro fr. akademii věd hlubší studium i dalších krystalů: krystaly stejného složení mají stejný základ, i když mohou mít různý vnější vzhled 1784: Essai d'une theorie sur la structure des cristaux krystalografie na vědeckém základě stavební kostičky, z těch vše sestaví TESELACE granát trapezoedr Pyrit krychle pentagonalní dodekaedr chybí měřítko na velikosti kostiček nezáleží
3 difrakce rtg paprsků rtg záření co to je... není lom, opticky nic nedělá 1912 Laue λ rtg asi malé co difrakce na krystalové mříži? pokus: Friedrich, Knipping Max von Laue ( ) 1914 Nobelova cena rtg paprsky jsou vlnění krystaly mají periodickou mřížku (potvrzen Hauy) pozorování symetrie krystalu d ~0.1 nm
4 ideální krystal: je nekonečný přesně periodický 2 přístupy lokální (Hauy,...) postupné vyplnění prostoru opakováním téhož elementu teselace náš, Euklidovský prostor (zákl. elementem je bod) SRO (uspořádání na blízko) globální (Laue,...) prostor vyplníme celý najednou periodicky možnost pracovat v reciprokém prostoru (zákl. elementem rovinná vlna) LRO (uspořádání na dálku) pro amorfní látky dobře se zobecní pro nesouměřitelné struktury, kvazikrystaly
5 Popis krystalů: krystal je periodická struktura matematicky: 1) vytvoříme prázdnou mřížku 2) zaplníme motivem (hmotnou bází - atomy) mřížový bod... r R n = n 1 r a 1 + n 2 r a n m r a m m = 1... přímka, m = 2... rovina, m = 3... prostor D m skutečný krystal v našem prostoru deska, povrch tyče, polymery D krystalografie D krystalografie >3... např. teorie kvazikrystalů 3 >3... vektory nejsou lin. nezávislé (nesouměř. struktury)
6 prázdná mřížka r R n = n 1 r a 1 + n 2 r a 2 a 2 a 1 a 1 mřížky rozlišíme metricky: symetrie kvantitativní parametry Definice: bodová symetrie prázdné mřížky určuje krystalografickou soustavu
7 a 1 a 2 prvky symetrie: E, i C 2 ϕ obecný a 2 ϕ grupa symetrie: C i monoklinická mřížka P a 1 prvky symetrie: E, i, σ x, σ y ϕ = 90 grupa symetrie: C 2v pravoúhlá mřížka P a 1 = a 2 prvky symetrie: E, i, C 4, σ x, σ y, σ d, σ d ϕ = 90 grupa symetrie: C 4v čtvercová mřížka P
8 a 1 = a 2 ϕ obecný a ϕ a prvky symetrie: E, i, σ x, σ y grupa symetrie: C 2v pravoúhlá mřížka I Definice: každá prázdná mřížka různého typu příslušející k jedné určité soustavě je Bravaisova mřížka
9 a 1 = a 2 ϕ = 60 a 60 a prvky symetrie: E, i, C 6, C 3,šest σ grupa symetrie: C 6v hexagonální mřížka P
10 soustavy ve 2D: shrnutí C 4v C 6v C 2v P I C 2v C i
11 2D monoklinická mřížka... C i C i C 1
12 symorfní prostorové grupy ve 2D
13 symorfní a nesymorfní prostorové grupy 1D: C S symorfní C 1 nesymorfní skluzová zrcadlová rovina (zrcadlení + nemřížová translace) šroubová osa (otočím a translace)
14 nesymorfní prostorové grupy ve 2D
15 grupy ve 2D: matematický přehled x,y x,y; -x,-y x,y; -x,y x,y; -x,-y; -x,y; x,-y x,y; -x,-y; y,-x; -y,x x,y; -x,-y; y,-x; -y,x; y,x; -y,-x; x,-y; -x,y x,y; -y,x-y: y-x,-x x,y; -y,x-y; y-x,-x; -y,-x; x,x-y; y-x,y x,y; -y,x-y: y-x,-x; -x,-y; y,y-x: x-y,x x,y; -y,x-y; y-x,-x; y,x; -x,y-x; x-y,-y x,y; -y,x-y; y-x,-x; y,x; -x,y-x; x-y,-y; -x,-y; y,y-x; x-y,x; -y,-x; x,x-y; y-x,y x,y; -x,1/2+y x,y; -x,y; x+1/2,y+1/2; -x+1/2,y+1/2 x,y; -x,-y; 1/2+x,-y; 1/2-x,y x,y; -x,-y; 1/2+x,1/2-y; 1/2-x,1/2+y x,y; -x,-y; 1/2+x,1/2-y; 1/2-x,1/2+y; - x,y; x,-y; 1/2-x,1/2+y; 1/2+x,1/2-y x,y; -x,-y; y,-x; -y,x; 1/2 -x,1/2+y; 1/2+ x,1/2-y; 1/2 -y,1/2-x; 1/2+ y, 1/2+x
16 a a b c α β γ triklinická soustava P C i b,c a b c α = β = 90 γ monoklinická P, A C 2h d - g a b c α = β = γ = 90 ortorombická P, A, I, F D 2h h a = b c α = β = 90, γ = 120 hexagonální P D 6h i a = b = c α = β = γ < trigonální R D 3d k,l a = b c α = β = γ = 90 tetragonální P, I D 4h sc bcc fcc m,n,o a = b = c α = β = γ = 90 kubická P, I, F O h
17 Soustavy ve 3D O h kubická hexagonální D 6h D 4h tetragonální D 3d D 2h ortorombická trigonální C 2h monoklinická C i triklinická
18 minimální symetrie sosutavy triklinická jedna osa 1 nebo 1 monoklinická jedna osa 2 nebo 2 ortorombická tři vzájemně kolmé osy 2 nebo 2 tetragonální jedna osa 4 nebo 4 trigonální jedna osa 3 nebo 3 hexagonální jedna osa 6 nebo 6 kubická čtyři osy 3 nebo 3 ve směru tělesových uhlopříček krychle Příklad: tetragonální mřížka... D 4h D 4h 4/mmm C 4v 4mm C 4 4 C 4h 4/m 4 D S 4 D 2d 42m
19 NiPt (P 4/mmm) CePt 3 B (P 4mm) AgIn 5 Se 8 (P -42m) Al 4 Ba (I 4/mmm) Ag 2 BaGeS 4 (I -42m)
20
21 úplná symetrie krystalu: prostorová grupa Přehledná tabulka 3D 2D krystalové soustavy Bravaisovy mřížky bodové grupy prostorové grupy = 7 (tetrag.) + 5 (kub.) + 7 (hex.) + 5 (trig.) + 3 (ortoromb.) + 3 (monokl.) + 2 (trikl.)
22 grafit: hexagonální mřížka, 2 atomy/buňka 1) zaplnění koulemi 2) spojnice středů 3) Voroného obl. (Wigner-Seitzova primitivní buňka)
23 sc (simple cubic) a uzlů v elementární buňce: 1 objem primitivní b.: a 3 počet nejbližších sousedů: 6 ve vzdálenosti: a Wigner-Seitzova buňka: krychle koef. zaplnění: π/ strukturní typ B2 struktura CsCl... AlNi, CuZn,...
24 bcc (base-centered cubic) uzlů v elementární buňce: 2 objem primitivní b.: a 3 /2 počet nejbližších sousedů: 8 ve vzdálenosti: a 3/2 Wigner-Seitzova buňka: kubooktaedr koef. zaplnění: π/ strukturní typ A2 Fe, Mn, W, Na, Eu,...
25 fcc (face-centered cubic) uzlů v elementární buňce: 4 objem primitivní b.: a 3 /4 počet nejbližších sousedů: 12 ve vzdálenosti: a 2/2 Wigner-Seitzova buňka: rombický dodekaedr koef. zaplnění: π/ NaCl struktura diamantu: C, Si, Ge, ZnS... (vyplněná 1 tetraedrická dutina) Li 3 Bi všechny 3 dutinky plné
26 diamant grafit
27
28 materiály anorganické monokrystaly (šperky, optika, lasery, polovodiče,...) polykrystaly (běžné kovy...) organické nekrystaly (skla, amorfní látky,...) krystal: defekty (vakance, příměsové atomy, dislokace,.) povrch!! přírodní materiály, uměle připravené materiály
29 krystaly v přírodě jak poznat krystal: klasicky (mineralogie), štěpnost, anizotropie vlastností (optické, elastické, elektrické,.) difrakce uspořádání atomů
30 použití krystalů
31 z plynu Pěstování krystalů sněhové vločky (Patricia Rasmussen, ) dendritický růst (ZrO 2 )
32 z roztoku nasycený roztok postupně zahušťujeme (např. odpařováním), přesycený roztok, ze zárodku se rozrůstá krystal např. sůl nasycený roztok zárodek
33 z roztoku (kovy) Ar Trubice z křemenného skla (rezervoár) Krystaly Skelná vata jako filtr Flux + krystaly Odstředivá síla T>T t Teploty tání T t některých prvků používaných jako flux: Ga: 29,8 C, In: 156,6 C, Sn: C
34 GdCu 4 Al 8 A LuFe 6 Ge 6
35 Bridgmanova metoda Např. mnohé intermetalické skoučeniny
36 zonální tavba
37 Czochralského metoda Jan Czochralski ( ) zárodek tuhnutí ohřev (obloukový plamen) tavenina Např. mnohé kovy: Si intermetalické sloučeniny (CeRu 2 Si 2 )
38 držák zárodku zárodek krystal 1) kontakt zárodku s taveninou 2) formování ingotu 3) růst ingotu 4) ukončení
stavební kostičky, z těch vše sestaví TESELACE chybí měřítko na velikosti kostiček nezáleží krystalografie na vědeckém základě
René Hauy otec moderní krystalografie islandský živec stejné částečky (stejné úhly, plochy) 1781 prezentace pro fr. akademii věd hlubší studium i dalších krystalů: krystaly stejného složení mají stejný
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Polymorfismus kovů Při změně podmínek (zejména teploty), nebo např.mechanickým působením změna krystalické struktury.
Struktura kovů Kovová vazba Krystalová mříž: v uzlových bodech kationy (pro atom H: m jádro :m obal = 2000:1), Mezi kationy: delokalizovaný elektronový plyn, vyplňuje celé kovu těleso. Hmotu udržuje elektrostatická
Klasifikace struktur
Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: X, X, m X n, ternární: m B k X n,... Title page symetrie prostorové grupy
Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)
Pružnost Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence) R. Hook: ut tensio, sic vis (1676) 1 2 3 Pružnost 1) Modul pružnosti 2) Vazby mezi atomy
Mineralogie. 1. Krystalografie. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 1. Krystalografie Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Základní pojmy v mineralogii Mineralogie je věda zabývající se všestranným
Kvantová fyzika pevných látek
Kvantová fyzika pevných látek Přednáška 2: Základy krystalografie Pavel Márton 30. října 2013 Pavel Márton () Kvantová fyzika pevných látek Přednáška 2: Základy krystalografie 30. října 2013 1 / 10 Pavel
1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
4. KRYSTALOGRAFIE A KRYSTALOCHEMIE 4.1. Geometrie krystalových mříží
4. KRYSTALOGRAFIE A KRYSTALOCHEMIE 4.1. Geometrie krystalových mříží Základní pojmy: Struktura krystalu Konkrétní rozmístění stavebních částic (atomů, iontů) krystalických látek v prostoru nazýváme strukturou
Elektronová struktura
Elektronová struktura Přiblížení pohybu elektronů v periodickém potenciálu dokonalého krystalu. Blochůvteorémpak říká, že řešení Schrödingerovy rovnice pro elektron v periodickém potenciálu je ve tvaru
Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné
Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní
Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami
Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ
METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz
Polotovary vyráběné tvářením za studena
Polotovary vyráběné tvářením za studena Úvodem základní pojmy z nauky o materiálu Krystalová mřížka Krystalová mřížka je myšlená konstrukce, která vznikne, když krystalem proložíme tři vhodně orientované
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Materiály a technická dokumentace
Doc. Ing. Josef Jirák, CSc., Prof. Ing. Rudolf Autrata, DrSc. Doc. Ing. Karel Liedermann, CSc., Ing. Zdenka Rozsívalová Doc. Ing. Marie Sedlaříková, CSc. Materiály a technická dokumentace část: Materiály
Mineralogie. 2. Vlastnosti minerálů. pro Univerzitu třetího věku VŠB-TUO, HGF. Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc.
Mineralogie pro Univerzitu třetího věku VŠB-TUO, HGF 2. Vlastnosti minerálů Ing. Jiří Mališ, Ph.D. jiri.malis@vsb.cz, tel. 4171, kanc. J441 Fyzikální vlastnosti minerálů Minerály jako fyzikální látky mají
Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky
Vlastnosti a zkoušení materiálů Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů
Pevné skupenství. Vliv teploty a tlaku
Pevné skupenství Pevné skupenství stálé atraktivní interakce mezi sousedními molekulami, skoro žádná translace atomů těsné seskupení částic bez volné pohyblivosti (10 22-10 23 /cm 2, vzdálenosti 10-1 nm)
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,
Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6
Základní metody přípravy monokrystalů. RNDr. Otto Jarolímek, CSc.
Základní metody přípravy monokrystalů RNDr. Otto Jarolímek, CSc. Monokrystal a jeho růst Monokrystal pravidelné uspořádání základních strukturních jednotek (atomy, ionty, molekuly) je zachováno i v makroskopickém
Klasifikace struktur
Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: AX, AX 2, A m X n, ternární: A m B k X n,... Title page symetrie prostorové
Chemie i do zadních lavic, vyzkoušejte nový pohled na chemické pokusy
Chemie Chemie i do zadních lavic, vyzkoušejte nový pohled na chemické pokusy Panelový systém pro demonstraci chemických pokusu magnetický držák dobrá viditelnost na provádený ˇ pokus prehledné ˇ postupné
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY
Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Klasifikace struktur
Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: AX, AX 2, A m X n, ternární: A m B k X n,... Title page symetrie prostorové
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
2. Pasivní snímače. 2.1 Odporové snímače
. Pasivní snímače Pasivní snímače při působení měřené veličiny mění svoji charakteristickou vlastnost, která potom ovlivní tok elektrické energie. Její změna je pak mírou hodnoty měřené veličiny. Pasivní
ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY
VZÁCNÉPLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY 1 VZÁCNÉ PLYNY 2 Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII VIII s 2 p
Obecná charakteristika
p 1 -prvky Martin Dojiva Obecná charakteristika do této t to skupiny patří bor (B), hliník k (Al( Al), galium (Ga), indium (In) a thallium (Tl) elektronová konfigurace valenční vrstvy je ns 2 np 1 s výjimkou
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Stanislav Daniš Cesta sněhové vločky k Nobelovým cenám a k Mezinárodnímu roku krystalografie Pokroky matematiky, fyziky a astronomie, Vol. 59 (2014), No. 3, 177--186
Vnitřní stavba pevných látek přednáška č.1
1 2 3 Nauka o materiálu I Vnitřní stavba pevných látek přednáška č.1 Ing. Daniela Odehnalová 4 Pevné látky - rozdělení NMI Z hlediska vnitřní stavby PL dělíme na: Krystalické všechny kovy za normální teploty
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Značení krystalografických rovin a směrů
Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)
METALOGRAFIE I. 1. Úvod
METALOGRAFIE I 1. Úvod Metalografie je nauka, která pojednává o vnitřní stavbě kovů a slitin. Jejím cílem je zviditelnění struktury materiálu a následné studium pomocí světelného či elektronového mikroskopu.
CHEMICKY ČISTÁ LÁTKA A SMĚS
CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic
OPTIKA Polarizace světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Polarizace světla TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo je příčné elektromagnetické vlnění. Vektor intenzity E elektrického pole
Přednáška č. 3. Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů.
Přednáška č. 3 Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování minerálů. Strukturní krystalografie Strukturní krystalografie, krystalové mřížky, rentgenografické metody určování
IDEÁLNÍ KRYSTALOVÁ MŘÍŽKA
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D13_Z_MOLFYZ_Idealni_krystalova_mrizka_real ny_krystal_typy_vazeb_pl Člověk a příroda
6 Extrémy funkcí dvou proměnných
Obsah 6 Extrémy funkcí dvou proměnných 2 6.1 Lokálníextrémy..... 2 6.2 Vázanélokálníextrémy.... 4 6.2.1 Metodyhledánívázanýchlokálníchextrémů..... 5 6.2.2 Přímédosazení..... 5 6.2.3 Lagrangeovametoda.....
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla
Výuková pomůcka pro cvičení ze geologie pro lesnické a zemědělské obory. Úvod do mineralogie
Úvod do mineralogie Specializovaná věda zabývající se minerály (nerosty) se nazývá mineralogie. Patří mezi základní obory geologie. Geologie je doslovně věda o zemi (z řec. gé = země, logos = slovo) a
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_17 Název materiálu: Kinetická teorie látek. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce struktury a vlastnosti látek, složení pevných,
1 Tepelné kapacity krystalů
Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud
Přednáška č. 5. Optická krystalografie, metody určování optických vlastností, polarizační mikroskop.
Přednáška č. 5 Optická krystalografie, metody určování optických vlastností, polarizační mikroskop. Systematická mineralogie. Princip mineralogického systému (Strunz). Popis minerálů v jednotlivých třídách
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Pavel Svoboda, Silvie Mašková Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Plastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara
Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008
Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale
Přednáška č. 2 Morfologická krystalografie. Krystalové osy a osní kříže, Millerovy symboly, stereografická projekce, Hermann-Mauguinovy symboly
Přednáška č. 2 Morfologická krystalografie Krystalové osy a osní kříže, Millerovy symboly, stereografická projekce, Hermann-Mauguinovy symboly Morfologická krystalografie Krystalové soustavy Krystalové
Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.
Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění
Pevné skupenství. teplo se nešíří prouděním
Pevné skupenství Pevné skupenství stálé atraktivní interakce mezisousednímimolekulami, skoro žádná translace atomů těsné seskupení částic bez volné pohyblivosti (10 22-10 23 /cm 2, vzdálenosti 10-1 nm)
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
Otázky a jejich autorské řešení
Otázky a jejich autorské řešení Otázky: 1a Co jsou to amfoterní látky? a. látky krystalizující v krychlové soustavě b. látky beztvaré c. látky, které se chovají jako kyselina nebo jako zásada podle podmínek
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
1. PRVKY kovové nekovové ZLATO (Au) TUHA (GRAFIT) (C)
Nerosty - systém 1. PRVKY - nerosty tvořené jediným prvkem (Au, C, ) - dělíme je na: kovové: - ušlechtilé kovy, - velká hustota (kolem 20 g/cm 3 ) - zlato, stříbro, platina, někdy i měď nekovové: - síra
Metodický postup stanovení kovů v půdách volných hracích ploch metodou RTG.
Strana : 1 1) Význam a použití: Metoda je používána pro stanovení prvků v půdách volných hracích ploch. 2) Princip: Vzorek je po odběru homogenizován, je stanovena sušina, ztráta žíháním. Suchý vzorek
STROJNÍ KOVÁNÍ Dělíme na volné a zápustkové.
TVÁŘENÍ ZA TEPLA pro tváření za tepla ( i za studena ) jsou nejlepší nízkouhlíkové oceli Tahový diagram: Využitelná oblast pro tváření je mez úměrnosti, elasticity, kluzu a pevnosti. Je-li kovový monokrystal
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Tenzorový popis fyzikálních vlastností
Tenzorový popis fyzikálních vlastností Typ veličin skalární - hmotnost, objem, energie, teplo,... vektorové - intenzita elektrického a magnetického pole, gradient teploty a koncentrace, difúzní tok,...
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
Základy geologie pro geografy František Vacek
Základy geologie pro geografy František Vacek e-mail: fvacek@natur.cuni.cz; konzultační hodiny: Po 10:30-12:00 (P 25) Co je to geologie? věda o Zemi -- zabýváse se fyzikální, chemickou, biologickou a energetickou
Geochemie endogenních procesů 1. část
Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první
Fyzikální vlastnosti materiálů FX001
Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y
3. Násobné integrály 3.. Oblasti v R. Načrtněte množinu R a najděte meze integrálů f(x, y)dxdy, kde je dána: () = {(x, y) : x, y 3} () vnitřek trojúhelníka tvořeného body [, ], [, ] a [, ]. (3) vnitřek
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,
KATALOG NÁSTROJŮ PRO OBRÁBĚNÍ
2014/01 tool design & production KATALOG NÁSTROJŮ PRO OBRÁBĚNÍ FRÉZY PRO VÝROBU FOREM Z TVRDOKOVU FRÉZY VÁLCOVÉ NÁSTROJE PRO OBRÁBĚNÍ HLINÍKU NÁSTROJE PRO OBRÁBĚNÍ GRAFITU NÁSTROJE SPECIÁLNÍ A ZAKÁZKOVÉ
Horniny a minerály II. část. Přehled nejdůležitějších minerálů
Horniny a minerály II. část Přehled nejdůležitějších minerálů Minerály rozlišujeme podle mnoha kritérií, ale pro přehled je vytvořeno 9. skupin, které vystihují, do jaké chemické skupiny patří (a to určuje
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
PETROLOGIE =PETROGRAFIE
MINERALOGIE PETROLOGIE =PETROGRAFIE věda zkoumající horniny ze všech hledisek: systematická hlediska - určení a klasifikace genetické hlediska: petrogeneze (vlastní vznik) zákonitosti chemismu (petrochemie)
ELEKTRICKÉ SVĚTLO 1 Řešené příklady
ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,
2. Pasivní snímače. 2.1 Odporové snímače
. Pasivní snímače Pasivní snímače mění při působení měřené některou svoji charakteristickou vlastnost. Její změna je pak mírou hodnoty měřené veličiny a ta potom ovlivní tok elektrické energie ve vyhodnocovacím
APLIKOVANÁ OPTIKA A ELEKTRONIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
4.4. Vlnové vlastnosti elektromagnetického záření
4.4. Vlnové vlastnosti elektromagnetického záření 4.4.1. Interference 1. Charakterizovat význačné vlastnosti koherentních paprsků.. Umět definovat optickou dráhu v souvislosti s dráhovým rozdílem a s fázovým
Úvod Vlastnosti materiálů a pojmy, které byste měli znát
Úvod Vlastnosti materiálů a pojmy, které byste měli znát Co je to materiál? Definice hmota, která splňuje svými vlastnostmi nároky na spolehlivou funkci a požadovanou životnost. Jaké znáte příklady? Ve
Minule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
Úloha č. 8 Vlastnosti optických vláken a optické senzory
Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Monolitiská stropní deska
RIB RIBTEC RTslab Program 2013 RIB Software AG V1 20092013 Monolitiská stropní deska Projektinfo Autor: Sv Soubor: U:\Attribut\AGENDA\Ribtec\RTslab2013\Data\Zakladova deska.xpl Definice Souřadný systém
GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU. Název: Školitel: Mgr. Dana Fialová. Datum: 15.3.2013
Název: Školitel: GRAFEN VERSUS MWCNT; POROVNÁNÍ DVOU FOREM UHLÍKU V DETEKCI TĚŽKÉHO KOVU Mgr. Dana Fialová Datum: 15.3.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR Elektrochemie: chemické reakce vyvolané elektrickým proudem a naopak vznik elektrického proudu z chemických reakcí Historie: L. Galvani - žabí
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební