Matematická statistika

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematická statistika"

Transkript

1 Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne v Rožnově pod Radhoštěm

2 Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické statistiky 5-8 4) Grafické znázornění 9 5) Charakteristiky polohy znaku Aritmetický průměr Geometrický průměr 13 Harmonický průměr 14 6) Charakteristiky variability znaku Rozptyl Směrodatná odchylka 21 Variační koeficient 22 7) Příklad ) Závěr 26 9) Zdroje

3 Úvod Téma pro seminární práci do Semináře matematiky ve školním roce 2010/2011 jsem vybíral vzhledem k jeho užitkové hodnotě v mém budoucím studiu. Protože se chystám studovat ekonomii, za téma jsem si nakonec vybral právě statistiku. Od práce očekávám především vytvoření a osvojení si základů statistiky pro usnadnění dalšího prohlubování znalostí v dané oblasti. Práce nemá ambice vytvořit předlohu pro vysokoškolskou přednášku, ale zato se snaží o přehlednou pomůcku při zopakování středoškolské matematiky. V práci se snažím objasnit etymologii statistiky a základní statistické pojmy včetně jejich použití. Zabývám se také zjednodušováním ručních výpočtů a grafickým zobrazováním výsledků statistické analýzy. Pro vysvětlení základních pojmů statistiky používám za zdroj především učebnice Zbierka úloh z pravdepodobnosti a matematickej štatistiky od autora R. Potockého a učebnici Matematika pro gymnázia - Kombinatorika, pravděpodobnost, statistika od autorů Emila Caldy a Václava Dupače. Všechny početní příklady budu vymýšlet sám

4 Definice a historie statistiky Na úvod je třeba odlišit dva druhy statistiky, se kterými se můžeme setkat. Jedná se o statistiku popisnou a statistiku matematickou. V seminární práci se budu zabývat pouze matematickou statistikou. Hlavním rozdílem, kterým se popisná statistika odlišuje od té matematické je její funkce zajišťování a poskytování informací. Zatímco matematická statistika se zabývá zpracováváním informací a jejich vyhodnocováním. Jedná se o vědeckou disciplínu, která se zabývá studiem dat popisujících vlastnosti hromadných jevů a hodnotí hypotézy, které tato data vysvětlují. Původ pojmu statistika nalézáme v latinském slově status, které znamená stav. Původně se jednalo pouze o stav nějaké země či státu a statistikou se tedy rozuměla pouze činnost spočívající ve zjišťování tohoto stavu. Později se ale pole působnosti statistiky značně rozšířilo. Dnes tato nauka zahrnuje velmi širokou škálu kvantitativních metod umožňujících zjišťovat stav věcí a poměrů v rozličných strukturách. Kromě přírodních, společenských a hospodářských poměrů v daném státě lze zjišťovat např. hospodářské poměry v nějaké firmě, stav zásob v obchodním domě, stav vody na českých tocích nebo stav lesů v České republice apod. Metody matematické statistiky pronikly během 20. století prakticky do všech empirických vědních disciplín a dokonce i k humanitním vědám. Významný vliv mají statistické metody v některých oblastech matematické fyziky, zejména statistické fyziky. O statistické metody se opírá i moderní matematická lingvistika, demografie a ekonometrie stejně jako epidemiologie či biostatistika. Poznatky z matematické statistiky se dále propojují s informatikou a jinými obory například v robotice

5 Základní statistické pojmy Statistická analýza prvotně vyžaduje pochopení statistických pojmů. Proto nejdříve definuji ty nejzákladnější. Základním pojmem matematické statistiky je statistický soubor. Jedná se o konečnou neprázdnou množinu prvků (předmětů nebo jednotek), které mají z daného hlediska určité společné vlastnosti. Počet všech prvků statistického souboru se nazývá rozsah souboru a označujeme ho písmenem n. Prvky statistického souboru poté označujeme jako statistické jednotky. Na těchto prvcích souboru sledujeme různé znaky, tedy společné vlastnosti statistických jednotek, které značíme jako x. Rozlišujeme kvalitativní znak, například národnost, pohlaví a znak kvantitativní - hmotnost, délka, věk. Hodnoty znaku, tedy jednotlivé údaje znaku, značíme x 1, x 2,, x n. Pokud jsou některé hodnoty znaku x 1, x 2,..., x n shodné, má význam je napsat do tabulky četností. Kde n j (n 1, n 2,..., n k ) značí četnost hodnot znaků x j (x 1, x 2,, x k ). x j x 1 x 2... x i... x k n j (x) n 1 n 2... n i... n k Pro absolutní četnost n j, tedy četnost celočíselně označující počet výskytu hodnoty jednotlivého znaku, platí, že součet jednotlivých absolutních četností je roven počtu všech jednotek souboru. Relativní četnost relativních četností je roven jedné. značí, jaká část souboru má určitou hodnotu znaku x i. Součet Relativní četnost se často uvádí v procentech, jehož hodnotu získáme vynásobením výsledného bezjednotkového čísla 100. Vyjde-li tedy, procentuelní hodnota bude - 5 -

6 Kumulativní četnost je dána částečnými součty četností. Kumulativní relativní četnost je dána podílem jednotlivých kumulativních četností a rozsahu souboru, viz tabulka č.1: Tab. 1 Hodnota znaku x x 1 x 2... x i... x k Četnost n 1 n 2... n i... n k Relativní četnost Kumulativní četnost Kumulativní relativní četnost n 1 n 1 + n 2... n n i... n 1 + n n k Tzv. třídní četnosti se používají, je-li rozsah statistického souboru velký a hodnoty znaku jsou sobě příliš blízké. Pro zvýšení přehlednosti lze tak hodnoty uspořádat do skupin, intervalů, které by byly charakterizovány středem intervalu. Počet těchto intervalů k by měl odpovídat rozsahu souboru. Pro stanovení ideálního počtu intervalů lze využít některé z pravidel. Jedno z nich je Sturgesovo pravidlo: Délka intervalu h je přibližně daná vzorcem: - 6 -

7 Příklad 1: Použití výše uvedeného principu je na místě, rozebíráme-li například následující statistické měření, kde jsou statistickým souborem obyvatelé panelového domu a zkoumaným znakem je výška obyvatel v krocích po jednom centimetru. Rozsah souboru n = 305 osob. Tab. 2 Výška Četnost Výška Četnost Výška Četnost V takovémto množství hodnot je velice snadné se ztratit, a tak pro zpřehlednění využijeme intervalové rozdělení. Počet skupin je podle vzorce daným Sturgesovým pravidlem: Ideální počet intervalů je tedy 9. Z toho vyplývající délka intervalu pro nejmenší hodnotu = 157 a nejvyšší =

8 Zde jsou vzniklé intervaly a střední hodnoty intervalů dané průměrem jeho krajních hodnot. Z důvodu zaokrouhlení mají tři z intervalů rozsah hodnot 4cm na rozdíl od ostatních, které mají ideální 3cm. Interval Charakteristický střed intervalu ,5 177,5 181,5 185 Výsledná tabulka intervalů, absolutních četností, relativních četností, kumulativních četností a kumulativních relativních četností pro dané intervaly hodnot výšek v cm vypadá takto: Tab. 3 Výška ,5 177,5 181,5 185 Četnost Relativní četnost Kumulativní četnost Kumulativní relativní četnost 1% 3,9% 6,6% 15,7% 15,4% 36,7% 17,1% 3.3% 0,3% % 4,9% 11,5% 27,2% 42,6% 79,3% 96,4% 99,7% 100% Z tabulky četností můžeme vyčíst, že je naprostá většina obyvatel domu je vysoká od 167 do 177,5cm

9 Grafy Některé zjištěné (resp. vypočítané) hodnoty mohou být znázorněny graficky. Každý graf vyjadřuje vzájemný vztah mezi statistickými znaky pomocí přehledných grafických symbolů (čáry, barvy nebo jejich odstíny, apod.) Ke zobrazení rozdělení četností jsou jako základní používány grafy sloupcové nebo výsečové. V prvním případě výška sloupce představuje absolutní četnost hodnoty znaku, případně jeho relativní četnost. Ve druhém případě je k dispozici kruh rozdělený na výseče v poměru, v jakém se nacházejí četnosti jednotlivých hodnot znaků. Někdy je kruh kreslen s otvorem uprostřed, pak se graf nazývá prstencový. Grafickým vyjádřením rozdělení četností v intervalech hodnot je tzv. histogram. Na rozdíl od sloupcového grafu, v němž jsou, při zobrazování četnosti hodnoty jednoho znaku, kresleny sloupce odděleně, jsou v histogramu sloupce umístěny těsně vedle sebe, aby byla znázorněna návaznost intervalů. Grafy četností hodnot statistických jednotek z příkladu 1 tedy mohou vypadat například takto: 35 Graf absolutních četností - sloupcový Četnost 5 0 Graf třídních relativních četností - výsečový 17% 37% 3% 0% 1% 4% 7% 16% 15% 158cm 161cm 164cm 167cm 170cm 173,5cm 177,5cm 181,5cm 185cm - 9 -

10 Charakteristika polohy znaku Chceme-li zaznamenat úplnou statistickou informaci o znaku x (v našem případě výška osob) pomocí jediného čísla, použijeme tzv. charakteristiku polohy znaku. Aritmetický průměr Nejčastěji užívanou charakteristikou polohy znaku x je aritmetický průměr značený, tj. podíl součtu hodnot znaku všech jednotek souboru a rozsahu souboru. V případě, že se četnosti jednotlivých hodnot znaku liší od jedné, rovnice vypadá takto: Dosazením hodnot z tabulky č.2 do vzorce získáme aritmetický průměr Jde o jisté těžiště hodnot, což vyplývá hned z první z vlastností aritmetického průměru, které nám v mnoha situacích dokáží ulehčit jeho výpočet

11 Vlastnosti aritmetického průměru součet odchylek, tj. rozdíl hodnot x i a průměru, je roven nule. Kladné a záporné odchylky se kompenzují. Podrobíme-li hodnoty znaku x i lineární transformaci, podrobí se této transformaci i aritmetický průměr, který se mění stejným způsobem jako se mění jednotlivé hodnoty znaku. přičteme-li k jednotlivým hodnotám znaku konstantu (tj. změna o aditivní konstantu), zvýší se o tuto konstantu i aritmetický průměr: násobíme-li jednotlivé hodnoty znaku konstantou (tj. multiplikativní konstanta), je touto konstantou násoben i průměr: je-li statistický soubor tvořen k soubory o rozsazích s dílčími průměry, pak celkový průměr je:

12 Příklad 2: Zjistíme-li tedy například, že byl měřící přístroj, kterým jsme prováděli zjišťování výšky osob z příkladu 1 nepřesný z důvodu chybějícího měřítka v intervalu 0-10cm, tedy měřící přístroj začínal měření nikoli od 1cm ale až od 11cm a zadavatel analýzy vyžaduje znát pouze aritmetický průměr, nemusíme měření provádět znovu. Nemusíme dokonce ani ke každé naměřené hodnotě připisovat chybějících 10 cm, ale postačí využít vlastnost aritmetického průměru hovořící o změně souboru o aditivní konstantu. Příklad 3: Pokud shledáme jednotky měřícího přístroje např. nepřesné vůči normě, tedy pro příklad 1cm na měřítku přístroje je normovaných 0,9cm, použijeme vlastnost aritmetického průměru o násobení multiplikační konstantou, která je v našem případě rovna 0,9 (= 0,9 1). Příklad 4: Máme-li zjistit průměrnou hodnotu výšek osob v celé ulici a známe průměrnou výšku osob v každém z domů, (např. 168,4cm, 172,6cm a 142,1cm) spolu s počtem obyvatel každého z domů (12, 9 a 4), není již potřeba při výpočtu celkového průměru získávat data o jednotlivých obyvatelích, použijeme totiž vzorec pracující s dílčími průměry. 165,7cm Někdy je aritmetický průměr při použití dané vlastnosti nazýván váženým průměrem, který zobecňuje aritmetický průměr a poskytuje charakteristiku statistického souboru v případě, že hodnoty v tomto souboru mají např. různou důležitost, různou váhu. V matematické statistice se setkáváme i s jinými průměry než je ten aritmetický

13 Geometrický průměr Geometrický průměr z kladných hodnot znaku je definován jako n-tá odmocnina ze součinu hodnot znaku. Používá se při průměrování růstových, časově provázaných veličin, kdy je celková relativní změna dané veličiny v čase dána jako součin jejich dílčích změn sledovaného intervalu. Setkáme se s ním například v analýze hospodářského růstu země nebo výrobní produkce společnosti v závislosti na letech. Příklad 5: Vypočtěte průměrný koeficient růstu produkce jednoho podniku za celý rok, jestliže v jednotlivých čtvrtletích byl koeficient růstu následující: 0,98 1,02 1,12 1,05 Výsledkem je bezrozměrné číslo, které nazýváme koeficientem růstu, může nabývat všech nezáporných hodnot

14 Harmonický průměr Harmonický průměr z nenulových hodnot statistického souboru je definován jako podíl rozsahu souboru a součtu převrácených hodnot znaků. Slouží k průměrování poměrných čísel, vahou je veličina z čitatele zlomku. Používá se tedy např. při výpočtu průměrné rychlosti dosažené na úsecích o různé délce. Používá se, jsou-li hodnoty znaku nerovnoměrně rozloženy kolem aritmetického průměru, nebo když jsou hodnoty extrémně nízké či vysoké. Pro různé četnosti hodnot znaku upravíme vzorec na: Příklad 6: Z definice harmonický průměr použijeme například při výpočtu průměrné rychlosti autobusu, který jede: 2 km rychlostí 55 km/hod 3 km rychlostí 65 km/hod 1 km rychlostí 80 km/hod

15 Modus Modus je označení hodnoty znaku s největší, tzv. maximální četností x m. V našem příkladu č. 1 nabývá podle tabulky č. 2 maximální četnosti hodnota 173cm, tj. modus 173cm. Získali jsme tedy pouze jeden modus, ve zvláštních případech jich může být až počet odpovídající rozsahu souboru n. Medián Medián je prostřední hodnota znaku, jsou-li hodnoty x 1, x 2,, x n uspořádány podle velikosti, tj.: Potom tedy, je-li n liché, platí: Je-li n sudé, platí: V příkladu č. 1 má statistický soubor rozsah 305 znaků, jde tedy o liché číslo. Pro stanovení Mediánu použijeme příslušný vzorec. Medián je tedy hodnota, které nabývá 153. člen souboru seřazeného od nejmenšího po největší. Medián Medián je vhodné stanovit za střední hodnotu místo aritmetického průměru v tom případě, když jsou hodnoty souboru výrazně odlišné. Například zjišťujeme-li průměrnou výši měsíčního platu ve vedení společnosti, kde generální ředitel je ohodnocen několikanásobně vyšším platem ve srovnání se všemi ostatními, kteří naopak vůči sobě dostávají platy podobné

16 Charakteristiky variability Za předpokladu, že charakteristiku polohy chápeme jako číselnou hodnotu, okolo které hodnoty znaku kolísají, pak velikost tohoto kolísání vyjadřují právě charakteristiky variability. Je-li charakteristikou polohy aritmetický průměr, za charakteristiku variability zpravidla volíme rozptyl. Rozptyl Rozptyl, někdy nazýván též variance, se značí resp. var X. Je definovaný jako průměr druhých mocnin odchylek od aritmetického průměru. Proto někdy hovoříme o rozptylu jako o charakteristice měřítka. Vzorec pro něj zní: Při uspořádání údajů do tabulky rozdělení četností používáme váženou formu rozptylu: Pro ruční počítání používáme spíše tvar, který získáme provedením naznačeného umocnění dvojčlenu: Resp. při počítání s četnostmi:

17 Příklad 7: Využitím upraveného vzorce pro ruční výpočet rozptylu vypočítáme rozptyl z hodnot v příkladu č. 1. Vlastnosti rozptylu Při výpočtu rozptylu využíváme jeho následující vlastnosti: je vždy nezáporný je-li vypočítán z konstantních hodnot znaku, pak je roven 0 přičteme-li k jednotlivým hodnotám znaku konstantu (tj. změna o aditivní konstantu), rozptyl se nezmění: násobíme-li jednotlivé hodnoty znaku konstantou (tj. multiplikativní konstanta), pak je rozptyl násoben čtvercem této konstanty: Známe-li rozptyly dílčích souborů s dílčími průměry a rozsahy, celkový rozptyl je součtem dvou složek popisujících variabilitu uvnitř dílčích souborů a mezi dílčími soubory. velikosti variability uvnitř souborů je vnitroskupinová variabilita, velikosti variability dílčích souborů kolem společného průměru je rovna meziskupinové variabilitě

18 Platí tedy: Příklad 8: Jak se změní rozptyl ze zadaných hodnot v příkladu č. 1, přičteme-li ke všem hodnotám jednotek statistického souboru hodnotu 10 obdobně jako u příkladu č. 2, tedy navýšíme-li všem měřeným osobám výšku o 10cm? Zadání vypočítám obecně, abych dokázal vlastnost rozptylu při změně hodnot, které jej definují, o tzv. aditivní konstantu. Po umocnění se hodnoty a navzájem vyruší a získáme základní vzorec pro výpočet rozptylu. Přičtení libovolné hodnoty k hodnotám jednotek souboru se tedy na hodnotě rozptylu neodrazí a jeho hodnota zůstane rovna

19 Příklad 9: Jak se změní rozptyl ze zadaných hodnot v příkladu č. 1, vynásobíme-li všechny hodnoty jednotek statistického souboru hodnotou 0,9 obdobně jako u příkladu č. 3, tedy vynásobíme-li všechny výšky měřených osob hodnotou 0,9? Zvolím stejný postup jako u předešlého příkladu, tedy dokážu vlastnost rozptylu hovořící o změně o tzv. multiplikativní konstantu. Po vynásobení všech členů statistického souboru hodnotou k se tedy změní hodnota rozptylu vynásobením o k 2. Výsledný rozptyl se bude tedy rovnat k 2 násobku původního rozptylu :

20 Příklad 11: Jsou dány dva statistické soubory, první o rozsahu n 1 =120, aritmetickém průměru = 124,7 a rozptylu = 45,6 a druhá o rozsahu n 2 = 95, průměru = 65,7 a rozptylu =164,2. Vypočítejte společný rozptyl obou souborů. K vyřešení příkladu použiji znalost vlastnosti o dílčích rozptylech. Základem je výpočet vnitroskupinové variability a meziskupinové variability. Výsledný rozptyl, který označím s 2, je dán součtem obou variabilit. Nejdříve vypočítáme vnitroskupinovou variabilitu. Jde o vážený aritmetický průměr dílčích rozptylů a popisuje variabilitu uvnitř dílčích souborů. Je rovna: Pro výpočet meziskupinové variability potřebujeme prvotně stanovit celkový aritmetický průměr statistických souborů, který zjistíme pomocí probrané znalosti o váženém průměru. Ten použijeme z důvodu rozdílného rozsahu souborů, a tedy i rozdílných vah. Meziskupinová variabilita je rozptylem dílčích průměrů kolem celkového průměru a popisuje variabilitu mezi aritmetickými průměry dílčích souborů: Celkový rozptyl dvou statistických souborů je tedy roven hodnotě 106,

21 Směrodatná odchylka Směrodatná odchylka je druhou odmocninou z rozptylu: Na rozdíl od rozptylu má směrodatná odchylka tu výhodu, že charakterizuje variabilitu znaku ve stejných jednotkách měření jako jsou udány hodnoty znaku, zatímco rozptyl je vyjádřen v druhých mocninách těchto jednotek. Chceme-li charakterizovat variabilitu znaku bezrozměrným číslem, použijeme variační koeficient. Příklad 8: Vypočítejte směrodatnou odchylku ze zadaných hodnot příkladu č. 1. Pokud známe rozptyl hodnot z příkladu č. 1, směrodatnou odchylku získáme odmocněním tohoto rozptylu. Platí tedy:

22 Variační koeficient Variační koeficient je podílem směrodatné odchylky a aritmetického průměru: Jedná se tedy o relativní míru variability. Má smysl tehdy, nabývá-li znak pouze nezáporných hodnot. Výsledek uvádíme v procentech. Příklad 9: Určete směrodatnou odchylku ze zadání příkladu č. 1 a vyjádřete ji v procentech. Variační koeficient je užitečnou mírou relativního rozptýlení dat, často se používá při statistické kontrole kvality laboratorních testů

23 Příklad 10: Mějme statistický soubor středoškolské třídy o rozsahu 24 studentů. Podle následující tabulky statisticky zpracujte kvantitativní znak vzdálenost bydliště studentů od školní budovy, který je uveden v kilometrech. Zpracujte s přesností na stovky metrů. Martina Michaela Kateřina Ondřej Mirek Dan Josef Bára Josefína Marek Tomáš Iveta 0,5 2,4 6 1,2 0,9 0,9 3,5 8,1 19,4 2,4 0,9 1,1 Klára Aneta Magdaléna Jitka Petra Petr Kristýna Otakar Štěpán Jakub Hynek Jan 0,2 2,7 0,9 14,4 32,8 3,4 2,2 7 4,1 4,2 3,9 0,2 Nejdříve ze všeho si seřadím hodnoty znaku od nejmenší po největší. Získám tabulku: Jan Klára Martina Magdaléna Mirek Tomáš Dan Iveta Ondřej Kristýna Michaela Marek 0,2 0,2 0,5 0,9 0,9 0,9 0,9 1,1 1,2 2,2 2,4 2,4 Aneta Petr Josef Hynek Štěpán Jakub Kateřina Otakar Bára Jitka Josefína Petra 2,7 3,4 3,5 3,9 4,1 4, ,1 14,4 19,4 32,8 Kdybychom chtěli hodnoty rozdělit do počtu skupin daným Sturgesovým pravidlem, vznikne nám 6 skupin o přibližné délce intervalu skupiny: Protože by nám ale vznikla jak 1 skupina s vysokým počtem obsažených znaků, tak i skupiny prázdné, použití Sturgesova pravidla by správně nevystihlo regresi počtu docházejících studentů s narůstajícími kilometry

24 Z tohoto důvodu pro rozdělení souboru do tříd použijeme jiné pravidlo, kde počet tříd k se stanoví podle přibližného vzorce, kde ( představuje člen o nejvyšší a o nejnižší hodnotě) a délka intervalu d je rovna od 0,08R do 0,12R. Získáme tak 11 tříd o délce intervalu d=3. Vzdálenost Méně než 3 3 až 6km 6 až 9km 9 až 12km 12 až 15km 15 až 18km 18 až 21km 21 až 24km 25 až 27km 27 až 30km Více než 30 Četnost Graf četnosti studentů v závislosti na jejich vzdálenosti bydliště od školy Z grafu lze vyčíst, že naprostá většina studentů bydlí ve vzdálenosti do 6km od školy a může tedy docházet pěšky a šetřit životní prostředí. Průměrná hodnota vzdáleností je dána aritmetickým průměrem hodnot, tedy: Modus je zde roven 0,9 km a Median = 2,55 km

25 Rozptyl Směrodatná odchylka Variační koeficient Tak vysoký variační koeficient poukazuje na nesourodost statistického souboru, která je zřetelná již z grafu třídních četností a rozdílu mezi aritmetickým průměrem a mediánem. Znamená to tedy, že se některá hodnota enormně vychyluje z hodnot běžných nebo je statistický soubor příliš malý

26 Závěr S výběrem tématu seminární práce jsem spokojen. Mohu říct, že splnila svůj předpoklad a já si osvojil použití statistických pojmů a poznal jejich vzájemnou souvislost. Vybrané zdroje hodnotím pro mé účely jako zcela vhodné. Nejsou příliš složité na pochopení a navzájem se doplňují. Kdybych psal práci znovu, nezměnil bych asi nic jiného než samotné příklady, které bych se snažil čerpat z učebnic, abych měl kontrolu nad jejich výsledky. Nejtěžší na práci totiž bylo nekonečné přepočítávání výsledků a kontrola chyb. Věřím, že v práci žádné nezůstaly a doufám, že práce najde své využití

27 Zdroje Primární zdroje: Stephen M. Stigler - The history of statistics: the measurement of uncertainty before 1900 R. Potocký a kolektiv Zbierka úloh z pravdepodobnosti a matematickej štatistiky Karel Zvára a Josef Štěpán Pravděpodobnost a matematická statistika Emil Calda a Václav Dupač Matematika pro gymnázia - Kombinatorika, pravděpodobnost, statistika Hana Řezanková, Luboš Marek, Michal Vrabec - Interaktivní učebnice statistiky Sekundární zdroje: Jaroslav Michálek Pravděpodobnost a statistika

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

Přednáška 5. Výběrová šetření, Exploratorní analýza

Přednáška 5. Výběrová šetření, Exploratorní analýza Přednáška 5 Výběrová šetření, Exploratorní analýza Pravděpodobnost vs. statistika Výběrová šetření aneb jak získat výběrový soubor Exploratorní statistika aneb jak popsat výběrový soubor Typy proměnných

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

P ř e d m ě t : M A T E M A T I K A

P ř e d m ě t : M A T E M A T I K A 04-ŠVP-Matematika-P,S,T,K strana 1 (celkem 11) 1. 9. 2014 P ř e d m ě t : M A T E M A T I K A Charakteristika předmětu: Matematika vytváří postupným osvojováním matematických pojmů, útvarů, algoritmů a

Více

Statistika. Počet přestupků. 1 2 3 4 5 6 7 8 9 10 11 12 počet odebraných bodů za jeden přestupek. Statistický soubor 1

Statistika. Počet přestupků. 1 2 3 4 5 6 7 8 9 10 11 12 počet odebraných bodů za jeden přestupek. Statistický soubor 1 Statistika Statistický soubor 1 Při měření výšky u žáků jedné třídy byly zjištěny tyto údaje (v cm): 1,176,17,176,17,17,176,17,17,17. a) Objasněte základní pojmy (stat. soubor, rozsah souboru, stat. jednotka,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Funkce a vzorce v Excelu

Funkce a vzorce v Excelu Funkce a vzorce v Excelu Lektor: Ing. Martin Kořínek, Ph.D. Formátování tabulky V této kapitole si vysvětlíme, jak tabulku graficky zdokonalit, jak změnit nastavení šířky a případně výšky sloupců, jak

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií

Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií Mendelova zemědělská a lesnická univerzita v Brně Institut celoživotního vzdělávání Fakulta regionálního rozvoje a mezinárodních studií STATISTIKA pro TZP Modul : Pravděpodobnost a náhodné veličiny Prof

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.)

Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.) Operační program Vzdělávání pro konkurenceschopnost Masarykova univerzita Brno Využití statistických metod v medicíně (teorie informace pro aplikace VaV, vícerozměrné metody, atd.) doc. RNDr. PhMr. Karel

Více

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I.

Trojčlenka přímá úměra. Trojčlenka přímá úměra. Trojčlenka nepřímá úměra. Trojčlenka nepřímá úměra. Matematická vsuvka I. Matematická vsuvka I. trojčlenka Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle necháme čerpadlo čerpat,

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Základním cílem předmětu Matematický seminář je navázat na získané znalosti a dovednosti v matematickém vzdělávání a co nejefektivněji

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Ing. Jana Šenkapoulová VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a.s. Brno, Soběšická 156, 638 1 Brno ÚVOD Každé rekonstrukci

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta DIPLOMOVÁ PRÁCE. 2012 Bc. Lucie Hlináková

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta DIPLOMOVÁ PRÁCE. 2012 Bc. Lucie Hlináková JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta DIPLOMOVÁ PRÁCE 2012 Bc. Lucie Hlináková JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta Katedra účetnictví a financí Studijní

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

8. ročník - školní kolo

8. ročník - školní kolo PVTHAGORIÁDA 2012/2013 8. ročník - školní kolo ZADÁNí 1) Které číslo nepatří mezi ostatní? 225; 168; 144; 289; 324; 196; 121; 361 2) Tyč byla rozříznuta na poloviny, poté jednu část dále rozřízli na dva

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu

Více

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení.

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení. Rozptyl Základní vlastnosti disperze Var(konst) = 0 Var(X+Y) = Var(X) + Var(Y) (nezávislé proměnné) Lineární změna jednotek Y = rx + s, například z C na F. Jak vypočítám střední hodnotu a rozptyl? Pozn.:

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor001 Vypracoval(a),

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo)

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo) METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech reg. č. projektu: CZ.1.07/1.3.11/02.0003 Sada metodických listů: KABINET MATEMATIKY

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických STŘEDNÍ HODNOTY VÝZNAM Rozdělení četností poskytuje užitečnou informaci a přehled o zkoumaném statistickém souboru. Porovnávat několik souborů pomocí tabulek rozděleni četností by však bylo.a. Proto se

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika

Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)

Více

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD11C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97 Vybrané části Excelu Ing. Petr Adamec Brno 2010 Cílem předmětu je seznámení se s programem Excel

Více

VÝVOJ KOJENECKÉ ÚMRTNOSTI V ČESKÉ REPUBLICE V LETECH 1950-2011

VÝVOJ KOJENECKÉ ÚMRTNOSTI V ČESKÉ REPUBLICE V LETECH 1950-2011 RELIK 213. Reprodukce lidského kapitálu vzájemné vazby a souvislosti. 9. 1. prosince 213 VÝVOJ KOJENECKÉ ÚMRTNOSTI V ČESKÉ REPUBLICE V LETECH 195-211 Jana Langhamrová Abstrakt Kojenecká úmrtnost se v posledních

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Matematika ve starověké Babylónii

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Matematika ve starověké Babylónii České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Matematika ve starověké Babylónii Vít Heřman Praha, 22.2.2008 Obsah: 1. Úvod 2. Historický kontext 3. Dostupné historické zdroje

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více