a n (z z 0 ) n, z C, (1) n=0

Rozměr: px
Začít zobrazení ze stránky:

Download "a n (z z 0 ) n, z C, (1) n=0"

Transkript

1 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady, čísla a n K( 0, R) U( 0, R), pokud R (0, ), K( 0, 0) { 0 }, K( 0, ) C. Věta. Ke každé mocniné řadě o středu 0 existuje právě jedno číslo R 0, tak, že řada konverguje v K( 0, R) a diverguje v C \ K( 0, R). Symbol K( 0, R) načí uávěr množiny K( 0, R), t.j. pokud R (0, ), pak K( 0, R) je kruh o poloměru R se středem 0, který neobsahuje svoji hranici, kdežto K( 0, R) onačuje ten samý kruh i s hranicí. Číslu R se říká poloměr konvergence mocniné řady a množina K( 0, R) se naývá kruh konvergence. Věta. tedy říká, že k dané řadě existuje takové číslo R, že pokud číslo v rovnici () bude ležet uvnitř kruhu konvergence K( 0, R), pak bude řada () konvergovat (t.j. bude existovat limita částečných součtů) a pokud bude ležet mimo kruh konvergence, pak bude řada () divergovat. Věta. ovšem nic neříká o tom, co se stane, pokud bude ležet na hranici kruhu konvergence. Poloměr konvergence mocniné řady le v mnoha případech určit pomocí následujícího tvrení. Tvrení.2 Nechť existuje n lim an, resp. n Pak pro poloměr konvergence R platí: ( R lim n lim a n+ a n. n ) ( n an, resp. R lim n a n+ a n ). Dále platí tato věta, která říká, že každá mocniná řada s nenulovým poloměrem konvergence představuje na svém kruhu konvergence nějakou holomorfní funkci. Poději uvidíme, že i naopak, každá holomorfní funkce le na jistém kruhu vyjádřit jako mocniná řada. Věta.3 Nechť R > 0 je poloměr konvergence mocniné řady se středem v bodě 0. Pak tato mocniná řada konverguje k funkci f(), která je holomorfní v kruhu konvergence K( 0, R).

2 2 Taylorovy řady Věta 2. (Taylorova) Nechť f() je holomorfní v bodě 0 C. Potom existuje mocniná řada a n ( 0 ) n, a n f (n) ( 0 ), n! která konverguje k f() na K( 0, R), kde R je vdálenost nejbližsí singularity funkce f() od bodu 0. Řada ve věte 2. se naývá Taylorova řada nebo Taylorův rovoj se středem 0. Příklad 2.2 Naleněte Taylorův rovoj funkce: f(), se středem 0 0. Pokud spočítáme první, druhou, popř. třetí derivaci funkce f(), není težké nahlédnout, že obecný vtah pro n-tou derivaci je následující: f (n) () n! ( ) n+. Z věty 2. víme, že pro výpočet koeficinetu a n Taylorovy řady potřebujeme nát hodnotu n-té derivace v bodě 0 0. Dosaením tedy dostáváme f (n) (0) n! a tudíž a n n! n!. Stanovme ještě poloměr konvergence R. Funkce f() má jen jednu singularitu a to v bodě. Poloměr konvergence je tedy vdálenost bodu od středu v bodě 0, t.j. R. Tedy pro K(0, ) můžeme psát: n. Znalosti rovoje funkce jiné funkce. se často využívá určení Taylorových rovojů i pro Příklad 2.3 Naleněte Taylorův rovoj funkce: f() 2 +, se středem 0 0. Určíme nejprve poloměr konvergence. Funkce f() má dvě singularity: v bodě j a v bodě j. Obě dvě jsou od středu v bodu 0 stejně vdáleny a tato vdálenost je, takže R. 2

3 Dále upravme funkci f() do tvaru funkce a pak použijeme nalosti jejího rovoje. 2 + ( 2 ) ( 2 ) n ( ) n 2n. Příklad 2.4 Naleněte Taylorův rovoj funkce: f() 2 +, se středem 0. Singularity jsou ase j a j. Takže tentokrát je poloměr konvergence vdálenost bodu j nebo j od bodu, t.j. R 2. Dále postupujeme takto: roložíme funkci f() na součet parciálních lomků a pak hledáme Taylorův rovoj pro každý parciální lomek vlášť. Tedy 2 + ( + j)( j) A + j + B j. Čísla A, B musí splňovat následující rovnici: A( j) + B( + j). Řešením dostaneme A j 2 a B j 2. Máme tedy 2 + j 2 Hledejme Taylorův rovoj funkce +j + j + j + ( ) + j n ( )n ( ) ( + j) n+ Obdobně naleneme rovoj funkce j j + j j 2 v bodě. + +j j + ( ) j n ( )n ( ) ( j) n+ j. (2) + j ( ( ) n + j n ( j)n+ ( ) v bodě. + j 2 n+ ( ) n. j ( ( ) n j n ( + j)n+ ( ) 2 n+ ( ) n. Dosaením do rovnice (2) a sloučením členů obou řad dostaneme: 2 j n ( j)n+ ( ) n+ ( ) n j n ( + j)n+ ( ) 2 2 n+ ( ) n j ( )n [ ( j) n+ 2 n+2 ( + j) n+] ( ) n. ) n ) n 3

4 Někdy také může ulehčit naleení Taylorova rovoje to, že mocniné řady je možné derivovat člen po členu. Příklad 2.5 Naleněte Taylorův rovoj funkce f() ( + j) 3, se středem 0. Funkce f() má jedinou singularitu v bodě j, takže poloměr konvergence R (2). Zase nejprve roložíme funkci f() na součet parciálních lomků. V tomto případě le postupovat jednodušeji: ( + j) 3 + j j ( + j) 3 ( + j) 2 j ( + j) 3. Nyní využijeme nalost Taylorova rovoje funkce +j se středem v bodě příkladu 2.4 a toho, že le mocninou řadu derivovat člen po členu. ( ) ( n ( j)n+ ( + j) 2 ( ) + j 2 n+ ( ) n n+ ( j)n+ ( ) 2 n+ n( ) n n k ( j)k+2 ( ) 2 k+2 (k + )( ) k, k0 kde pro poslední řádek jsme avedli nový sčítací index k takový, že k n a využili nalosti, že ( ) k+2 ( ) k. Odbodně pro další parciální lomek dostáváme: ( + j) 3 ( ) ( ) n ( j)n+ ( ) 2 + j 2 2 n+ ( ) n n ( j)n+ ( ) 2 2 n+ n(n )( ) n 2 n2 k ( j)k+3 ( ) 2 k+4 (k + 2)(k + )( ) k. k0 ) 4

5 Spojením dostáváme: ( + j) 3 k ( j)k+2 ( ) 2 k+2 (k + )( ) k k0 k ( j)k+3 j ( ) 2 k+4 (k + 2)(k + )( ) k k0 k ( j)k+2 ( ) 2 k+4 (k + ) [4 ( + j)(k + 2)] ( ) k, k0 kde jsme některé části výrau roložili následovně: ( j) k+3 ( j) k+2 ( j), 22 2k+2 2 k k+4. Číslo ( + j) v hranaté ávorce ve výsledku vniklo jako j( j) ( + j). Podobně jako jsme v minulém příkladě použili fakt, že mocninou řadu le derivovat člen po členu, může být také někdy výhodné využít faktu, že mocninou řadu le integrovat člen po členu. Příklad 2.6 Naleněte Taylorův rovoj funkce f() log, se středem 0 + 2j. Nejbližší singularita funkce log od středu + 2j je bod 0. Poloměr konvergence tedy bude R 5. Poněvadž f (), můžeme nejprve nalét Taylorův rovoj funkce se středem v bodě + 2j a pak integrovat člen po členu. + 2j + ( 2j) + 2j n ( 2j)n ( ) + 2j ( + 2j) n + 2j +2j n ( 2j)n ( ) ( + 2j) n+ Tuto řadu tedy budeme integrovat člen po členu a dostaneme: log ( ) n ( + 2j) n+ n + ( 2j)n+ + C ( ) k+ C + ( + 2j) k k ( 2j)k, k kde C je integrační konstanta. Uvědomíme-li si, že konstanta C je vlastně nultý člen a 0 Taylorovy řady, dostaneme, že C není nic jiného, než hodnota log( 0 ), tn. C log( + 2j). 5

6 Taylorova řada funkce log se středem v bodě + 2j tedy je: log log( + 2j) + k ( ) k+ ( + 2j) k k ( 2j)k. Příklad 2.7 Naleněte Taylorův rovoj funkce f() sinh se středem 0 0. Protože funkce sinh je holomorfní v C, bude poloměr konvergence R. ( sinh 2 (e e ) ) n 2 n! ( ) n n 2k+ n! (2k + )!. Příklad 2.8 Naleněte Taylorův rovoj funkce f() cos se středem 0. Protože funkce cos je holomorfní v C, bude poloměr konvergence R. cos cos[ + ( )] cos() cos( ) sin() sin( ) ( ) n cos() (2n)! ( ( ) n )2n sin() ( )2n+ (2n + )! cos() sin()( ) 2 cos()( )2 + 6 sin()( )3 + Pokud hledáme jen několik počátečních členů Taylorova rovoje, bývá často výhodné využít faktu, že s mocninými řadami le manipulovat jako s polynomy, t.j. le je sčítat, odčítat, násobit a dělit jako dva polynomy. k0 Příklad 2.9 Spočtěte první čtyři členy Taylorova rovoje funkce f() e, se středem 0 0. Funkce f() má jen jedinou singularitu a to v bodě. To namená, že poloměr konvergence je R. Dále využijeme nalosti rovoje funkcí e a. Pro funkci f() tedy dostaneme: e , e ( )( ) + ( + ) + ( )2 + ( )

7 Při hledání Taylorova rovoje funkce e le také postupovat alternativně tak, že vydělíme Taylorův rovoj funkce e polynomem. ( ) : ( )

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1) Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také

Více

1 Nulové body holomorfní funkce

1 Nulové body holomorfní funkce Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =

Více

ŘADY KOMPLEXNÍCH FUNKCÍ

ŘADY KOMPLEXNÍCH FUNKCÍ ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

LEKCE10-RAD Otázky

LEKCE10-RAD Otázky Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

11. Číselné a mocninné řady

11. Číselné a mocninné řady 11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +

Více

+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n

+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ

Více

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62 Nekonečné řady Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 0. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 62 Obsah Nekonečné číselné řady a určování jejich součtů 2 Kritéria

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná

Více

Obsah. 1. Komplexní čísla

Obsah. 1. Komplexní čísla KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.

Více

Otázky z kapitoly Posloupnosti

Otázky z kapitoly Posloupnosti Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2

Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2 Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

1 Integrál komplexní funkce pokračování

1 Integrál komplexní funkce pokračování Integrál komplexní funkce pokračování Definice. Nechť D a F ) je taková funkce, že F ) = f) pro všechna D. Pak F ) naýváme primitivní funkcí k funkci f) v oblasti D. Protože při integraci funkce f po křivce,

Více

Separovatelné diferenciální rovnice

Separovatelné diferenciální rovnice Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

Přijímací zkouška na navazující magisterské studium 2017

Přijímací zkouška na navazující magisterské studium 2017 Přijímací zkouška na navazující magisterské studium 207 Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI

ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI ŘADY KOMPLEXNÍH FUNKÍ V kapitole si ukážeme, že holomorfní funkce a mocninné řady skoro jedno jsou. Někomu... OBENÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými

Více

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat. .. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný

Více

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace Verze 20. července 2017 Derivace funkce se využívá při řešení úloh technické praxe i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce, výpočet limity, vyšetřování průběhu funkce

Více

F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.

F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I. KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

7B. Výpočet limit L Hospitalovo pravidlo

7B. Výpočet limit L Hospitalovo pravidlo 7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,

Více

I. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c)

I. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c) VÝSLEDKY I. TAYLORŮV POLYNOM. a) ( ) + ( ) ( 6 ), b) ( π ). a) +, b) +, c) + + 4, f (4) (0) = 48, d) + 4 4, e) + 0, f), g) ++ 6 4, h) + 70 4, i) 4 j) + 6 k) 7 8 40. + o( ), 8 4. a), b), c), d) -, e) 4

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je

Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je 74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

Teorie. kunck6am/ (a) lim. x x) lim x ln ) = lim. vnitřní funkce: lim x. = lim. lim. ln(1 + y) lim = 1,

Teorie.   kunck6am/ (a) lim. x x) lim x ln ) = lim. vnitřní funkce: lim x. = lim. lim. ln(1 + y) lim = 1, 8. cvičení http://web.natur.cuni.cz/ kunck6am/ Teorie Příklady. Spočtěte ity a) + ) vnitřní funkce: + ) e ln+ ) ln + ) ln + ), nebot další vnitřní funkce b) c) a ln + y) 0 y 0. podmínka P, g) 0 pro 0,

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Zadání I. série. Obr. 1

Zadání I. série. Obr. 1 Zadání I. série Termín odeslání: 21. listopadu 2002 Milí přátelé! Vítáme vás v XVI. ročníku Fyzikálního korespondenčního semináře Matematicko-fyzikální fakulty Univerzity Karlovy. S první sérií nám prosím

Více

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x .cvičení 0..009 Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje lim h 0 f(a + h) f(a), h pak tuto limitu nazýváme derivací funkce f v bodě a. Značíme f f(a + h) f(a) (a) := lim. h 0 h

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

Posloupnosti a jejich konvergence

Posloupnosti a jejich konvergence a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

7.1 Úvod. Definice: [MA1-18:P7.1a]

7.1 Úvod. Definice: [MA1-18:P7.1a] KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních

Více

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n. Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3. Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0

Více

1 Číselné řady, konvergence a absolutní konvergence, kritéria konvergence Kritéria pro konvergenci číselných řady... 6

1 Číselné řady, konvergence a absolutní konvergence, kritéria konvergence Kritéria pro konvergenci číselných řady... 6 Matematika III - Sbírka příkladů Prof. RNDr. Drahoslava Janovská, CSc. RNDr. Miroslava Dubcová, Ph.D. Doc. RNDr. Daniel Turzík, CSc. Mgr. Šimon Axmann, Ph.D. Obsah Číselné řady, konvergence a absolutní

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více