Slovní úlohy: Pohyb. a) Stejným směrem

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Slovní úlohy: Pohyb. a) Stejným směrem"

Transkript

1 Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil stálou rychlostí 72 km/h. Vypočtěte, v kolik hodin se obě vozidla setkají a na kterém kilometru.

2 Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil stálou rychlostí 72 km/h. Vypočtěte, v kolik hodin se obě vozidla setkají a na kterém kilometru. Rozdíl časů 10 minut Dráha stejná 1. automobil má dráhu s = v 1. t = 62. t 2. automobil má dráhu s = v 2. (t-10/60) = 72. (t -10/60) Rovnice: 62 t=72 t =10 t t=1,2 h=1h12 minut Dráha: s=62 1,2 km=74,4 km

3 b) Proti sobě Ze dvou míst od sebe vzdálených 105 km vyjela současně proti sobě po přímé silnici dvě vozidla. První jelo stálou rychlostí 68 km/h a druhé se pohybovalo stálou rychlostí 58 km/h. Kdy a kde se vozidla setkají?

4 Ze dvou míst od sebe vzdálených 105 km vyjela současně proti sobě po přímé silnici dvě vozidla. První jelo stálou rychlostí 68 km/h a druhé se pohybovalo stálou rychlostí 58 km/h. Kdy a kde se vozidla setkají? Časy stejné Dráha součet drah je 105 km 1. automobil má dráhu s 1 = v 1. t = 68. t 2. automobil má dráhu s 2 = v 2. t = 58. t Rovnice: s 1 +s 2 = t+58 t= t=105 t= 5 =50 minut 6 Dráha: s 1 = = km s 2= = km

5 Vypočtěte, jakou stálou rychlostí by musel jet motocykl po stejné trase za dodávkou, když víte, že dodávka jela rychlostí 54 km za hodinu, motocykl za ní vyjel ze stejného místa s 21 minutovým zpožděním a dohonil ji za 36 minut.

6 Vypočtěte, jakou stálou rychlostí by musel jet motocykl po stejné trase za dodávkou, když víte, že dodávka jela rychlostí 54 km za hodinu, motocykl za ní vyjel ze stejného místa s 21 minutovým zpožděním a dohonil ji za 36 minut. Dráha stejná Čas rozdíl 21 minut; t d = t m + 21 = 57 minut dodávka s = v d. t = 54. t d = /60 = 51,3 km motocykl s = v m. t m = v m. 36/60 Rovnice v m =51,3 v m=85,5 km/h

7 Úlohy o směsích Kolik litrů vody musíme dolít do 5 litrů 75% roztoku lihu, abychom dostali 50% roztok lihu?

8 Kolik litrů vody musíme dolít do 5 litrů 75% roztoku lihu, abychom dostali 50% roztok lihu? 5 litrů 75% roztoku lihu obsahuje 75 % lihu, tedy 75 % z 5 l = ¾ z 5 l = 3 ¼ l

9 Kolik litrů vody musíme dolít do 5 litrů 75% roztoku lihu, abychom dostali 50% roztok lihu? 5 litrů 75% roztoku lihu obsahuje 75 % lihu, tedy 75 % z 5 l = ¾ z 5 l = 3 ¼ l Přilitím vody (té muselo být v 5 l roztoku s 3 ¼ l tedy 1 ¾ l) se koncentrace zmenší. Otázka zní, kolik vody musíme přilít, aby to bylo 50 %?

10 Kolik litrů vody musíme dolít do 5 litrů 75% roztoku lihu, abychom dostali 50% roztok lihu? 5 litrů 75% roztoku lihu obsahuje 75 % lihu, tedy 75 % z 5 l = ¾ z 5 l = 3 ¼ l Přilitím vody (té muselo být v 5 l roztoku s 3 ¼ l tedy 1 ¾ l) se koncentrace zmenší. Otázka zní, kolik vody musíme přilít, aby to bylo 50 %? Odpověď: Tolik, aby vody a lihu bylo stejně: 3 ¼ l 1 ¾ l = 1 ½ l

11 Po přilití 0,5 l vody do 70% roztoku hypermanganu jsme dostali 30% roztok hypermanganu. Jaký byl objem původního roztoku?

12 k 1 koncentrace před ředěním; k 2 koncentrace po ředění V k objem/množství koncentrátu (ředěné látky) V ř objem/množství ředidla (ředící látky) ΔV ř změna přírůstek ředidla V k V k k 1 = +ΔV V k +V m k 2 = m V k +V m +ΔV m

13 Po přilití 0,5 l vody do 70% roztoku hypermanganu jsme dostali 30% roztok hypermanganu. Jaký byl objem původního roztoku? V k 0,7= V k 0,3= V k +V m V k +V m +0,5 Rovnice: z 1. 0,7 V m =0,3 V k V m = 0,3 0,7 V k z 2. 0,3V m +0,15=0,7V k 0,3 0,3 0,7 V k+0,15=0,7 V k 0,09 V k +0,105=0,49 V k 0,105=0,4 V k V k =2,625l V m =1,125l V =3,75 l

14 Společná práce První cisternou se nádrž zaplní za 8 hodin, druhou cisternou za 6 hodin. Obě cisterny plnili nádrž 3 hodiny, pak se první porouchala a nádrž doplnila druhá cisterna. Jak dlouho trvalo naplnění nádrže?

15 První cisternou se nádrž zaplní za 8 hodin, druhou cisternou za 6 hodin. Obě cisterny plnili nádrž 3 hodiny, pak se první porouchala a nádrž doplnila druhá cisterna. Jak dlouho trvalo naplnění nádrže? První cisterna za 1 hodinu naplní 1/8 nádrže Druhá cisterna za 1 hodinu naplní 1/6 nádrže První cisterna plnila 3 hodiny => 3/8 nádrže Druhá cisterna plnila 3 + x hodiny => (3+x)/6 nádrže Nádrž byla naplněna, takže oba příspěvky dají dohromady jeden celek Rovnice: 3+x = x+9=24 x= 3 4 Naplnění nádrže trvalo 3 ¾ hodiny.

16 Za jak dlouho by stihl práci udělat sám František, když Josef ji zvládne za 7 dní a společně ji zvládli za 3 dny? Uvažujme ideální případ, že František práci zvládne sám. Josef za 1 den udělá 1/7 František za 1 den udělá 1/f Oba za 1 den udělali 1/3 práce Rovnice: 1 3 = f 7f =3f +21 f = 21 4 =5 1 4 František by práci stihl za 5 ¼ dne.

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku.

koncentraci jsme získali roztok o koncentraci 18 %. Urči koncentraci neznámého roztoku. 2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Příklady na míchání směsí jsou do dvou hodin rozděleny schválně. Snažím se tak zvýšit šanci, že si hlavní myšlenku

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné

Očekávaný výstup Praktické využití trojčlenky k vyřešení slovních úloh Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika její aplikace Vzdělávací obor Matematika

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

1. Dělitelnost v oboru přirozených čísel

1. Dělitelnost v oboru přirozených čísel . Dělitelnost v oboru přirozených čísel Zopakujte si co to je násobek a dělitel čísla co je to prvočíslo jak se hledá rozklad složeného čísla na prvočinitele největší společný dělitel, nejmenší společný

Více

2.2.13 Slovní úlohy vedoucí na lineární rovnice IV

2.2.13 Slovní úlohy vedoucí na lineární rovnice IV 2.2. Slovní úlohy vedoucí na lineární rovnice IV Předpoklady: 222 Pedagogická poznámka: I příklady na společné splnění úkolu jsou do dvou hodin rozděleny schválně ze stejného důvodu jako příklady na vytváření

Více

EKONOMIKA A ŘÍZENÍ PODNIKU. (korekce 1. vydané verze)

EKONOMIKA A ŘÍZENÍ PODNIKU. (korekce 1. vydané verze) EKONOMIKA A ŘÍZENÍ PODNIKU (korekce 1. vydané verze) Příklad 4.1: Sestavte zahajovací rozvahu a její průběžné podoby podle níže uváděných údajů. 1. Pět společníků zakládá firmu a každý z nich do počátku

Více

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod

Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1. Úkol 1. Ředění roztoků. Teoretický úvod - viz návod Úloha č. 1 Odměřování objemů, ředění roztoků Strana 1 Teoretický úvod Uveďte vzorec pro: výpočet směrodatné odchylky výpočet relativní chyby měření [%] Použitý materiál, pomůcky a přístroje Úkol 1. Ředění

Více

Příklad : Zákazník zaplatil za konzervy po 12.- Kč a 15.- Kč celkem 324 Kč. Kolik koupil levnějších a kolik dražších konzerv?

Příklad : Zákazník zaplatil za konzervy po 12.- Kč a 15.- Kč celkem 324 Kč. Kolik koupil levnějších a kolik dražších konzerv? . Soustavy lineárních rovnic se dvěma neznámými.. Slovní úloha na lineární rovnici se dvěma neznámými Příklad : Zákazník zaplatil za konzervy po.- Kč a 5.- Kč celkem 4 Kč. Kolik koupil levnějších a kolik

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Dispatcher 3 Kniha jízd

Dispatcher 3 Kniha jízd Dispatcher 3 Kniha jízd 1 Obsah: Základní popis programu.. 3 Vložení vozidla.. 4 Vložení záznamu o jízdě.. 6 Import dat z GPS off-line jednotky LUPUS.. 8 Import tankovacích karet.. 10 Sloučení jízd v jednom

Více

TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 3) dnes se u laiků doporučuje již pouze srdeční masáž

TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 3) dnes se u laiků doporučuje již pouze srdeční masáž TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 1. Jaký je poměr KPR u dospělého člověka pro laickou veřejnost? 1) poměr nádechů ke počtu stlačení hrudníku je 2:30 2) ani jedna z uvedených odpovědí není

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických STŘEDNÍ HODNOTY VÝZNAM Rozdělení četností poskytuje užitečnou informaci a přehled o zkoumaném statistickém souboru. Porovnávat několik souborů pomocí tabulek rozděleni četností by však bylo.a. Proto se

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Návod k použití automatizovaného formuláře cestovního příkazu

Návod k použití automatizovaného formuláře cestovního příkazu Návod k použití automatizovaného formuláře cestovního příkazu Tento formulář je navržen speciálně pro vyúčtování pracovní cesty, při které se používá soukromé vozidlo nebo vozidlo z půjčovny. Usnadňuje

Více

Přeprava nebezpečných

Přeprava nebezpečných Přeprava nebezpečných ných věcí v kontejnerech Dr. Ing. Jiří Došek 1 DEKRA Automobil a.s. Türkova 1001, 149 00 Praha 4 TDG a kontejnery Předpisy o přepravp epravě nebezpečných ných věcív umožň žňují přepravu

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

průmyslu a obchodu Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejářského průmyslu Ing. Miloš Podrazil, generální sekretář

průmyslu a obchodu Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejářského průmyslu Ing. Miloš Podrazil, generální sekretář Zkušenosti s uplatněním biopaliv a další vývoj jejich použití v dopravě Ing. Václav Loula, vedoucí pracovní skupiny pro rozvoj petrolejář průmyslu Ing. Miloš Podrazil, generální sekretář Česká asociace

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

VED.PROJEKTU ODP.PROJEKTANT PROJEKTANT RAZÍTKO SOUBOR DATUM 11/2014 STUDIE

VED.PROJEKTU ODP.PROJEKTANT PROJEKTANT RAZÍTKO SOUBOR DATUM 11/2014 STUDIE , PROJEKTOVÁ KANCELÁŘ KOTEROVSKÁ 177, 326 00 PLZEŇ VED.PROJEKTU ODP.PROJEKTANT PROJEKTANT RAZÍTKO Ing. Petr BUDÍN Ing. Karel NEDVĚD Ing. Petr BUDÍN KRAJ: PLZEŇSKÝ OBEC: STŘÍBRO STAVEBNÍK: Správa a údržba

Více

Zadání projektu Pohyb

Zadání projektu Pohyb Zadání projektu Pohyb Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 22. 9. Vlastní práce 3 vyučovací hodiny + výuka v TV Prezentace projektu 11. 10. Test a odevzdání portfólií

Více

KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA. Praktické pro každý den. www.unipro-alpha.

KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA. Praktické pro každý den. www.unipro-alpha. » KOMPAKTNÍ A RYCHLÝ STERILIZÁTOR PRO «VAŠI LABORATOŘ. STERILIZACE TESTOVÁNÍ MATERIÁLŮ ŽIVNÁ MÉDIA www.unipro-alpha.com Praktické pro každý den. RYCHLÁ PŘÍPRAVA VE 3 KROCÍCH NAPLNĚNÍ Velký užitečný objem

Více

23042012_WORKsmart_ECO_bro_CZ. WORKsmart -Eco. Pečujte o životní prostředí i svůj zisk. Let s drive business. www.tomtom.

23042012_WORKsmart_ECO_bro_CZ. WORKsmart -Eco. Pečujte o životní prostředí i svůj zisk. Let s drive business. www.tomtom. 23042012_WORKsmart_ECO_bro_CZ WORKsmart -Eco Pečujte o životní prostředí i svůj zisk www.tomtom.com/business Let s drive business Obsah 2 Jak ekologické je vaše podnikání? 3 Optimalizace využití vozidel

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU

DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU Road Traffic Technology DETEKCE DOPRAVY KLASIFIKACE VOZIDEL MONITORING DOPRAVNÍHO PROUDU BTTT modul SČÍTÁNÍ A KLASIFIKACE DOPRAVY BLUETOOTH MODUL PRO MONITOROVÁNÍ DOPRAVNÍHO PROUDU A DOJEZDOVÝCH ČASŮ Technologie

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Klára Kochová, Norbert Rybář PedF UK, Učitelství pro 1. stupeň ZŠ, 4. Ročník Didaktika matematiky s praxí I. Téma: Jedeme na hory (slovní úlohy)

Klára Kochová, Norbert Rybář PedF UK, Učitelství pro 1. stupeň ZŠ, 4. Ročník Didaktika matematiky s praxí I. Téma: Jedeme na hory (slovní úlohy) Téma: Jedeme na hory (slovní úlohy) 1/ Představení 2/ Seznámení s průběhem hodiny: Otázka Kdo jezdí rád na hory? Kam jezdíte? Kdo umí lyžovat? V lednu se chystáme na hory. Nejdřív si musíme všichni pořídit

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Jawa 50 typ 550. rok výroby 1955-1958

Jawa 50 typ 550. rok výroby 1955-1958 Jawa 50 typ 550. rok výroby 1955-1958 1 Motor ležatý dvoudobý jednoválec Chlazení vzduchem Ø 38 mm 44 mm ový objem 49,8 cm 3 Kompresní poměr 6,6 : 1 Největší výkon 1,5k (1,1 kw)/5000 ot/min. Rozvod pístem

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

Auto na baterky? Do městského provozu ideální, daleko s ním ovšem nedojedete 26.3.2014 Pardubický deník str. 2 Pardubicko

Auto na baterky? Do městského provozu ideální, daleko s ním ovšem nedojedete 26.3.2014 Pardubický deník str. 2 Pardubicko Pardubický deník Auto na baterky? Do městského provozu ideální, daleko s ním ovšem nedojedete 26.3.2014 Pardubický deník str. 2 Pardubicko LUKÁŠ DUBSKÝ, LENKA ŠTĚPÁNKOVÁ Univerzita Pardubice Je to malé

Více

NÁKLADY. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace

NÁKLADY. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace alarmy do vozidel, sledování úbytku paliva a další služby NÁKLADY Uživatelská příručka SeeMe - Ecofleet Identifikace IČO:28550650 Rejstříkový soud: Praha, Oddíl C vložka 149630 Modul Náklady... 3 Import

Více

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky PRACOVNÍ LIST_ŽÁCI 1 Matematika prakticky Matematika prakticky - Pracovní listy pro žáky Fotka nebo fotky Pracovní listy pro žáky PRACOVNÍ LIST_ŽÁCI 2 Vážení kolegové, tuto publikaci připravil kolektiv

Více

Ing. Eliška Galambicová Moravskoslezská obchodní akademie, s. r. o.

Ing. Eliška Galambicová Moravskoslezská obchodní akademie, s. r. o. 1) Pan Špaček používá v roce 2014 k podnikání tyto vozidla: 1. osobní automobil 3T57982, pořízen 20. 3. 2014 a bylo používáno až do konce roku 2014. Objem motoru 1850 cm 3, první registrace vozidla byla

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

2.5.17 Dvojitá trojčlenka

2.5.17 Dvojitá trojčlenka 2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

Cestovní náhrady. Právní úprava. Obecná pravidla. Náležitosti k proplacení cestovného. Junák svaz skautů a skautek ČR

Cestovní náhrady. Právní úprava. Obecná pravidla. Náležitosti k proplacení cestovného. Junák svaz skautů a skautek ČR Cestovní náhrady Organizační jednotky Junáka mohou dle svého uvážení proplatit prokázané náklady, které byly vynaloženy v souvislosti s výkonem funkce či úkolu pro Junáka. Výpočet cestovného a vyplňování

Více

SADA VY_32_INOVACE_CH2

SADA VY_32_INOVACE_CH2 SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího

Více

Tisková informace. Systém řízení osobních vozidel s novými funkcemi a úsporou energie. IAA05_PT01 September 2005

Tisková informace. Systém řízení osobních vozidel s novými funkcemi a úsporou energie. IAA05_PT01 September 2005 Tisková informace IAA05_PT01 September 2005 Systém řízení osobních vozidel s novými funkcemi a úsporou energie Společnost ZF Lenksysteme GmbH, společný podnik 50:50 firmy Robert Bosch GmbH a firmy ZF Friedrichshafen

Více

Membránové procesy v mlékárenském průmyslu

Membránové procesy v mlékárenském průmyslu Membránové procesy v mlékárenském průmyslu situace v ČR, jak to je rozmanité, jak to nemusí být jednoduché Ing. Jan Drbohlav, CSc., Výzkumný ústav mlékárenský drbohlav@milcom-as.cz Membránové procesy v

Více

Čištění a servis deskových výměníků tepla

Čištění a servis deskových výměníků tepla Čištění a servis deskových výměníků tepla Alfa Laval spol. s r.o. je v České republice spolu s prodejem aktivní i v oblasti poprodejního servisu a má vlastní servisní centrum. Servisní centrum provádí

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody.

Produkt- Titan Fuel Plus. Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti. Popis. Výhody. Titan Fuel Plus Multifunkční zušlechťující přísada do motorové nafty zlepšující její provozní vlastnosti Popis Multifunkční zušlechťující přísada do motorové nafty pro přeplňované i nepřeplňované vznětové

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ19 Soutěž zlomky, celá čísla, procenta, rovnice a sl.

Více

Sazebník pro individuální smlouvy. Pojištění řidiče s doživotní rentou. Rento. 800 100 777 www.csobpoj.cz

Sazebník pro individuální smlouvy. Pojištění řidiče s doživotní rentou. Rento. 800 100 777 www.csobpoj.cz Sazebník pro individuální smlouvy Pojištění řidiče s doživotní rentou Rento Přednosti pojištění doživotní renta v případě pojistné události klient dopředu ví, jaká bude výše jeho renty v případě pojistné

Více

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07

Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 Řešení úloh TSP MU prezentace k výkladům na prezenčních kurzech ZKRÁCENÁ UKÁZKA PRO WEB Analytické myšlení ročník 2011, var. 07 var. 07, úloha č. 51 Úloha č. 51 Víme, že polovina trasy z A do B měří na

Více

www.kraiburg-retreading.com Version 2014 PROTEKTOROVÁNÍ ZA HORKA Procesní a údaji o výrobku

www.kraiburg-retreading.com Version 2014 PROTEKTOROVÁNÍ ZA HORKA Procesní a údaji o výrobku Version 2014 Procesní a údaji o výrobku Metoda výhody nevýhody Materiály METODA RUBRIKY ot obnova je forma vulkanizaci obnovené pneumatiky, při teplotě okolo 150 C, běhoun a boční stěny pneumatiky se skládají

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace

VOZIDLA. Uživatelská příručka SeeMe - Ecofleet. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace alarmy do vozidel, sledování úbytku paliva a další služby VOZIDLA Uživatelská příručka SeeMe - Ecofleet Identifikace IČO:28550650 Rejstříkový soud: Praha, Oddíl C vložka 149630 Systémové požadavky... 3

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

ou@kostelni-lhota.cz Cyklostezka podél komunikace II/611 mezi Pískovou a Kostelní

ou@kostelni-lhota.cz Cyklostezka podél komunikace II/611 mezi Pískovou a Kostelní IDENTIFIKAČ NÍ ÚDAJE Soutěžní kategorie Kontaktní osoba ZÁKLADNÍ ÚDAJE O SOUTĚŽNÍM Financování soutěžního řešení STAV PŘED REALIZACÍ SOUTĚŽNÍHO název a adresa předkladatele Dobrovolný svazek obcí Pečecký

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu Subjekt Speciální ZŠ a MŠ Adresa U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu OP Vzdělávání pro konkurenceschopnost Číslo výzvy 21 Název výzvy Žádost o fin. podporu

Více

Není žádná alternativa. Nepředpokládá se negativní stav.

Není žádná alternativa. Nepředpokládá se negativní stav. Odůvodnění účelnosti veřejné zakázky Plánovaný cíl veřejné zakázky Pojištění majetku, vozidel a odpovědnosti za škodu pro město Domažlice a příspěvkové organizace Popis vzájemného vztahu mezi realizovanou

Více

MEGANE COUPÉ. Od 299 900 Kč

MEGANE COUPÉ. Od 299 900 Kč MEGANE COUPÉ Od 299 900 Kč RENAULT MÉGANE COUPÉ LIMITED OD 284 900 Kč SLEVA 40 000 Kč BONUS PŘI VÝKUPU STARÉHO VOZU 15 000 Kč DODATEČNÁ SLEVA PŘI FINANCOVÁNÍ RENAULT FINANCE 20 000 Kč* SPECIÁLNÍ NABÍDKA

Více

OBECNĚ ZÁVAZNÁ VYHLÁŠKA č. 1/2013,

OBECNĚ ZÁVAZNÁ VYHLÁŠKA č. 1/2013, PRÁVNÍ PŘEDPISY 2013 STATUTÁRNÍ MĚSTO BRNO o stanovení systému shromažďování, sběru, přepravy, třídění, využívání a odstraňování komunálního odpadu datum nabytí účinnosti: 1. 2. 2013 Magistrát města Brna,

Více

Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín,

Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín, 2. mezinárodní konference Trendy Evropské Dopravy Praha,6. 6. 2013 Zavádění dopravy na zkapalněný zemní plyn (LNG) Ing. Václav Chrz, CSc Chart Ferox, Děčín, www.chartindustries.com IGU, Mezinárodní Plynárenská

Více

Město Tábor. Zkušenosti s využitím pohonu na CNG ve městě Tábor. XVII. Celostátní konference NSZM, Praha, 2.12. 2010

Město Tábor. Zkušenosti s využitím pohonu na CNG ve městě Tábor. XVII. Celostátní konference NSZM, Praha, 2.12. 2010 Město Tábor Zkušenosti s využitím pohonu na CNG ve městě Tábor XVII. Celostátní konference NSZM, Praha, 2.12. 2010 Obsah prezentace Co je CNG? Jak to v Táboře začalo Využití CNG v autobusové dopravě Využití

Více

Pomocník aneb Když hlava nepostačí

Pomocník aneb Když hlava nepostačí Pomocník aneb Když hlava nepostačí Obsah I. Interpunkční znaménka... 2 Tečka... 2 Čárka... 2 Dvojtečka... 3 Středník... 3 Uvozovky... 3 Apostrof... 3 Spojovník/pomlčka/dlouhá pomlčka... 3 Tři tečky...

Více

Dynafleet online Balíček Spotřeba a ekonomika (péče o spotřebu a styl jízdy řidičů)

Dynafleet online Balíček Spotřeba a ekonomika (péče o spotřebu a styl jízdy řidičů) Dynafleet online Balíček Spotřeba a ekonomika (péče o spotřebu a styl jízdy řidičů) Verze 2013.1.1 www.dynafleetonline.com strana 1 / 15 Obsah dokumentu (kliknutím myši na téma z obsahu vás dokument automaticky

Více

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.

Více

Obsah zákona o pozemních komunikacích 1.část - dálnice

Obsah zákona o pozemních komunikacích 1.část - dálnice Obsah zákona o pozemních komunikacích 1.část - dálnice Autor Datum vytvoření Září 2013 Ing. Erlebach Lumír Obory/ročník Předmět Střední vzdělávání s MZ / 3 ročník Technologie řízení dopravy Tematická oblast

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Metodika výpočtu environmentálních přínosů projektů zaměřených na snížení resuspenze tuhých znečišťujících látek do ovzduší vlivem dopravy pro LIX.

Metodika výpočtu environmentálních přínosů projektů zaměřených na snížení resuspenze tuhých znečišťujících látek do ovzduší vlivem dopravy pro LIX. Metodika výpočtu environmentálních přínosů projektů zaměřených na snížení resuspenze tuhých znečišťujících látek do ovzduší vlivem dopravy pro LIX. výzvu 1. Jednoznačně definovat lokalitu (komunikaci),

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více