FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

Rozměr: px
Začít zobrazení ze stránky:

Download "FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž"

Transkript

1 FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/ Břeen 2015 Únor 2017

2 2 Multikoptéra (dron, X-rotor, X-copter...) Zdroj: Zdroj: q-8b-na-unanned-aerial-ehicle.htl Zdroj: Zdroj: Zdroj:

3 3 Multikoptéra (dron, X-rotor, X-copter...) ožnost isu iniu pohbliých součástek dobrý poěr elikost/nosnost Zdroj: Zdroj: q-8b-na-unanned-aerial-ehicle.htl Zdroj: Zdroj: Zdroj:

4 Princip letu quadrotoru 4 Klopení (angl. pitching; podél příčné os) a klonění (angl. rolling; podél podélné os) poocí ěn otáček (=> tahu) rotorů na protilehlých raenách klopení klonění

5 Princip letu quadrotoru 5 Bočení poocí ěn otáček (=> rekčního oentu) rotorů točících se opačné sslu bočení

6 Princip letu quadrotoru 6 Stoupání / klesání ěnou tahu šech rotorů Let e odoroné roině naklopení / naklonění

7 Mateatický odel 7 12 staoých proěnných 2 báe n 1 n 4 n 2 n 3 inerciální báe

8 Staoé proěnné 8 V bái robota: úhloá rchlost ose robota úhloá rchlost ose robota úhloá rchlost ose robota rchlost ose robota rchlost ose robota rchlost ose robota V inerciální bái: - natočení ose eě (naklonění, roll) - natočení ose eě (naklopení, pitch) - natočení ose eě (bočení, aw) poloha ose eě poloha ose eě poloha ose eě

9 Transforace ei báei 9 Vektor q bái 0 q 0 =

10 Transforace ei báei 10 Noá báe 1 pootočená o kole os q 0 =

11 Transforace ei báei 11 Souřadnice q bái 1? q 0 =

12 Transforace ei báei 12 Přes atici rotace q 0 = q 1 = R 10 φ q 0 1 0

13 Transforace ei báei 13 Matice rotace R φ = cos φ sin φ 0 sin φ cos φ R φ = cos φ 0 sin φ sin φ 0 cos φ R φ = cosφ sin φ 0 sin φ cos φ

14 Transforace ei báei 14 Zde rotace poue kole os q 0 = q 1 = R 10 φ q = cosφ sin φ 0 sin φ cos φ

15 Transforace ei báei 15 Transforace opačný sěre 0 1 q 1 = R 10 q 0 q 0 = R 10 1 q 1 1 0

16 Transforace ei báei 16 Transforace opačný sěre 0 1 q 1 = R 10 q 0 q 0 = R 10 1 q 1 protože atice rotace je ortogonální 1 0 q 0 = R 10 T q 1

17 Popis orientace 17 Souřadné ssté NED ENU ECEF ECN praotočié

18 Popis orientace 18 Souřadné ssté NED ENU ECEF ECN praotočié Zdroj: Wikipedia

19 Popis orientace 19 Proč (ne)použít - téěř inerciální - galaktický ssté Zdroj: Wikipedia

20 Transforace ei báei 20 Rotace kole íce os V aionice nejčastěji poocí posloupnosti rotací RPY ( Roll Pitch Yaw ) (klonění, klopení, bočení) q o = R Z R Y R X q 1 R 01 ntrinické etrinické rotace Rosah jednotliých osách Zdroj: (upraeno)

21 Model odoení. 21 Setračnost lineární F = d p dt p = rotační M = dh dt H = ω p hbnost tělesa H oent hbnosti tělesa

22 Model odoení. 22 ( ) F ( ) F ( ) F M M M

23 Model odoení. 23 Působící síl a oent: Složk graitační síl osách robota Noé řídicí eličin: u 1 - oent ose působený rodílný tahe rotorů 2 a 4 u 2 - oent ose působený rodílný tahe rotorů 1 a 3 u 3 - oent ose působený rodílný reakční oente rotorů rotujících opačné sslu u 4 - síla ose působená součte tahu rotorů

24 Moent a síl od rtulí 24 n 1 u 4 u 1 n 4 n 2 u 3 u 2 n 3

25 25 Tah rtulí

26 Tah rtulí 26 F T = k T n 2

27 27 Reakční oent rtulí

28 Reakční oent rtulí 28 M R = k M n 2

29 29 Přeod otáčk u

30 Model odoení V. 30 ( ) F ( ) F ( ) F M M M

31 Model odoení V. 31 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3 ( ) F ( ) F ( ) F M M M

32 Model odoení V. 32 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3

33 Model odoení V. 33 ( ) G ( ) G ) ( 4 u G u 1 u 2 u 3 u 1 u 2 u 3 G G u G 4

34 Blokoé schéa odelu 34 u1 u2 u3

35 35 Blokoé schéa odelu u G 4 G G složk graitační síl

36 Transforace ei báei 36 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01

37 Transforace ei báei 37 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01 cos cos cos sin sin - cos sin sin sin + cos cos sin cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos =

38 Transforace ei báei 38 Transforace lineárního pohbu báe robota do inerciální báe q o = R Z R Y R X q 1 R 01 cos cos cos sin sin - cos sin sin sin + cos cos sin cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos = sin sin cos cos sin cos sin cos sin sin cos cos cos cos sin sin sin cos sin cos sin sin cos sin cos cos sin cos sin

39 Transforace ei báei 39 Transforace rotace báe robota do inerciální báe = sin 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice

40 Transforace ei báei 40 Transforace rotace báe robota do inerciální báe = sin 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice ω = sin θ ω = θ cos + cos θ sin ω = θ sin + cos θ cos

41 Transforace ei báei 41 Transforace rotace báe robota do inerciální báe = sin 0 cos cos sin 0 - sin cos cos Euleroa kineatická ronice ω = sin θ ω = θ cos + cos θ sin ω = θ sin + cos θ cos sin tg cos tg cos sin sin cos cos cos

42 Transforace ei báei 42 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0

43 Transforace ei báei 43 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G

44 Transforace ei báei 44 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G G cos cos cos sin -sin G = cos sin sin - cos sin cos cos + sin sin sin cos sin sin sin + cos cos sin cos sin sin - cos sin cos cos G 0 0 G

45 Transforace ei báei 45 Transforace graitační síl inerciální báe do báe robota q 1 = R 01 T q 0 G T cos cos cos sin sin - cos sin sin sin + cos cos sin G = cos sin cos cos + sin sin sin cos sin sin - cos sin -sin cos sin cos cos G 0 0 G G cos cos cos sin -sin G = cos sin sin - cos sin cos cos + sin sin sin cos sin sin sin + cos cos sin cos sin sin - cos sin cos cos G 0 0 G G gsin G gcos sin G gcos cos

46 46 Blokoé schéa odelu složk graitační síl cos cos cos sin sin cos tg tg cos sin

47 47 sin sin cos cos sin cos sin cos sin sin cos cos cos sin Blokoé schéa odelu cos cos sin sin sin cos sin cos sin sin cos cos sin cos sin složk graitační síl

48 48 Blokoé schéa odelu G gsin G gcos sin G gcos cos složk graitační síl

49 Blokoé schéa odelu 49 složk graitační síl

50 Staoé ronice (dnaika stroje) 50 u 1 u 2 u 3 sin g sin g cos u g 4 cos cos tg tg cos sin cos cos cos sin cos cos sin sin cos sin cos sin cos cos sin sin sin cos sin sin cos sin cos sin sin sin cos cos sin cos sin cos cos sin cos

51 Lineariace okolí praconího 51 bodu Praconí bod is na ístě = = = 0,, = 0,, = 0 nutno kopenoat graitační sílu u 4 = G = u 4

52 Říení quadrotoru 52 Poocí PD regulátorů Poocí staoého regulátoru Jiné Neuronoé sítě Fu regulátor

53 Použití PD regulátorů 53 Říení roděleno do jednotliých os Přesto le při dobré nastaení dosáhnout poěrně dobrých ýsledků ž u 1

54 Použití staoého regulátoru 54 Pracuje se šei 12 staoýi proěnnýi stroje ará Složitější

55 Použití staoého regulátoru 55 u = K (w - ) Matice K - příklad

56 Jiné působ říení 56 Neuronoé sítě naučení např. na PD regulátorech Údajně schopn ládnout ětší roptl paraetrů Zdroj: Jack F. Shepherd, Kagan Tuer; Robust neuro-control for a icro quadrotor, GECCO '10 Proceedings of the 12th annual conference on Genetic and eolutionar coputation; SBN: ; USA 2010

57 57 Kde le UAV proooat?

58 Prostor proou UAV 58 Upraeno letecký předpise L2 doplňke X 3 případ Proo e dušné prostoru tříd G Proo ATZ Proo (M)CTR Vžd bepečné dálenosti od osob a staeb UAV nad 7 kg striktně in. horiontálně: 100 od osob 150 od staeb Neplatí pro osob přío apojené do proou UAV, pokud t s tí souhlasí

59 Vdušný prostor nad ČR 59 žd kontroloat aktuální sta

60 60 Možnosti proou a sětlik

61 Zdroj: Doplněk X leteckého předpisu L2 61 Proo ATZ a prostorech tříd G a E

62 Zdroj: Doplněk X leteckého předpisu L2 Proo CTR a dalších 62 prostorech

63 Příklad: Situace Brně 63 Hranice ATZ LKCM (Medlánk) Hranice CTR LKTB (Tuřan) 5,5 k od t. b. LKTB (Tuřan) Zdroj:

64 64 Děkuji a poornost

QUADROTORY. Ing. Vlastimil Kříž

QUADROTORY. Ing. Vlastimil Kříž QUADROTORY ng. Vlastiil Kříž Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Dynamika vozidla Hnací a dynamická charakteristika vozidla Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním

Více

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1) 14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový

Více

Dynamika tuhého tělesa

Dynamika tuhého tělesa Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického

Více

Matematické základy fotogrammetrie, souřadnicové soustavy, transformace

Matematické základy fotogrammetrie, souřadnicové soustavy, transformace Mateatické áklad fotograetrie, souřadnicové soustav, transforace oříení sníků ěření hodnot Fotograetrické pracování - transforace - vrovnání - korelace Fotograetrické výstup Sníkové orientace Fotograetrie

Více

Inerciální a neinerciální soustavy

Inerciální a neinerciální soustavy Inerciální neinerciální soust olný hmotný bod (nepůsobí n něj žádné síl) inerciální soust: souřdnicoá soust ůči které je olný hmotný bod klidu nebo ronoměrném přímočrém pohbu pokud máme tři hmotné bod,

Více

Mechanika

Mechanika Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální

Více

Směrové řízení vozidla

Směrové řízení vozidla Směroé řízení ozidla Ing. Pael Brabec, Ph.D. TEHNIKÁ UNIVERITA V LIBERI Fakulta mechatroniky, informatiky a mezioboroých studií Tento materiál znikl rámci projektu ESF.1.07/..00/07.047 Reflexe požadaků

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 5 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 5 Šrouby a šroubové spoje For want of a nail the shoe is lost; For want of a shoe the horse is

Více

m cyklotronová frekvence

m cyklotronová frekvence Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt

Více

Řízení pohybu manipulátoru

Řízení pohybu manipulátoru Martin Sábl, Kail Všten, Radek Sekal České soké čení technické Praze, Faklta elektrotechnická ABSTRAKT V sočasné době á inteligentní robotika sé nezastpitelné ísto noha odětích průsl, edicín či ěd. Inteligentní

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Transformace (v OpenGL) příklady a knihovna GLM

Transformace (v OpenGL) příklady a knihovna GLM Transforace (v OpenGL) příklady a knihovna GLM Petr Felkel, Jaroslav Sloup Katedra počítačové grafiky a interakce, ČVUT FEL ístnost KN:E-413 (Karlovo náěstí, budova E) E-ail: felkel@fel.cvut.cz Poslední

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

qb m cyklotronová frekvence

qb m cyklotronová frekvence Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Více

Soustava hmotných bodů

Soustava hmotných bodů Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) 22.

Více

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS 10. PŘEVOY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS Jedná se o převody s tvarový styke výhody - relativně alé roěry - dobrá spolehlivost a životnost - dobrá echanická účinnost - přesné dodržení

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

ŘÍDICÍ SYSTÉM VZDUŠNÉHO PRŮZKUMNÉHO PROSTŘEDKU PRO VNITŘNÍ PROSTŘEDÍ

ŘÍDICÍ SYSTÉM VZDUŠNÉHO PRŮZKUMNÉHO PROSTŘEDKU PRO VNITŘNÍ PROSTŘEDÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Relativita I příklady

Relativita I příklady quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery

Semestrální Projekt 1 Měření rychlosti projíždějících vozidel za použití jedné kalibrované kamery 1 Semestrální Projekt 1 Měření rchlosti projíždějících voidel a použití jedné kalibrované kamer (version reprint 2005) Jaromír Brambor 17.5.2000 2 1. ÚVOD Tento semestrální projekt se abývá měřením rchlosti

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

ω JY je moment setrvačnosti k ose otáčení y

ω JY je moment setrvačnosti k ose otáčení y ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou

Více

Mechatronické systémy struktury s asynchronními motory

Mechatronické systémy struktury s asynchronními motory 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

FYZIKA I. Složené pohyby (vrh šikmý)

FYZIKA I. Složené pohyby (vrh šikmý) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

ď š š ž ž ž Ó ž ď Ó š š ď Ť č č ť š ď Ť Ř š š č šš č ď ď Ť ž č Ť Ť Ť ď Š Í š Ť ď Ě Ť š ž ž č ž Ť ž Š Ť č č č Í ž š Š Í š ž ď Ť š ž č č Ť ž č š Ťš Ť č

ď š š ž ž ž Ó ž ď Ó š š ď Ť č č ť š ď Ť Ř š š č šš č ď ď Ť ž č Ť Ť Ť ď Š Í š Ť ď Ě Ť š ž ž č ž Ť ž Š Ť č č č Í ž š Š Í š ž ď Ť š ž č č Ť ž č š Ťš Ť č ň ň Ú Ť Ť ď š Ť Ť ž ž ď ď š ť Ť ž Ť ž ď Í ď Ť ď č š ž ď ď ď ď ď Ť ž š Á ž Ť š š ď ď ď ď Ó ď š š ž ž ž Ó ž ď Ó š š ď Ť č č ť š ď Ť Ř š š č šš č ď ď Ť ž č Ť Ť Ť ď Š Í š Ť ď Ě Ť š ž ž č ž Ť ž Š Ť č č č Í

Více

1. Regulace otáček asynchronního motoru - skalární řízení

1. Regulace otáček asynchronního motoru - skalární řízení 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

ý ý ž ž š š ě ě ě ě ě ě ž Á ť ě ý ý ý Ú ý ž š ý ý ž ý ž ý ž Š ě ý ž ý ž Í ý ž ě ž ě ý ú ě ě ý ý ě ě ý ě ú ů ý ž ě ú ú ě ý Ú š ú ů ýš ů ě ú š š ý Ú š ý ě ďě š ú ž Š ě ú Š ě Ť ž ú š ú ž ú ě ě ť ě ý ú ě ž

Více

ZÁKLADNÍ PARAMETRY GYROSKOPU

ZÁKLADNÍ PARAMETRY GYROSKOPU ZÁKLADNÍ PARAMETRY GYROSKOPU v Vektor obvodové rchlosti Moment hbnosti r Hlavní osa otáčení Vektor úhlové rchlosti SLEDOVÁNÍ OTÁČENÍ ZEMĚKOULE POMOCÍ GYROSKOPU t hlavní osa t = 0 rovník Groskop je na rovníku,

Více

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

M5. ODHAD A ŘÍZENÍ ORIENTACE MULTIKOPTÉRY

M5. ODHAD A ŘÍZENÍ ORIENTACE MULTIKOPTÉRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická

Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká

Více

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,

úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit

Více

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel

Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Vliv přepravovaných nákladů na jízdní vlastnosti vozidel Doc. Ing. Miroslav Tesař, CSc. Havlíčkův Brod 20.5.2010 1. Úvod 2. Definování základních pojmů 3. Stabilita vozidel 4. Stabilita proti překlopení

Více

Odchylka ekliptiky od roviny Galaxie

Odchylka ekliptiky od roviny Galaxie Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

Ě Č ě Š Í Č Ě ě č ň

Ě Č ě Š Í Č Ě ě č ň Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU Ing. Petr FRANTÍK, Ph.D., Ing. David LEHKÝ, Ph.D., Ústav stavební echaniky, Fakulta stavební, Vysoké učení technické v Brně, tel.:

Více

Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost

Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost Ing Martin Morávek Vedoucí práce: oc Ing avel Bach CSc bstrakt Úkolem této práce je sestavit sstém výpočtových rovnic pro charakteriování

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP Bronislav Koska*, Tomáš Křemen*, Vladimír Jirka** *Katedra speciální geodézie, Fakulta stavební ČVUT v Praze **ENKI, o.p.s. Obsah Porovnání metod sběru

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

SIMULACE A ŘÍZENÍ LÉTAJÍCÍHO ROBOTA

SIMULACE A ŘÍZENÍ LÉTAJÍCÍHO ROBOTA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice).

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice). Náze a adresa školy: třední škola průysloá a uělecká, Opaa, příspěkoá organizace, raskoa 399/8, Opaa, 74601 Náze operačního prograu: O Vzděláání pro konkurenceschopnost, oblast podpory 1.5 Registrační

Více

Rovinná napjatost a Mohrova kružnice

Rovinná napjatost a Mohrova kružnice Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují

Více

Mechanika letu. Tomáš Kostroun

Mechanika letu. Tomáš Kostroun Mechanika letu Tomáš Kostroun Mechanika letu Letové výkony Rychlosti Klouzavost Dostup Dolet Letové vlastnosti Stabilita letu Řiditelnost Letadlová soustava Letové výkony větroně Minimální rychlost Maximální

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Příklad 1.3: Mocnina matice

Příklad 1.3: Mocnina matice Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních

Více

ť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Pohybová energie pro translační pohyb

Pohybová energie pro translační pohyb ázev a adresa školy: třední škola průyslová a uělecká, Opava, příspěvková organzace, Praskova 399/8, Opava, 746 ázev operačního prograu: OP Vzdělávání pro konkurenceschopnost, oblast podpory.5 Regstrační

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha.

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Kinematika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Statika studuje vliv sil působících na robota v klidu a jejich vliv

Více

MODELOVÁNÍ VLASTNOSTI BEZKARDANOVÝCH INERCIÁLNÍCH NAVIGAČNÍCH SYSTÉMU MODELLING OF THE FEATURES OF STRAPDOWN INERTIAL NAVIGATION SYSTEMS

MODELOVÁNÍ VLASTNOSTI BEZKARDANOVÝCH INERCIÁLNÍCH NAVIGAČNÍCH SYSTÉMU MODELLING OF THE FEATURES OF STRAPDOWN INERTIAL NAVIGATION SYSTEMS 58 Proceedings of the Conference "Modern Safet Technologies in Transportation - MOSATT 2005" MODELOVÁNÍ VLASTNOSTI BEZKARDANOVÝCH INERCIÁLNÍCH NAVIGAČNÍCH SYSTÉMU MODELLING OF THE FEATURES OF STRAPDOWN

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Í ě ň ó Ř Š ě ě ě ě ě ě ě ě ě ě ó Ř ě ě ě ě ě ě ť ě ť Š ě ě ť ě ť ě ě Š ó Ř ó Ř Ý Ž É Č ň ň ě ě ť Ž ě ě ť ě ě ě ě ě ě ě ě ě ě ě ě ě Š ň ě ó Ř ó Ř ó ť ť ě ť ť ě ě ě ě ě ě ě Š ů ě ó ó Ř ó Ř ě ě ť ě ě ó Ř

Více

š ó ó Š š ú ž Ó ž ů ď ů ó ů ú ť ť Ú ú ňó ž Ě ň ů ú Š ó ú ó š Ů ď ó ň Ň Ú ú ú ž ó ň ž ú Ú ú Ú ú š ň Ú Ú Ú Ú Ú ú Ú Ú Ó Ú Ú Š Š ú Ú Š Š š ú Ý ď É Š Š ň ň Ú Š É š Ů ň Ú Ď ž ú ž ň ň É É ď Ú Ů Ú Ú Éň ú ú É ň

Více

V soustavě N hmotných bodů působí síly. vnější. vnitřní jsou svázány principem akce a reakce

V soustavě N hmotných bodů působí síly. vnější. vnitřní jsou svázány principem akce a reakce 3.3. naka sousta hotnýh bodů (HB) Soustaa hotnýh bodů toří nejobenější těleso ehank. a odíl od tuhého tělesa se ůže taoě ěnt. V soustaě hotnýh bodů působí síl F nější (,,... ) ntřní jsou sáán pnpe ake

Více