Klíčová slova prediktory absolvování studia medicíny, logistická regrese, ROC křivky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Klíčová slova prediktory absolvování studia medicíny, logistická regrese, ROC křivky"

Transkript

1 STUDIUM SOUVISLOSTÍ MEZI ÚSPĚŠNOSTÍ STUDIA MEDICÍNY, ZNÁMKAMI STUDENTŮ NA STŘEDNÍ ŠKOLE A VÝSLEDKY PŘIJÍMACÍCH ZKOUŠEK 1 Čestmír Štuka, Petr Šimeček Anotace Studie analyzuje úspěšnost studentů přijatých v letech na 1. lékařskou fakultu UK. Ukazuje, že počet bodů získaných u přijímacích zkoušek je nepříliš dobrým prediktorem úspěšnosti studia, a navrhuje, jak přijímací řízení zefektivnit využitím znalosti známek ze střední školy. Klíčová slova prediktory absolvování studia medicíny, logistická regrese, ROC křivky Cílem naší studie bylo zhodnocení vlivu jednotlivých faktorů známých v době přijetí studenta na vysokou školu na úspěšnost (=úspěšné dokončení) studia medicíny. Při stanovení metodiky jsme se inspirovali předchozími pracemi Kožený et al. (2001) a Stránský, Štefanová (1998). Výše zmíněné práce studovaly pouze vzájemnou souvislost po dvojicích veličin, tedy obvykle nějakým způsobem kvantifikovanou závislost úspěšnosti a jednoho z faktorů. Interpretace takovýchto výsledků může být snadno zavádějící, viz známý příklad průkazné korelace mezi porodností a čapí populací v daném regionu z Disman (2002). V této studii ukazujeme, že samotný počet bodů u přijímacích zkoušek je nepříliš dobrým prediktorem úspěšnosti, a s využitím logistické regrese analyzujeme, co jsou skutečné předpoklady úspěšného absolvování studia medicíny. Naše závěry by mohly být užitečné například při racionalizaci přijímacího řízení. Práce je rozdělena do čtyř kapitol: V první kapitole se věnujeme popisu a přípravě dat. Druhá kapitola shrnuje použité metody. Ve třetí kapitole jsou uvedeny a ve čtvrté kapitole spolu s diskuzí interpretovány dosažené výsledky. Veškeré statistické analýzy byly provedeny ve volně dostupném prostředí R 2.1.1, grafy ROC křivek jsou nakresleny v SPSS. 1. Popis dat Data pochází od 673 českých a slovenských studentů 2, jež započali magisterské studium všeobecného lékařství nebo stomatologie na 1. lékařské fakultě Univerzity Karlovy v letech a toto 1 Tato práce byla podpořena z grantu GA ČR 201/05/H Pokud je autorům známo, jedná se o nejrozsáhlejší studii prediktorů úspěšnosti studia medicíny v ČR.

2 studium do roku 2005 ať již úspěšně či neúspěšně zakončili. Sedm (1%) studentů, jež mají studium přerušeno či stále ještě studují, není do studie zahrnuto. Pakliže studenti započali studium v tomto období vícekrát, je započítán pouze jejich první pokus. Navíc bylo ze studie vyřazeno 46 (7%) jedinců, o nichž nemáme dostupné všechny potřebné údaje, neboť se neúčastnili všech částí přijímací zkoušky (4 jedinci), údaje o jejich středoškolském studium jsou zjevně neadekvátní (9 jedinců) nebo na jejich přihlášce ke studiu chybějí známky z některých předmětů (33 jedinců). Vybraná populace se tedy skládá z 626 studentů, z nichž 463 (74%) studium úspěšně absolvovalo a 163 (26%) studia zanechalo. Z úspěšných studentů 341 ukončilo studium v řádném termínu (6 let), zatímco 122 jich potřebovalo dobu delší. Sledovanými atributy jsou pohlaví, typ středoškolského vzdělání (gymnaziální/jiné), počet bodů na jednotlivých částech přijímacích zkoušek (biologie, chemie, fyzika), průměrné známky za středoškolské studium z matematiky, fyziky, chemie, biologie a českého jazyka a průměrné známky z jednotlivých ročníků. Z těchto údajů byl dále dopočten součet bodů za přijímací zkoušky celkově, průměr z průměrů za jednotlivé ročníky a rozdíl průměrů v posledním a prvním ročníku střední školy zrcadlící zlepšení či zhoršení žáka během studia. Popisné statistiky jsou uvedeny v příloze. Před tím, než přistoupíme k samotné analýze, podívejme se podrobněji na jednotlivé faktory a vztahy mezi nimi. Pokud aplikuje podle Johnson, Wichern (2002) shlukovou analýzu nebo biplot na výsledky přijímacích zkoušek a známky ze střední školy (Obrázek 1), zjistíme, že jednotlivé části přijímacích zkoušek souvisejí více spolu navzájem než se středoškolskými známkami z odpovídajících předmětů. Zdá se tedy, že známky na vysvědčení nesou informaci do značné míry odlišnou od výsledků přijímacích zkoušek. SS.M SS.F SS.CJ SS.CH SS.B BODY.F BODY.CH BODY.B Dendrogram Vzdalenost Biplot Comp.1 Comp SS.M SS.F SS.CH SS.B SS.CJ BODY.CH BODY.B BODY.F absolvoval neabsolvoval Obr. 1: Dendrogram shlukové analýzy (Eukl. vzdálenost, úplné spoj.) a biplot

3 2. Přehled použitých metod Nejprve se budeme ve shodě s předchozími pracemi zabývat předpovědí úspěšnosti studia na základě jediného faktoru. K hodnocení jsme zvolili absolutní hodnotu Kruskalova gamma koeficientu (viz Agresti (2002), str.58). Tento koeficient nabývá hodnot z intervalu [ 1,1] a lze jej do jisté míry považovat za neparametrickou obdobu Pearsonova korelačního koeficientu: pakliže by všichni úspěšní studenti měli hodnotu zkoumaného faktoru vyšší (resp. nižší) než neúspěšní, byla by jeho hodnota 1 (resp. 1). Naopak pro kritéria s úspěchem studia nesouvisející by jeho hodnota měla být blízko 0. Podrobněji schopnost predikce vyšetříme pomocí tzv. ROC křivky, viz např. Zvárová (1998), tj. grafu, kde na osu x nanášíme podíl ze studentů neschopných dokončit studium, jež by byli přijati, a na osu y nanášíme podíl ze studentů schopných absolvovat, jež by byli přijati, při měnící se hraniční mezi klasifikace podle daného kritéria. Křivka tedy začíná v bodě [0,0] (nepřijmeme nikoho) a míří do bodu [1,1] (přijmeme všechny). Plochu pod ROC křivkou (AUC) lze interpretovat jako ukazatel kvality prediktoru. Výše uvedené metody nevypovídají nic o tom, jaké atributy zvolit, když se nechceme při predikci omezovat jen na jeden faktor. Kupříkladu to, že středoškolská známka z matematiky je dobrým prediktorem úspěšného studia, nevypovídá nic o tom, zda je užitečné tuto známku zahrnout do predikčního modelu, když již do něj zařadili známku z fyziky. Mnohem užitečnější se ukazuje přidat do modelu rozdíl mezi průměrem známek v posledním a prvním ročníku střední školy, což je sám o sobě poměrně špatný prediktor, nese ale "novou" informaci. Pro konstrukci predikcí na základě více faktorů budeme užívat logistickou regresi, tj. modely, u kterých je logit (logaritmus poměru šancí) na úspěšné dokončení studia popsán jako lineární kombinace prediktorů, viz např. Agresti (2002). Modely budeme porovnávat na základě Akaikeho informačního kritéria (AIC). Prediktor γ (s.e.) AUC (s.e.) Prediktor γ (s.e.) AUC (s.e.) SŠ matematika 0,31 (0,06) 0,64 (0,03) SŠ rozdíl ,05 (0,05) 0,53 (0,03) SŠ fyzika 0,35 (0,05) 0,66 (0,03) Body fyzika 0,28 (0,05) 0,64 (0,03) SŠ biologie 0,36 (0,06) 0,65 (0,03) Body biologie 0,12 (0,06) 0,56 (0,03) SŠ chemie 0,35 (0,05) 0,66 (0,03) Body chemie 0,31 (0,05) 0,65 (0,03) SŠ čes. jazyk 0,28 (0,06) 0,63 (0,03) Body celkem 0,28 (0,05) 0,64 (0,03) SŠ průměr 0,33 (0,05) 0,66 (0,03) Tab. 1: Kruskalovo gamma a plocha pod ROC křivkou u jednotlivých prediktorů

4 3. Výsledky V Tabulce 1 na předchozí straně je přehled Kruskalových gamma koeficientů a ploch pod ROC křivkami pro jednotlivé prediktory. Povšimněme si, že známky ze střední školy se zdají být lepšími prediktory než body z přijímacích zkoušek. To potvrzuje i Obrázek 2. Podíl přijatých z úspěšných studentů ROC Podíl přijatých z neúspěšných studentů Obr. 2: ROC křivky Referenční přímka Body celkem Body fyzika Body biologie Body chemie SŠ průměr SŠ čes. jazyk SŠ biologie SŠ chemie SŠ fyzika SŠ matematika U logistické regrese začneme modelem s výsledky přijímacích zkoušek. Koeficienty modelu predikce úspěchu studia v závislosti na bodech z biologie, chemie a fyziky, můžete vidět v Tab. 2. Povšimněme si znaménka u koeficientu b 1 značícího, že při daném výsledku přijímacího testu z fyziky a chemie, je test z biologie nejen neužitečný, ale dokonce matoucí (čím méně bodů, tím spíše bude student úspěšný)! logit(pst_úspěchu) = b 0 b 1 body_biologie b 2 body_fyzika b 3 body_chemie Koeficient Odhad s.e. Z hodnota p hodnota B 0-3, , , B 1-0, , ,082 0, B 2 0, , , B 3 0, , , Tab. 2: Model závislosti prav. úspěchu na výsledcích přijímacích zkoušek Model nyní obohatíme o zbylé prediktory a postupně budeme vyřazovat ty, jejichž odebrání vede ke snížení AIC (viz Tabulka 3) až získáme model předpovídající logit úspěšnosti studia na základě bodů z přijímacího testu z fyziky a chemie, průměrné středoškolské známky z biologie a chemie a rozdílu mezi průměrem v čtvrtém a prvním ročníku střední školy (viz Tabulka 4, podrobněji v příloze). Zdůrazněme ještě jednou, že nezařazení ostatních faktorů, tj. průměrné středoškolské známky z matematiky, českého jazyka a biologie, bodů za přijímací zkoušky z biologie,... do modelu v žádném případě neznamená, že by snad tyto s úspěšností studia nesouvisely. Jen jejich znalost není užitečná, pokud již známe faktory do modelu zahrnuté.

5 Veličiny v modelu pohlaví, body_fyzika, body_chemie, sš_matematika, sš_fyzika, sš_chemie, 653,52 sš_biologie, sš_čes_jazyk, typ_školy,sš_prům._prospěch, sš_rozdíl_prům. pohlaví, body_fyzika, body_chemie, sš_fyzika, sš_chemie, sš_biologie, 651,52 sš_čes_jazyk, typ_školy, sš_prům._prospěch, sš_rozdíl_prům. pohlaví, body_fyzika, body_chemie, sš_fyzika, sš_chemie, sš_biologie, 650,73 sš_čes_jazyk, typ_školy, sš_rozdíl_prům. body_fyzika, body_chemie, sš_fyzika, sš_chemie, sš_biologie, 648,97 sš_čes_jazyk, typ_školy, sš_rozdíl_prům. body_fyzika, body_chemie, sš_fyzika, sš_chemie, sš_biologie, typ_školy, 647,29 sš_rozdíl_prům. body_fyzika, body_chemie, sš_fyzika, sš_chemie, sš_biologie, 645,78 sš_rozdíl_prům. body_fyzika, body_chemie, sš_chemie, sš_biologie, sš_rozdíl_prům. 645,68 Tab. 3: Postupný výběr modelu na základě AIC kritéria Výsledek je poměrně robustní vůči drobným modifikacím. Pokud do modelu přidáme libovolný dříve vyloučený prediktor, hodnota AIC se zvýší. Dále pokud místo průměrů známek do modelu zahrneme čtverce těchto průměrů (progresivně znevýhodníme horší známky), výše popsaná procedura nalezne opět tentýž model. Stejně tomu bude, pokud závislost logitu pravděpodobnosti úspěchu na bodech z přijímacích zkoušek modelujeme (realističtěji) jako kvadratický polynom. logit(pst_úspěchu) = b 0 b 1 body_fyzika b 2 body_chemie b 3 sš_chemie b 4 sš_biologie b 5 rozdíl_mezi_4_a_1_průměrem Koeficient Odhad s.e. Z hodnota p hodnota b 0-2, , ,100 0, b 1 0, , ,949 0, b 2 0, , , b 3-0, , ,361 0, b 4-0, , ,934 0, b 5-0, , ,025 0, Tab. 4: Model závislosti logitu pravděpodobnosti úspěchu na zvolených prediktorech Abychom demonstrovali jakého zlepšení lze s pomocí tohoto modelu dosáhnout, zvažme úlohu klasifikace našich 626 studentů na dvě skupiny o 463 a 163 studentech (odpovídá počtu úspěšných a neúspěšných jedinců). V případě klasifikace podle bodů za přijímací zkoušky se dopustíme 272 (42%) chyb, podle průměrného prospěchu 176 chyb (28%), konečně podle navrženého kritéria jen 158 chyb (25%). Pokud vybereme z populace subpopulaci studentů, kteří studium dokončili, a "úspěšnými" pro tuto chvíli nazveme pouze ty z nich, kterým se to podařilo v 6 letech, můžeme zkoumat, jaké jsou prediktory AIC

6 absolvování studia v řádném termínu. Provedeme-li výběr modelu metodou analogickou k výše popsané, zjistíme, že mezi absolvujícími studenty je jednoznačným ukazatelem na včasné zakončení studia úspěch ve fyzice (jak na střední škole, tak u přijímacích zkoušek). 4. Závěr Naše studie poukázala na dva znepokojivé aspekty přijímacího řízení na 1. lékařské fakultě UK v letech Za prvé se zdá, že kvalita testů z biologie byla velice nízká a jejich přidaná hodnota k testům z fyziky a chemie zanedbatelná. Dále, výsledky studentů na střední škole byly zcela ignorovány, přestože tyto výsledky u studentů přijatých ke studiu predikují úspěšnost lépe než body z přijímacích zkoušek a kombinací obojího lze dosáhnout dalšího zlepšení. Je pochopitelně diskutabilní, a autoři této studie jsou si toho vědomi, nakolik je hodnocení prediktorů na základě přijatých studentů zobecnitelné na (nové) studenty ke studiu se hlásící, dále nakolik by změna přijímacího řízení mohla vést k deformaci hodnocení studentů na středních školách, zvláště těch hlásících se na medicínu, a do jaké míry lze úspěch studenta hodnotit jen základě schopnosti školu dokončit (a ne již např. podle studijních výsledků). Toto by spolu s lepším ošetřením chybějících pozorování a vícekrát ke studiu přijatých studentů mělo být předmětem dalšího výzkumu. Bližší zkoumání by si také zasluhovalo, proč právě studenti úspěšní ve fyzice spíše absolvují studium v řádném termínu a proč bylo ke studiu přijato i několik studentů s výrazně nižším počtem bodů na přijímacích zkouškách 3. Čestmír Štuka, 1. LF UK, Na Bojišti???, Praha. Petr Šimeček, ÚTIA AV ČR, Pod Vodárenskou věží 4, Praha. Reference: [1] A. Agresti: Categorical Data Analysis. Wiley, [2] M. Disman: Jak se vyrábí sociologická znalost. Karolinum, [3] R.A. Johnson, D.W. Wichern: Applied Multivariate Statistical Analysis, Wiley, [4] J. Kožený et al.: Akademická úspěšnost na střední škole: prediktor absolvování studia medicíny, Čs. psychol. 45, [5] P. Stránský, S. Štefanová: Mohou výsledky přijímacího řízení predikovat studijní výsledky v pregraduálním studiu medicíny? XXI. dny lékařské biofyziky, Horní Poříčí, [6] J. Zvárová: Základy statistiky pro biomed. obory. Karolinum, Rozdělení počtu bodů z přijímacích zkoušek má těžký levý chvost. Pokud se zaměříme na 12 (2%) studentů s méně než 200 body, zjistíme, že v řádném termínu z nich studium nedokončil nikdo a později jen jeden z nich.

7 Příloha popisné statistiky a kvalita navrženého kritéria Popisné statistiky: SŠ matematika SŠ fyzika SŠ chemie SŠ biologie SŠ čes. jazyk Body chemie Body biologie Body fyzika Body celkem SŠ průměr SŠ rozdíl prům. Popisné statistiky Minimum Maximum Průměr Sm. odchylka 1 4 2,01,705 4,00 1,7916, , ,664563, ,42,477 4,00 100, ,61 11, ,86 8, ,42 9, ,88 25, ,1500 1,552097, ,76 1,40,0259,28993 žena muž Pohlaví Frekvence % , , ,0 Typ středoškolského vzdělání gym. jiné Frekvence % ,8 26 4, ,0 Porovnání klasifikace na základě kritéria z modelu v Tab. 4 s průměrným prospěchem na střední škole a počtem bodů na přijímacích zkouškách: Kritérium = 0,02313 body_fyzika 0,03651 body_chemie 0,52205 sš_chemie 0,53240 sš_biologie 0,66876 rozdíl_mezi_4_a_1_průměrem Podíl přijatých z úspěšných studentů ROC Referenční přímka Námi navržené skóre Body celkem SŠ průměr Prediktor γ AUC Nové kritérium 0,45 0,72 SŠ průměr 0,33 0,66 Body přij. zkoušky 0,28 0,64 Tab. 5: Srovnání dle γ a AUC Podíl přijatých z neúspěšných studentů Obr. 3: Srovnání námi navrženého kritéria, průměru na střední škole a bodů z přijímacích zkoušek podle ROC křivek

Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody

Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan.

Více

Pořízení licencí statistického SW

Pořízení licencí statistického SW Pořízení licencí statistického SW Zadavatel: Česká školní inspekce, Fráni Šrámka 37, 150 21 Praha 5 IČO: 00638994 Jednající: Mgr. Tomáš Zatloukal Předpokládaná (a maximální cena): 1.200.000 vč. DPH Typ

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

SOUHRNNAÁ ZAÁVEČ RECČNAÁ ZPRAÁVA DODATEK

SOUHRNNAÁ ZAÁVEČ RECČNAÁ ZPRAÁVA DODATEK III. MATERIÁL SOUHRNNAÁ ZAÁVEČ RECČNAÁ ZPRAÁVA DODATEK Pilotní ověřování organizace přijímacího řízení do oborů vzdělání s maturitní zkouškou s využitím centrálně zadávaných jednotných testů Zíka Jiří

Více

Souvisí úspěšnost studia na vysoké škole se středoškolským prospěchem?

Souvisí úspěšnost studia na vysoké škole se středoškolským prospěchem? Pedagogická orientace 3, 2009 89 Souvisí úspěšnost studia na vysoké škole se středoškolským prospěchem? Jana Rubešová Abstrakt: Cílem příspěvku je seznámit s problematikou zjišťování predikční validity

Více

Nezaměstnanost absolventů škol se středním a vyšším odborným vzděláním 2015. Mgr. Martin Úlovec

Nezaměstnanost absolventů škol se středním a vyšším odborným vzděláním 2015. Mgr. Martin Úlovec Nezaměstnanost absolventů škol se středním a vyšším odborným vzděláním 2015 Mgr. Martin Úlovec Praha 2015 1 OBSAH 1. Úvodní poznámky... 3 2. Nezaměstnanost absolventů škol a hospodářská krize... 4 3. Počty

Více

Absolventi středních škol a trh práce DOPRAVA A SPOJE. Odvětví: Ing. Mgr. Pavla Paterová Mgr. Gabriela Doležalová a kolektiv autorů

Absolventi středních škol a trh práce DOPRAVA A SPOJE. Odvětví: Ing. Mgr. Pavla Paterová Mgr. Gabriela Doležalová a kolektiv autorů Absolventi středních škol a trh práce Odvětví: DOPRAVA A SPOJE Ing. Mgr. Pavla Paterová Mgr. Gabriela Doležalová a kolektiv autorů Praha 2015 Obsah 1. Úvodní slovo... 3 2. Nově přijatí žáci a absolventi

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

Absolventi středních škol a trh práce PEDAGOGIKA, UČITELSTVÍ A SOCIÁLNÍ PÉČE. Odvětví:

Absolventi středních škol a trh práce PEDAGOGIKA, UČITELSTVÍ A SOCIÁLNÍ PÉČE. Odvětví: Absolventi středních škol a trh práce Odvětví: PEDAGOGIKA, UČITELSTVÍ A SOCIÁLNÍ PÉČE Ing. Mgr. Pavla Paterová Mgr. Gabriela Doležalová a kolektiv autorů Praha 2015 Obsah 1. Úvodní slovo... 3 2. Nově přijatí

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:

Více

Absolventi středních škol a trh práce ZEMĚDĚLSTVÍ. Odvětví:

Absolventi středních škol a trh práce ZEMĚDĚLSTVÍ. Odvětví: Absolventi středních škol a trh práce Odvětví: ZEMĚDĚLSTVÍ Mgr. Pavla Chomová Mgr. Gabriela Doležalová Ing. Jana Trhlíková Ing. Jiří Vojtěch a kolektiv autorů Praha 2014 Obsah 1. Úvodní slovo... 3 2. Nově

Více

Jaromír Běláček, Ivana Kuklová, Petr Velčevský, Ondřej Pecha, Marek Novák

Jaromír Běláček, Ivana Kuklová, Petr Velčevský, Ondřej Pecha, Marek Novák PACIENTI SE SEXUÁLNĚ PŘENOSNÝMI NEMOCEMI S RIZIKOVÝM CHOVÁNÍM V PRAŽSKÉ POPULACI 2007-8 PACIENTI SE SEXUÁLNĚ PŘENOSNÝMI NEMOCEMI S RIZIKOVÝM CHOVÁNÍM V PRAŽSKÉ POPULACI 2007-8 (PRŮŘEZOVÁ STUDIE) Jaromír

Více

KOMENTOVANÁ ANALÝZA VÝSLEDKŮ

KOMENTOVANÁ ANALÝZA VÝSLEDKŮ Příloha č. 3 SOUHRNNÁ ZÁVĚREČNÁ ZPRÁVA Pilotní ověřování organizace přijímacího řízení do oborů vzdělání s maturitní zkouškou s využitím centrálně zadávaných jednotných testů KOMENTOVANÁ ANALÝZA VÝSLEDKŮ

Více

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?

Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika? Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/

Více

Robust 2010 31. ledna 5. února 2010, Králíky

Robust 2010 31. ledna 5. února 2010, Králíky Modelování rozdělení ročních příjmů českých domácností J. Bartošová 1 M. Forbelská 2 1 Katedra managementu informací Fakulta managementu v Jindřichově Hradci Vysoká škola ekonomická v Praze 2 Ústav matematiky

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE VYUŽITÍ LOGISTICKÉ REGRESE VE VÝZKUMU TRHU

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE VYUŽITÍ LOGISTICKÉ REGRESE VE VÝZKUMU TRHU VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Fakulta informatiky a statistiky Studijní program: Kvantitativní metody v ekonomice Studijní obor: Statistické a pojistné inženýrství Diplomant: Hana Brabcová Vedoucí diplomové

Více

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA

OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA OSOBNÍ ANGAŽOVANOST SOCIÁLNÍHO PRACOVNÍKA Tomáš Kocyan OBSAH PREZENTACE Představení výzkumu Popis analyzovaných dat Analýza Asociace Fundovaná implikace Interpretace výsledků Rozhodovací stromy Výběr atributů

Více

Analýza a vyhodnocení. zdravotního stavu. obyvatel. města TŘEBÍČ. Zdravá Vysočina, o.s. ve spolupráci se Státním zdravotním ústavem

Analýza a vyhodnocení. zdravotního stavu. obyvatel. města TŘEBÍČ. Zdravá Vysočina, o.s. ve spolupráci se Státním zdravotním ústavem Analýza a vyhodnocení zdravotního stavu obyvatel města TŘEBÍČ Zdravá Vysočina, o.s. ve spolupráci se Státním zdravotním ústavem MUDr. Stanislav Wasserbauer Hana Pokorná Jihlava, září 2012 Obsah: 1 Úvod...4

Více

Absolventi středních škol a trh práce OBCHOD. Odvětví:

Absolventi středních škol a trh práce OBCHOD. Odvětví: Absolventi středních škol a trh práce Odvětví: OBCHOD Mgr. Pavla Chomová Mgr. Gabriela Doležalová Ing. Jana Trhlíková Ing. Jiří Vojtěch a kolektiv autorů Praha 2014 Obsah 1. Úvodní slovo... 3 2. Nově přijatí

Více

KULTURA A VZDĚLÁVÁNÍ

KULTURA A VZDĚLÁVÁNÍ STUDIE Tematické oddělení B Strukturální politika a politika soudržnosti ANALÝZA AKADEMICKÉ A ODBORNÉ KARIÉRY ABSOLVENTŮ EVROPSKÝCH ŠKOL SHRNUTÍ KULTURA A VZDĚLÁVÁNÍ 2008 CS Generální ředitelství pro

Více

Jana Vránová, 3. lékařská fakulta, UK Praha

Jana Vránová, 3. lékařská fakulta, UK Praha Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně

Více

Vyhodnocení dotazníkového šetření v rámci projektu Pedagog lektorem, reg. č.: CZ.1.07/3.2.11/03.0062.

Vyhodnocení dotazníkového šetření v rámci projektu Pedagog lektorem, reg. č.: CZ.1.07/3.2.11/03.0062. Vyhodnocení dotazníkového šetření v rámci projektu Pedagog lektorem, reg. č.: CZ.1.07/3.2.11/03.0062. Názory studentů a pracujícáích edagogů na Další vzdělávání pedagogických pracovníků (projekt je spolufinancován

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Dynamické metody pro predikci rizika

Dynamické metody pro predikci rizika Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např

Více

Úmrtnostní tabulky příjemců příspěvku na péči

Úmrtnostní tabulky příjemců příspěvku na péči Úmrtnostní tabulky příjemců příspěvku na péči Datum: listopad 2011 Verze: 2.2 Zadavatel: Aktivita č. 12 Autor: Jan Alexa 1 Jan Alexa vystudoval Přírodovědeckou fakultu University Karlovy a Fakultu sociálních

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Dopad operace levostranné dislokace slezu metodou omentopexe na užitkovost a reprodukci dojnic holfštýnského typu

Dopad operace levostranné dislokace slezu metodou omentopexe na užitkovost a reprodukci dojnic holfštýnského typu Dopad operace levostranné dislokace slezu metodou omentopexe na užitkovost a reprodukci dojnic holfštýnského typu Jan Šterc 1, Jaroslav Marek 2 1 Křídlovecká 16 603 00 Brno e-mail: 1 stercj@cervus.cz,

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...

Více

Studenti s trvalým bydlištěm na území Moravskoslezského kraje na českých vysokých školách v roce 2013. Kde a co studují?

Studenti s trvalým bydlištěm na území Moravskoslezského kraje na českých vysokých školách v roce 2013. Kde a co studují? Studenti s trvalým bydlištěm na území Moravskoslezského kraje na českých vysokých školách v roce 2013 Kde a co studují? říjen 2014 RPIC-ViP, s.r.o. Observatoř konkurenceschopnosti a trhu práce Moravskoslezského

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

1. Úvod do studia statistiky. 1.1. Významy pojmu statistika

1. Úvod do studia statistiky. 1.1. Významy pojmu statistika 1. Úvod do studia statistiky Andrew Lang o politikovi: Používá statistiku jako opilý člověk pouliční lampu spíš na podporu než na osvětlení. Benjamin Disraeli o lži: Jsou tri stupně lži - lež, nehanebná

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

IBM SPSS Decision Trees

IBM SPSS Decision Trees IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Výsledky vstupních testů z matematiky a úspěšnost studia Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Bakalářská práce Výsledky vstupních testů z matematiky a úspěšnost studia Plzeň, 2014 Zuzana Rábová Prohlášení Prohlašuji, že

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Zadání 11 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1: DOMÁCÍ ÚKOL

Více

Měření kritického myšlení a studijních schopností studentů středních škol na Slovensku

Měření kritického myšlení a studijních schopností studentů středních škol na Slovensku Měření kritického myšlení a studijních schopností studentů středních škol na Slovensku Analytická zpráva podzim 2014 Zpracoval: Jan Hučín, www.scio.cz, s. r. o. (prosinec 2014) Datové podklady: odpovědi

Více

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Martin Maršík, Jitka Papáčková Vysoká škola technická a ekonomická Abstrakt V předloženém článku autoři rozebírají vývoj

Více

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Zadání: Deponie nadložních jílových sedimentů SHP byla testována za účelem využití v cihlářské výrobě. Z deponie bylo odebráno

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Rozhodovací stromy a lesy

Rozhodovací stromy a lesy Rozhodovací stromy a lesy Klára Komprdová Leden 2012 Příprava a vydání této publikace byly podporovány projektem ESF č. CZ.1.07/2.2.00/07.0318 Víceoborová inovace studia Matematické biologie a státním

Více

Příloha P.1 Mapa větrných oblastí

Příloha P.1 Mapa větrných oblastí Příloha P.1 Mapa větrných oblastí P.1.1 Úvod Podle metodiky Eurokódů se velikost zatížení větrem odvozuje z výchozí hodnoty základní rychlosti větru, definované jako střední rychlost větru v intervalu

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI metodika provádění Tato metodika byla zpracována v rámci výzkumného projektu Identifikace a řešení kritických míst a úseků v síti pozemních komunikací, které

Více

Počet volných pracovních Počet nezaměstnaných/ 1 volné pracovní místo

Počet volných pracovních Počet nezaměstnaných/ 1 volné pracovní místo Kraj Celková nezaměstnanost v kraji - V dubnu 2010 činila míra v kraji 9,6 % 1 a celkový počet dosahoval 26 039 evidovaných na úřadech práce. Ve srovnání se stejným obdobím roku 2009 je zaznamenán nárůst

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

III. Sociální stratifikace rodin respondentů ve věku 25-44 let a jejich dětí do 15 let

III. Sociální stratifikace rodin respondentů ve věku 25-44 let a jejich dětí do 15 let III. Sociální stratifikace respondentů ve věku 25-44 let a jejich dětí do 15 let Propojení údajů ze standardní části výběrového šetření o velikosti y, ekonomické aktivitě respondentů a jejich postavení

Více

Evropské výběrové šetření o zdravotním stavu v ČR - EHIS CR Index tělesné hmotnosti, fyzická aktivita, spotřeba ovoce a zeleniny

Evropské výběrové šetření o zdravotním stavu v ČR - EHIS CR Index tělesné hmotnosti, fyzická aktivita, spotřeba ovoce a zeleniny Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 22. 12. 2010 70 Evropské výběrové šetření o zdravotním stavu v ČR - EHIS CR Index tělesné hmotnosti, fyzická aktivita,

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

SRG Přírodní škola, o.p.s. Orientace v Přírodě. Bez kompasu

SRG Přírodní škola, o.p.s. Orientace v Přírodě. Bez kompasu SRG Přírodní škola, o.p.s. Orientace v Přírodě Bez kompasu Záměr práce Autor: André Langer Vedoucí práce: Štěpán Macháček Datum odevzdání: 8. 3 2010 Záměr práce není, protože jsem tuto práci dostal přidělenou.

Více

II. Nemoci a zdravotní omezení související s výkonem povolání

II. Nemoci a zdravotní omezení související s výkonem povolání II. Nemoci a zdravotní omezení související s výkonem povolání Otázky o nemocech a zdravotních omezeních souvisejících s výkonem stávajícího nebo předcházejícího zaměstnání byly pokládány všem zaměstnaným

Více

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně:

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně: KRIGING Krigování (kriging) označujeme interpolační metody, které využívají geostacionární metody odhadu. Těchto metod je celá řada, zde jsou některé příklady. Pro krigování se používá tzv. Lokální odhad.

Více

INSPEKČNÍ ZPRÁVA. Střední průmyslová škola strojnická, Plzeň, Klatovská 109. Klatovská 109, 301 00 Plzeň. Identifikátor školy: 600 100 645

INSPEKČNÍ ZPRÁVA. Střední průmyslová škola strojnická, Plzeň, Klatovská 109. Klatovská 109, 301 00 Plzeň. Identifikátor školy: 600 100 645 Česká školní inspekce Plzeňský inspektorát INSPEKČNÍ ZPRÁVA Střední průmyslová škola strojnická, Plzeň, Klatovská 109 Klatovská 109, 301 00 Plzeň Identifikátor školy: 600 100 645 Termín konání inspekce:

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 na ČVUT v Praze Fakultě dopravní

Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 na ČVUT v Praze Fakultě dopravní Zpráva o průběhu přijímacího řízení na vysokých školách pro akademický rok 2014 2015 dle Vyhlášky MŠMT č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a její změně č. 276/2004 Sb. 1. Informace

Více

Analýza školních vzdělávacích programů 2007

Analýza školních vzdělávacích programů 2007 Analýza školních vzdělávacích programů 2007 (Analýza ŠVP zpracovaných na základě rámcových vzdělávacích programů v pilotních školách projektu Pilot S) PhDr. Olga Kofroňová, PhD. Ing. Jiří Vojtěch Praha

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

Sociologický výzkum I.

Sociologický výzkum I. Sociologický výzkum I. Fáze výzkumu a procedury VY_32_INOVACE_ZSV3r0107 Mgr. Jaroslav Knesl Sociologický výzkum vs. průzkum Výzkum - bývá intenzivní, zaměřený, systematický, rozsáhlý. Průzkum - sleduje

Více

PROJEKT DO STATISTIKY PRŮZKUM V TECHNICKÉ MENZE

PROJEKT DO STATISTIKY PRŮZKUM V TECHNICKÉ MENZE PROJEKT DO STATISTIKY PRŮZKUM V TECHNICKÉ MENZE Náplní tohoto projektu byl prvotní průzkum, následné statistické zpracování dat a vyhodnocení. Data jsme získaly skrze internetový dotazník, který jsme rozeslaly

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Téma 9: Vícenásobná regrese

Téma 9: Vícenásobná regrese Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol STATISTICKÁ ANALÝZA PŘIJÍMACÍHO ŘÍZENÍ NA PEF PRO AKADEMICKÝ ROK 1994/1995 Bohumil Kába, Libuše Svatošová katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek pojednává

Více

STÁTNÍ ROZPOČTOVÉ VÝDAJE A DOTACE NA VÝZKUM A VÝVOJ (GBAORD) ANALYTICKÁ ČÁST

STÁTNÍ ROZPOČTOVÉ VÝDAJE A DOTACE NA VÝZKUM A VÝVOJ (GBAORD) ANALYTICKÁ ČÁST STÁTNÍ ROZPOČTOVÉ VÝDAJE A DOTACE NA VÝZKUM A VÝVOJ (GBAORD) ANALYTICKÁ ČÁST 1. Základní údaje V České republice v roce 2013 dosáhly státní rozpočtové výdaje a dotace na výzkum a vývoj (dále jen GBAORD)

Více

Hornicko-hutnická akademie Stanislawa Staszica v Krakově

Hornicko-hutnická akademie Stanislawa Staszica v Krakově Hornicko-hutnická akademie Stanislawa Staszica v Krakově Fakulta materiálového inženýrství a keramiky Ústav stavebních materiálů Kraków 30-053, Al. Mickiewicza 30/B6 tel.0048 12 617-29-24, 617-23-33 Vliv

Více

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček (9.SLOVENSKÁ DEMOGRAFICKÁ KONFERENCIA RODINA, 17.-19.9.2003, Tajov pro Banskej Bystrici) 1 ÚVOD Při úlohách vztažených k analýze a prezentaci výsledků

Více

(n, m) (n, p) (p, m) (n, m)

(n, m) (n, p) (p, m) (n, m) 48 Vícerozměrná kalibrace Podobně jako jednorozměrná kalibrace i vícerozměrná kalibrace se používá především v analytické chemii Bude vysvětlena na příkladu spektroskopie: cílem je popis závislosti mezi

Více

LISTOPAD 2009 PŘIPRAVENO PRO. ri. Heřmanova 22, 170 00 PRAHA 7 Tel.: +420 220 190 580, Fax: +420 220 190 590. E-Mail: INBOX@MARKENT.

LISTOPAD 2009 PŘIPRAVENO PRO. ri. Heřmanova 22, 170 00 PRAHA 7 Tel.: +420 220 190 580, Fax: +420 220 190 590. E-Mail: INBOX@MARKENT. MOŽNOSTI REALIZACE ZAŘÍZENÍ PRO ENERGETICKÉ VYUŽITÍ ODPADU NA ÚZEMÍ STŘEDOČESKÉHO KRAJE ZÁVĚREČNÁ ZPRÁVA Z VÝZKUMU VEŘEJNÉHO MÍNĚNÍ LISTOPAD 9 PŘIPRAVENO PRO Heřmanova, 7 PRAHA 7 Tel.: +4 9 58, Fax: +4

Více

Společného monitorovacího výboru operačních programů Praha Adaptabilita a Praha Konkurenceschopnost

Společného monitorovacího výboru operačních programů Praha Adaptabilita a Praha Konkurenceschopnost U S N E S E N Í Společného monitorovacího výboru operačních programů a Praha Konkurenceschopnost (podle čl. 4, ost. 7 Jednacího řádu Společného monitorovacího výboru OPPA a OPPK procedurou per rollam s

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

VLIV DOSAŽENÉHO VZDĚLÁNÍ NA UPLATNĚNÍ MLADÝCH LIDÍ NA TRHU PRÁCE

VLIV DOSAŽENÉHO VZDĚLÁNÍ NA UPLATNĚNÍ MLADÝCH LIDÍ NA TRHU PRÁCE VLIV DOSAŽENÉHO VZDĚLÁNÍ NA UPLATNĚNÍ MLADÝCH LIDÍ NA TRHU PRÁCE Ondřej Nývlt Dagmar Bartoňová Abstract Uplatnění mladých lidí na trhu práce se stále více dostává do popředí zájmu politiků, ekonomů a širší

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

Stabilita v procesním průmyslu

Stabilita v procesním průmyslu Konference ANSYS 2009 Stabilita v procesním průmyslu Tomáš Létal VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ, Adresa: Technická 2896/2, 616 69

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Určení vnitřní

Více

VŠB Technická univerzita Ostrava

VŠB Technická univerzita Ostrava VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: PRAVDĚPODOBNOST A STATISTIKA Domácí úkoly Zadání 21 DATUM ODEVZDÁNÍ

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Podmínky pro přijímací řízení

Podmínky pro přijímací řízení Podmínky pro přijímací řízení pro akademický rok 2014/2015 Pro akademický rok 2014/2015 jsou přijímány přihlášky ke studiu na níže uvedené akreditované studijní obory. Bakalářské studijní programy: Bez

Více

Zprávy - Psychologický ústav AV ČR

Zprávy - Psychologický ústav AV ČR Zprávy - Psychologický ústav AV ČR Tomáš Urbánek Optimální škálování Testu sémantického výběru Roč. 7, 2001, č. 1 ISSN: 1211-8818 AKADEMIE VĚD ČESKÉ REPUBLIKY PSYCHOLOGICKÝ ÚSTAV VEVEŘÍ 97, 602 00 BRNO

Více

Studující a absolventi lékařských, zdravotně-sociálních a farmaceutických fakult rok 2003

Studující a absolventi lékařských, zdravotně-sociálních a farmaceutických fakult rok 2003 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 12.10.2004 62 a absolventi lékařských, zdravotně-sociálních a farmaceutických fakult rok 2003 Zdrojem dat pro tuto

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

Tvorba grafů v programu ORIGIN

Tvorba grafů v programu ORIGIN LICENČNÍ STUDIUM GALILEO STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Tvorba grafů v programu ORIGIN doc.dr.ing.vladimír Pata Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav výrobních technologií

Více

4 Studijní a pedagogická činnost

4 Studijní a pedagogická činnost 4 Studijní a pedagogická činnost 4.1 Studijní programy Vysoká škola ekonomická v Praze uskutečňuje výuku v celkem sedmi studijních programech: Hospodářská politika a správa Ekonomika a management Mezinárodní

Více

Kritéria přijímacího řízení pro školní rok 2016/2017

Kritéria přijímacího řízení pro školní rok 2016/2017 Kritéria přijímacího řízení pro školní rok 2016/2017 Pro přijímací řízení pro školní rok 2016/2017 byla v souladu se zákonem č. 561/2004 Sb., o předškolním, základním, středním, vyšším odborném a jiném

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

DODATEK č. 2 ke dni 1. 9. 2013 KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU PRO OBOR OBCHODNÍ AKADEMIE

DODATEK č. 2 ke dni 1. 9. 2013 KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU PRO OBOR OBCHODNÍ AKADEMIE GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA ZDRAVOTNICKÁ A EKONOMICKÁ VYŠKOV DODATEK č. 2 ke dni 1. 9. 2013 KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU PRO OBOR OBCHODNÍ AKADEMIE Dodatkem jsou změněny skutečnosti, které vznikly

Více

Cyklické změny v dynamice sluneční konvektivní zóny

Cyklické změny v dynamice sluneční konvektivní zóny Cyklické změny v dynamice sluneční konvektivní zóny P. Ambrož, Astronomický ústav AVČR, Ondřejov, pambroz @asu.cas.cz Abstrakt Na základě analýzy rozsáhlého materiálu evoluce fotosférických pozaďových

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ Vladimír Bajzík Hodnocení omaku textilií AUTOREFERÁT DISERTAČNÍ PRÁCE Název disertační práce: HODNOCENÍ OMAKU TEXTILIÍ Autor: Obor doktorského studia: Forma

Více