ELEKTŘINA A MAGNETIZMUS

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ELEKTŘINA A MAGNETIZMUS"

Transkript

1 EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3 EZONANE 4 ÝKON E STŘÍDAÝH OBODEH 4 ŠÍŘKA PÍKU 5 TANSFOMÁTO 4 6 PAAENÍ OBOD 5 7 SHNUTÍ 7 8 AGOITMY PO ŘEŠENÍ STŘÍDAÝH OBODŮ 8 9 ŘEŠENÉ ÚOHY TÉMATIKÉ OTÁZKY 6 NEŘEŠENÉ ÚOHY 7

2 Střídavé obvody Zdroje střídavého napětí kapitole jsme si ukázali, že měnící se tok magnetického pole dle Faradayova zákona indukuje elektromotorické napětí Nejjednodušším zdrojem střídavého napětí je rotující cívka v magnetickém poli, indukované napětí se sinusově mění s časem Následující symbol představuje zdroj střídavého napětí: Příkladem matematického popisu zdroje střídavého napětí je funkce t () = sin ω t, () kde maximální hodnotu napětí nazýváme amplituda Napětí se pak mění v rozsahu až +, protože obor hodnot funkce sin x je interval mezi a + Graf závislosti napětí na čase je na obrázku Obr : Sinusový průběh střídavého zdroje napětí Funkce sinus je periodická v čase Znamená to, že průběh napětí v čase t je naprosto stejný jako v čase t = t + T, kde T je perioda Frekvence f je definovaná jako f = / T, její jednotkou jsou převrácené sekundy [s - ] neboli hertze [Hz] Úhlová frekvence je pak definována vztahem ω = π f Pokud zdroj střídavého napětí připojíme k obvodu, energie se sice začne ztrácet na rezistoru, oscilace však neustanou Oscilace náboje, proudu nebo napětí v tomto případě nazýváme řízené nebo vynucené kmity Po určité přechodové době bude odpovídat střídavá frekvence proudu v střídavém obvodu frekvenci řídícího napětí zdroje Proud v obvodu můžeme zapsat ( ω ϕ ) I = I sin t+, () kde proud osciluje se stejnou frekvencí jako zdroj, s amplitudou I a fází ϕ závisející na prvcích obvodu Jednoduché střídavé obvody Než se budeme podrobně věnovat obvodům, ukážeme si jednodušší případy, kdy bude zapojen pouze jeden element (rezistor, cívka nebo kondenzátor) ke zdroji sinusového napětí

3 ezistor jako zátěž Nejprve uvažme zapojení s rezistorem připojeným ke zdroji střídavého napětí, viz obrázek (Jak uvidíme dále, obvod s odporem odpovídá zapojení s nekonečnou kapacitou = a nulovou indukčností = ) Obr : Zapojení pouze s rezistorem Z Kirchhoffova zákona pro smyčky plyne t () () t = t () I () t =, () kde ( t) = I( t) je okamžitý pokles napětí na rezistoru Okamžitý proud na rezistoru je dán () t sinωt I () t = = = I sin ω t, () kde = a I = / je maximální proud Srovnáním rovnice () s rovnicí () zjistíme, že fázový rozdíl ϕ =, což znamená, že proud I ( t ) a napětí ( t ) jsou ve fázi, tedy nabývají minim a maxim ve stejném čase Graf časové závislosti je vynesen na obrázku nalevo Obr : Nalevo časová závislost I (t) a (t) na rezistoru Napravo fázorový diagram pro obvod s rezistorem hování proudu I ( t ) a napětí ( t) může být také znázorněno ve fázorovém diagramu, viz Obr napravo Fázor je rotující vektor s následujícími vlastnostmi: (i) délka: délka odpovídá amplitudě veličiny, (ii) úhlová rychlost: vektory rotují proti chodu hodinových ručiček úhlovou rychlostí, (iii) projekce: projekce vektoru do svislé osy odpovídá velikosti veličiny v daném čase t Fázory budeme označovat tučně, jako vektory Fázor má konstantní velikost Jeho projekce na svislou osu je sin ω t, což je rovno ( t ), tedy napětí na rezistoru v čase t 3

4 Stejně můžeme interpretovat fázor I pro proud rezistorem Z fázového diagramu je vidět, že jak proud, tak napětí jsou ve fázi Průměrnou hodnotu proudu během jedné periody můžeme vyjádřit jako T T I T π t I() t = I () t dt I sin tdt sin dt T = ω T = = T (3) T Proud zprůměrňováním vymizí Je to proto, že T sinωt = sinωt dt T = (4) Obdobně mohou být užitečné tyto další vzorce pro průměrné hodnoty: cos cos, T ωt = t dt T ω = T ωt ωt = t t dt T ω ω = T T ω ω T T ω ω sin cos sin cos, sin t π t = sin t dt = sin dt =, T T T cos t π t = cos t dt = cos dt = T T T Z výš uvedeného je vidět, že průměr kvadrátu proudu nezmizí: T T T π t I() t = I () t dt = I sinωtdt = I sin dt I = T T T T Pro pohodlnost pak zavádíme efektivní proud jako (5) (6) I Ief = I () t = (7) A stejným způsobem definujeme i efektivní napětí ef = () t = (8) elektrických zásuvkách je efektivní napětí ef = 3 o frekvenci f = 5 Hz (v USA =, f = 6 Hz ) ef ýkon disipovaný na rezistoru spočítáme jako který můžeme zprůměrňovat přes jednu periodu a získáme P () t = I () t () t = I () t, (9) ef ef ef ef P () t = I () t = I () t = I = = I () 4

5 ívka jako zátěž Uvažujme nyní obvod, kde je cívka připojena jako zátěž ke zdroji střídavého napětí, viz Obr 3 Obr 3: ívka jako zátěž Jak uvidíme dále, obvod, kde je zapojena pouze indukčnost odpovídá zapojení s nekonečnou kapacitou = a nulovým odporem = Aplikováním modifikovaného smyčkového Kirchhoffova zákona pro indukčnost získáme rovnici di t () () t = t () =, () dt z čehož plyne di t () = = sin ωt, () dt kde = Integrací rovnice dostaneme π I() t = di = sinωtdt cosωt sin ωt, = = ω ω (3) kdy jsme pro přepsání posledního výrazu využili identitu goniometrických funkcí π cosωt = sin ωt (4) Srovnáním rovnice (3) s rovnicí () zjistíme, že amplituda proudu na cívce je kde veličina I = = (5), ω X X = ω (6) je nazývána induktivní reaktance nebo induktance Její SI jednotkou je Ω, jednotka je stejná jako u odporu Na rozdíl od odporu induktance X lineárně závisí na úhlové frekvenci ω S rostoucí frekvencí tak cívka propouští méně proudu, je to dáno tím, že se rychleji mění směr proudu Na druhou stranu, induktance vymizí při velmi nízkých frekvencích Srovnáním rovnice (3) s () zjistíme, že fázový rozdíl je π ϕ =+ (7) Průběhy proudu a napětí na cívce a fázorový diagram jsou zobrazeny na obrázku 4 5

6 Obr 4: Nalevo závislost proudu a napětí na cívce Napravo fázorový diagram zapojení s cívkou Jak je vidět z grafů, rozdíl fází proudu I ( t ) a napětí ( t ) je ϕ = π /, maximální proud obvodem prochází, právě když napětí je již v jedné čtvrtině dalšího cyklu, můžeme proto říci: Proud na cívce je opožděn vůči napětí o π / 3 Kondenzátor jako zátěž zapojení s kondenzátorem jsou jak odpor, tak indukčnost rovny nule Schéma zapojení je na obrázku 5 Obr 5: Kondenzátor připojený ke zdroji střídavého napětí Opět vyjdeme z Kirchhofova zákona Qt () t () () t = t () =, (8) z čehož plyne Q() t = () t = () t = sin ωt, (9) kde = Můžeme rovněž zapsat rovnici pro proud dq π I() t =+ = ωcosωt = ωsin ωt+, () dt kde jsme využili identity π cosωt = sin ωt+ () Z předchozí rovnice je zřejmé, že amplituda proudu je 6

7 I = = () ω, X kde X = (3) ω se nazývá kapacitní reaktance, neboli kapacitance Její SI jednotkou je rovněž Ω a reprezentuje efektivní odpor zapojené kapacity šimněte si, že X je nepřímo úměrná jak ω, tak a diverguje, pokud ω jde k nule Srovnáním rovnic () a () vidíme, že fázový rozdíl je π ϕ = (4) Průběh napětí a proudu, stejně jako fázorový diagram, jsou na obrázku 6 Obr 6: Nalevo průběh napětí a proudu na kondenzátoru Napravo fázorový diagram zapojení s kondenzátorem šimněte si, že v čase t = je nulové napětí na kondenzátoru, ale proud v obvodu je maximální Proud na kondenzátoru I ( t ) dosahuje maxima před napětím ( t ) v jedné čtvrtině cyklu ( ϕ = π / ) Proto můžeme říci, že: Proud předbíhá na kondenzátoru napětí o π / 3 Sériový obvod Nechť máme sériově zapojený obvod jako na obrázku 3 Obr 3: Sériově zapojený obvod 7

8 Z Kirchhoffova smyčkového zákona dostáváme di Q t () () t () t () t = t () I =, (3) dt což vede na diferenciální rovnici di Q + I+ = sin ωt dt (3) Předpokládejme, že kondenzátor byl na začátku vybitý, tedy I = + dq / dt je přímo úměrný přírůstku náboje na kondenzátoru, rovnice může tedy být přepsána do tvaru Jedno z řešení této diferenciální rovnice je kde amplituda a fáze jsou Q a Odpovídající proud je s amplitudou d Q dq Q + + = sin ωt (33) dt dt Qt () = Q cos( ωt ϕ), (34) / = = = ( ω/ ) + ( ω / ) ω + ( ω / ω) = ω + X X ( ) X X tan ϕ = ω = ω I (35) (36) dq It () = + = I sin( ωt ϕ ) (37) dt = Q ω = ( ) + X X (38) Obr 3: Fázorové diagramy pro napětí a proud na (a) rezistoru, (b) cívce a (c) kondenzátoru v sériovém obvodu 8

9 šimněte si, že okamžitý proud má stejnou fázi i amplitudu ve všech místech obvodu Na druhou stranu, okamžité napětí na každé ze tří součástek zapojení,, nebo mají jinou fázi i amplitudu, jak je vidět z fázorového diagramu na obrázku 3 Okamžitá napětí z obrázku 3 můžeme spočítat jako () t = Isinωt = sin ωt, π () t = IX sin ωt+ = cos ωt, (39) π () t = IXsin ωt = cos ωt, kde = I, = I X, = I X (3) jsou amplitudy napětí na jednotlivých elementech obvodu Suma všech třech napětí je rovna okamžitému napětí střídavého zdroje t () = () t+ () t+ () t (3) e fázorové reprezentaci můžeme rovnici přepsat = + +, což je znázorněno na obrázku 33 nalevo Opět můžeme vidět, že fázor proudu I předbíhá fázor napětí na kondenzátoru o π /, je ovšem opožděn za fázorem napětí na cívce rovněž o π / šechny tři fázory napětí se otáčejí v čase proti směru hodinových ručiček, jejich vzájemné uspořádání je však stále stejné Obr 33: Nalevo fázorový diagram sériového obvodu Napravo vztahy mezi velikostmi (amplitudami) fázorů napětí ztahy mezi amplitudami fázorů napětí jsou znázorněny na obrázku 33 napravo Z obrázku vidíme, že ( ) = = + + = + = ( ) ( ) = I + I X I X = = I + ( X X ), což vede ke stejnému výsledku, jako jsme získali z rovnice (37) (33) 9

10 Je důležité upozornit na to, že amplituda střídavého zdroje napětí není rovna součtu amplitud na jednotlivých elementech v obvodu + + (34) Je to způsobeno tím, že napětí na jednotlivých elementech obvodu nejsou ve fázi a maxima tak nastávají v jiných okamžicích 3 Impedance Již jsme si ukázali, že induktance X = ω a kapacitance X = / ω představovaly důležitou roli jako efektivní odpor v zapojeních s cívkou nebo kondenzátorem sériově zapojeném obvodu označujeme efektivní odpor jako impedanci definovanou jako ( ) Z = + X X (35) ztah mezi Z,, X a X je znázorněn v diagramu na obrázku 34: Obr 34: Schematické znázornění vztahů mezi Z,, X a X SI jednotkou impedance je opět Ω ovnici pro časový průběh proudu tak můžeme přepsat jako It () = sin ( ωt ϕ ) (36) Z šimněte si, že impedance závisí na úhlové frekvenci ω stejně jako X a X ovnice (36) pro fázi ϕ a rovnice (35) pro impedanci Z můžeme využít i pro jednoduché obvody (i pouze s jedním prvkem) jako limitní zapojení obvodu Shrnutí je uvedeno v následující tabulce : X = ω X X X = ϕ = tg ω Z= + X X rezistor induktor X π / X kondenzátor X π / X 3 ezonance Tabulka : Jednoduché obvody jako limitní případ obvodu ( ) Z rovnice (36) plyne, že amplituda proudu je maximální, pokud impedance Z je co nejmenší číslo To nastává v případě, kdy X = X nebo ω = / ω, což vede na rovnici

11 ω = (37) Tento jev, kdy proud I dosahuje maximální hodnoty, je nazýván rezonancí a frekvence ω při níž k tomuto jevu dochází je nazývána rezonanční frekvence případě rezonance je impedance rovna pouze odporu, tedy Z =, amplituda proudu je a fáze je I = (38) ϕ =, jak je vidět z rovnice (35) Kvalitativně je chování obvodu ilustrováno na obrázku 35 Obr 35: Amplituda proudu jako funkce ω v obvodu 4 ýkon ve střídavých obvodech sériově zapojeném obvodu je okamžitý výkon dodaný střídavým zdrojem dán vztahem Pt () = Itt () () = sin( ωt ϕ) sinωt= sin( ωt ϕ) sinωt= Z Z kde jsme využili známý součtový vzorec ( ωt ϕ ωt ωt ϕ) = sin cos sin cos sin, Z ( ) ýkon vystředovaný v čase přes periodu je (4) sin ω t ϕ = sinωtcosϕ cosωtsin ϕ (4) T T Pt ( ) = sin tcos dt sin tcos tsin dt T ω ϕ ω ω ϕ = Z T Z = cosϕ sin ωt sinϕ sinωtcosωt = Z Z = Z cos ϕ, (43)

12 kde jsme ke středování využili rovnic (5) a (7) ovnici pro průměrný výkon můžeme vyjádřit i pomocí efektivních napětí a proudů: ef Pt ( ) = cosϕ = cosϕ = Iefef cos ϕ (44) Z Z Hodnotu cosϕ nazýváme účiník Z obrázku 34 je zřejmé, že cos ϕ = (45) Z Střední hodnotu výkonu Pt () můžeme přepsat jako ef Pt () = Iefef = Ief = Ief Z Z (46) Na obrázku 4 je zobrazen průměrný výkon jako funkce ω zdroje střídavého napětí Obr 4: Průměrný výkon obvodu jako funkce úhlové rychlosti zdroje střídavého napětí Obr 4: Šířka píku Z grafu je zřejmé, že průměrný výkon Pt () je maximální, když cosϕ = nebo Z =, což jsou podmínky rezonance, pak maximální výkon je 4 Šířka píku P = I max efef = Šířka píku je poměrně malá, jeden ze způsobů, jak ji definovat je zavést ω = ω+ ω, kde ω ± jsou hodnoty úhlové frekvence zdroje, při kterých je výkon roven polovině maximální hodnoty Tato definice se často nazývá šířka v polovině maxima a označuje anglickou zkratkou FWHM (Full-Width Half-Maximum), viz Obr 4 Šířka ω roste se vzrůstajícím odporem Abychom byli schopni nalézt ef ω, přepíšeme si nejprve rovnici pro výkon Pt () do tvaru

13 ω + + Pt () = =, ( ω / ω ) ω ( ω ω ) (48) kde max Pt () = / Podmínka pro ω ± tak je z čehož získáme rovnici ω = Pt = max ω ± ω + ( ω ω ) ω± Pt ( ) ( ), 4 ω ( ω ω ) = Po odmocnění získáme dvě větve řešení, které budeme analyzovat odděleně První řešení: (49) (4) ω ω ω + + =+ (4) Kladné řešení této kvadratické rovnice je Druhé řešení: ω+ = + + ω 4 (4) ω ω ω = (43) Kladné řešení této kvadratické rovnice je Šířka píku je pak ω = + + ω 4 ω = ω+ + ω = (45) Pokud známe šířku ω, můžeme spočítat činitel jakosti Q (nezaměňujte s nábojem) jako ω ω Q = (46) ω Pokud srovnáme tuto rovnici s (87), zjistíme, že oba výrazy se limitně shodují pro malý odpor a ( ) ω = ω / ω 3

14 5 Transformátor Transformátor je zařízení pro zvyšování nebo snižování střídavého napětí Typický transformátor je složen ze dvou vinutí cívek primárního a sekundárního, jež jsou navinuty na kovovém jádru, viz Obr 5 Primární cívka o N závitech je připojena ke zdroji střídavého napětí () t Sekundární cívka o N závitech je připojena k zátěži Transformátory fungují na principu indukovaného elektromotorického napětí Napětí na sekundární cívce je indukováno první cívkou díky vzájemné indukčnosti Obr 5: Transformátor Pokud zanedbáme malý odpor primárního vinutí, získáme z Faradayova zákona dφ B = N, (5) dt kde φ B je tok magnetického pole primární cívkou Železné jádro procházející primární cívkou slouží jako vodič magnetického pole a zaručuje, že téměř všechen magnetický tok primární cívky prochází cívkou sekundární Proto je na sekundární cívce indukované napětí dφb = N (5) dt případě ideálního transformátoru můžeme zanedbat ztráty způsobené Jouleovým ohřevem, takže výkon dodaný primární cívce je kompletně předán na cívku sekundární: I = I (53) A pokud žádný magnetický tok neuniká z jádra transformátoru, tok φ B je stejný jak v primární, tak v sekundární cívce Srovnáním rovnic pak získáme vztah pro transformátor N = (54) N Z rovnic získáme i vztahy popisující proudy na cívkách transformátoru N I = I = I (55) N Z toho je zřejmé, že poměr mezi vstupním a výstupním napětím je dán převodním poměrem transformátoru N/ N Pokud N > N, pak >, což znamená, že výstupní napětí na sekundární cívce je vyšší, než je napětí vstupní na cívce primární Transformátor, kde N > N, nazýváme zvyšovací transformátor Na druhou stranu, pokud N < N, pak < a výstupní napětí je nižší než vstupní Transformátor s N < N nazýváme proto snižovací transformátor 4

15 6 Paralelní obvod Mějme paralelní obvod zobrazený na obrázku 6 Zdroj střídavého napětí je dán vztahem t () = sinωt Obr 6: Paralelní obvod Na rozdíl od sériového obvodu je v paralelním odvodu napětí na všech třech elementech, a stejné, všechna napětí jsou ve fázi, jsou rovněž ve fázi s proudem, který protéká rezistorem Ostatní proudy mají však fázi rozdílnou Pro analýzu tohoto obvodu vyjdeme z výsledků z kapitol až 4 Proud rezistorem je dán vztahem t () I () t = = sinωt = I sin ωt, (6) kde I = / Napětí na cívce je z čehož dostáváme di () = () = sin =, (6) t t ωt dt π π I () t = sin t dt = cos t = sin t = I sin t, kde I = / X a X t ω ω ω ω (63) ω X = ω je induktance cívky Podobně, napětí na kondenzátoru () t = sin ωt = Q()/ t, z čehož plyne dq π π I = = ωcosωt = sin ωt+ = Isin ωt+, dt X kde I = / X a X = / ω je kapacitance kondenzátoru (64) Z Kirchhoffova zákona pro uzly dostaneme, že proud jdoucí obvodem je jednoduše suma všech tří proudů, tedy It () = I() t+ I() t+ I() t = π π (65) = Isinωt+ Isin ωt + Isin ωt+ Proudy můžeme zakreslit do fázorového diagramu, viz Obr 6 5

16 Obr 6: Fázorový diagram pro paralelní obvod Z fázorového diagramu je vidět, že I = I + I + I (66) a maximální amplitudu celkového proudu I můžeme vyjádřit jako ( ) I I I I I = = + + = I + I I = = + ω + = + ω X X (67) Protože jednotlivé proudy I ( t ), I ( t ) a I ( t ) nejsou vzájemně ve fázi, nemůžeme jednoduše napsat, že maximální amplituda je rovna sumě jednotlivých amplitud I I + I + I (68) Z rovnice I = / Z můžeme vyjádřit inverzí impedanci (admitanci) = + Z ω + = + ω X X ztah mezi Z,, X a X je na obrázku 63 (69) Obr 63: ztah mezi Z,, X a X v paralelním obvodu Z tohoto obrázku, nebo z fázorového diagramu na Obr 6 fází ϕ spočítáme jako 6

17 I I X X tan ϕ = = = ω I = X X ω Podmínka pro rezonanci paralelního obvodu je ϕ =, z čehož plyne (6) = (6) X X ezonanční frekvence je pak ω = (6) a je stejná jako u sériového obvodu Z rovnice (69) vidíme, že při rezonanci je / Z minimální (nebo Z maximální) Proud cívkou je přesně opačný, než proud kondenzátorem, takže celkový proud je tak minimální a je roven proudu na rezistoru I = Stejně jako v sériovém obvodu je výkon disipován jen na rezistoru Průměrný výkon je ω Z Pt () = I() t() t = I () t = sin t = = Z Účiník proto v tomto případě je Pt () Z = = = cos ϕ /Z + ω ω (64) 7 Shrnutí střídavém obvodu se zdrojem napětí, jehož časový průběh napětí je t () = sinωt, je proud obvodem dán předpisem It () = I sin( ωt ϕ), kde I je amplituda a ϕ je fáze Následující tabulka shrnuje jednoduchá zapojení (pouze s jedním prvkem kondenzátorem, cívkou nebo rezistorem): Prvek obvodu Odpor / eaktance Amplituda proudu Fázový úhel ϕ I = X = ω π / I = proud se opožďuje X za napětím o 9 X = ω I = X X je induktance a X je kapacitance π / proud předbíhá napětí o 9 7

18 Pro zapojení, kde je více jak jeden prvek v sérii výsledky jsou: Prvek obvodu Impedance Z Amplituda proudu Fázový úhel ϕ + X π < ϕ < + X + X π < ϕ < + X ( ) + X X ( ) + X X Z je impedance obvodu Pro sériový obvod je Z ( X ) X mezi napětím a proudem ve střídavém obvodu je ϕ = [ X X ] paralelním obvodu je impedance a fáze dána vztahy ϕ > ( X > X ) ϕ < ( X < X ) = + Fázový úhel tan ( )/ = + Z ω + = + ω X X, ϕ = tan = tan ω X X ω Efektivní napětí a proud jsou ve střídavém obvodu ef = /, Ief = I/ Průměrný výkon je u střídavých obvodů Pt () = Iefef cos ϕ, kde cos ϕ je účiník ezonanční frekvence je ω = / Při rezonanci je proud sériově zapojeným obvodem maximální, v paralelně zapojeném obvodu je proud naopak minimální ovnice popisující transformátor je / = N / N, kde je napětí zdroje na primárním vinutí (cívce) o N závitech a je výstupní napětí na sekundární cívce o N závitech Transformátor, kde N > N, nazýváme zvyšovací transformátor Transformátor N < N nazýváme snižovací transformátor s 8 Algoritmy pro řešení střídavých obvodů této kapitole si ukážeme, jak mocný nástroj jsou fázory pro analýzu a řešení střídavých obvodů Následuje seznam důležitých doporučení: Fázová zpoždění napětí a proudu vůči sobě jsou: a Pro rezistor jsou napětí i proud ve fázi b Pro cívku se proud opožďuje za napětím o 9 c Pro kondenzátor proud předbíhá napětí o 9 Pokud jsou jednotlivé elementy zapojeny sériově, je na všech prvcích obvodu stejný proud (jak velikost, tak fáze), okamžitá napětí se však liší (jak do velikosti, tak i fáze) Pro 8

19 paralelní zapojení platí opak, tedy na všech prvcích je stejné napětí a ve fázi, proud jednotlivými prvky se však liší 3 Pro sériová zapojení si nakreslete fázorový diagram pro napětí Amplitudy napětí na jednotlivých prvcích jsou délky jednotlivých fázorů v diagramu Na obrázku 8 jsou zakresleny fázorové diagramy pro sériový obvod, pro oba případy nalevo je větší induktance X > X, napravo je větší kapacitance X < X Obr 8: Fázorový diagram pro sériově zapojený obvod; nalevo X > X, napravo X < X Z obrázku 8 nalevo je větší induktance, tedy > a napětí předbíhá proud I ve fázi ϕ případě, že je větší kapacitance, viz Obr 8 napravo, < a proud I předbíhá napětí ve fázi φ 4 Pokud = nebo ϕ = obvod je v rezonanci Odpovídající rezonanční frekvence ω = / a na odporu je maximální výkon 5 Pro paralelní zapojení si nakreslete fázorový diagram pro proudy Amplitudy proudů na všech prvcích v zapojení odpovídají velikostem fázorů v diagramu Na obrázku 8 jsou zobrazeny fázorové diagramy paralelně zapojeného obvodu pro oba případy, kdy X > X, nebo X < X Obr 8: Fázorový diagram paralelního obvodu; nalevo X > X, napravo X < X Z obrázku 8 nalevo, kdy je větší induktance, vidíme, že I > I a napětí předbíhá proud I ve fázi ϕ případě, že je větší kapacitance, viz Obr 8 napravo, I < I a proud I předbíhá napětí ve fázi ϕ 9

20 9 Řešené úlohy 9: Sériový obvod Mějme sérově zapojený obvod s = 6 mh, = µf a = 4, Ω připojený ke t () = 4, sinωt, kde ω = rad/s zdroji střídavého napětí ( ) (a) Jaká je impedance zapojení? = Spočítejte I (b) Nechť obvodem teče proud It () I sin( ωt ϕ ) (c) Kolik je fáze ϕ? Řešení: (a) Impedanci zapojení spočítáme dle vzorce kde ( ) Z = + X X, (9) X = ω (9) a X = (93) ω jsou induktance a kapacitance Průběh proudu zdroje střídavého napětí je t () = sin( ωt), kde je maximální výstupní napětí a ω je úhlová frekvence, ze zadání = 4 a ω = rad/s Impedance Z proto po dosazení je (b) Pro = 4, je amplituda dána vzorcem Z = 43,9 Ω (94) I Z 4,,9 A 43,9 Ω = = = (c) Fázový rozdíl mezi proudem a napětím je dán ω X X ω ϕ = tan = tan = 4, (95) (96) 9: Sériový obvod Mějme střídavý zdroj t ( ) ( 5 ) sin ( t) = připojený k sériovému obvodu s parametry = 8, mh, = 5, µf a = 4, Ω, viz Obr 9 (a) Spočítejte amplitudy napětí na jednotlivých prvcích zapojení,, (b) Spočítejte maximální rozdíl potenciálů na cívce a kondenzátoru mezi body b a d, viz Obr 9

21 Obr 9: Střídavý obvod Řešení: (a) Induktance, kapacitance a impedance zapojeného obvodu jsou: X = = Ω, (97) ω X = ω = 8, Ω, (98) Proto amplituda proudu je ( ) Z = + X X = 96 Ω (99) 5 I = = =,765 A (9) Z 96 Ω Amplitudu napětí na rezistoru spočítáme jednoduše, jako součin amplitudy proudu a odporu = I= 3,6 (9) Obdobně počítáme amplitudu napětí na cívce = IX = 6, (9) a amplitudu napětí na kondenzátoru = IX = 53 (93) šimněte si, že vztah mezi amplitudami napětí je = + ( ) (94) (b) Maximální napětí mezi body b a d je rozdíl mezi a : 93: ezonance bd = + = = 47 (95) Zdroj se sinusovým průběhem napětí t ( ) ( ) = sinωt je připojen k sériovému obvodu s následujícími prvky v zapojení: =, mh, = nf a =, Ω Spočítejte následující veličiny:

22 (a) rezonanční frekvenci, (b) amplitudu proudu při rezonanci, (c) činitel jakosti Q zapojení, (d) amplitudu napětí na cívce při rezonanční frekvenci Řešení: (a) ezonanční frekvence obvodu je dána vztahem f = ω 533 Hz π = π = (96) (b) Při rezonanci je proud I = = =, A (97), Ω (c) Činitel jakosti Q spočítáme jako ω Q = = 5,8 (98) (d) Amplituda proudu při rezonanci je dána 94: horní propust = IX = Iω= 3,6 (99) horní propust (zapojení, které filtruje nízkofrekvenční střídavé proudy) může být zapojena podle schématu na obrázku 9, kde odpor je vnitřní odpor cívky 3 Obr 9: filtr (a) Zjistěte podíl / amplitud výstupního napětí ku vstupnímu napětí (b) Předpokládejte, že r = 5, Ω, =, Ω a = 5 mh / = / Řešení: (a) Impedance vstupního zapojení je ( ) Z r X = + +, kde X pro výstupní obvod Amplituda proudu je dána vztahem Zjistěte frekvenci, při níž je = ω a = + Z X

23 I = = Z ( + r) + X Obdobně amplituda výstupního napětí na impedanci s odporem je dána vztahem (9) z toho plyne, že hledaný poměr napětí je, = I Z = I + X (9) = ( ) + X + r + X (9) (b) Z podmínky / = / dostaneme ( ) + X + r + X ( ) + r 4 = X = 4 3 Protože X = ω= π f, mezní frekvence pro tento poměr je (93) f X = = 5,5 Hz (94) π 95: zapojení Nechť máme zapojení podle obrázku 93 Střídavý zdroj napětí má průběh t () = sinωt Oba spínače S a S jsou na počátku sepnuty Najděte následující veličiny (při výpočtu zanedbejte přechodové jevy), pokud znáte,, a ω : (a) proud I() t jako funkci času, Obr 93 (b) průměrný příkon obvodu, (c) proud jako funkci času, když je spínač S otevřen, (d) kapacitu kondenzátoru, když jsou oba spínače S i S otevřeny po dlouhou dobu a proud i napětí jsou ve fázi, (e) impedanci obvodu, pokud jsou oba spínače S i S otevřeny, (f) maximální energii uloženou v kondenzátoru během oscilací, (g) maximální energii uloženou v cívce během oscilací, 3

24 (h) fázový rozdíl proudu a napětí, pokud zdvojnásobíme úhlovou rychlost ω zdroje střídavého napětí t, () (i) frekvenci, při které je induktance Řešení: X rovna polovině kapacitance X (a) Pokud jsou oba spínače S a S sepnuty, proud ze zdroje napětí jde pouze rezistorem, celková impedance obvodu je rak rovna odporu rezistoru a proud můžeme napsat jako I () t = sin ωt (95) (b) Průměrný výkon je dán středováním Pt () = I t() t = sin ωt = (96) (c) pokud je spínač S otevřen delší dobu, proud jde ze zdroje na rezistor a cívku Impedance obvodu je Z = = (97) + X + ω a fázový rozdíl ϕ je ω ϕ = tan Proud jako funkci času můžeme napsat ve tvaru (98) ω It () = I sin( ωt ϕ) = sin ωt tan (99) + ω Povšimněte si, že v limitě, kdy odpor jde k nule je fázový rozdíl ϕ = π / a proud získá předpis stejný jako pro obvod, kde je zapojena jenom cívka (d) případě obou otevřených spínačů jde o klasický sériový obvod, kde je fázový rozdíl ϕ dán vztahem ω X X ω tan ϕ = = (93) Pokud mají být napětí i proud ve fázi, potom ϕ =, a tedy tanϕ =, pro úhlovou frekvenci zdroje ω dostáváme Kapacita kondenzátoru tedy je ω = (93) ω = (93) ω 4

25 (e) Z bodu (d) víme, že zapojení je v rezonanci, induktance je rovna kapacitanci, impedance je tedy rovna odporu (f) Elektrická energie uložená v kondenzátoru je ( ) Z = + X X = (933) U ( ) = = IX (934) Maximální energii vyjádříme pomocí amplitudy proudu jako,max = = = U I X ω, (935) kde jsme využili vztahu ω = / (g) Maximální energie uložená v cívce je dána vztahem U,max I = = (936) (h) Pokud zdvojnásobíme frekvenci zdroje, tedy ω = ω = /, fáze ϕ je ω ω 3 ϕ tan tan = = = tan (i) Pokud induktance je polovina kapacitance, pak platí X = X ω3=, ω3 tedy (937) (938) ω ω 3 = = (939) 96: filtr Schéma na obrázku 94 představuje filtr Nechť je Obr 94 = 4 mh a vstupní napětí in = (, )sinωt, kde ω = rad/s 5

26 (a) Jaký musí být odpor, aby výstupní napětí bylo zpožděno oproti vstupnímu napětí o 3,? (b) Najděte poměr vstupního ku výstupnímu napětí Jakým typem filtru je tento obvod? Dolní nebo horní propustí? (c) Pokud zaměníme pozice cívky a rezistoru, bude filtr horní, nebo dolní propustí? Řešení: (a) Fáze mezi napětími a je dán tan IX ω ϕ = = = (94) I Z toho vyjádříme odpor ω = = 39 Ω tanϕ (94) (b) Poměr je dán vztahem out = = in in + X = cosϕ = cos3, =,866 (94) Jedná se o dolní propust, neboť poměr výstupního napětí ku vstupnímu napětí klesá s rostoucí úhlovou frekvencí ω (c) tomto případě je schéma zapojení na následujícím obrázku: Obr 95: horní propust Poměr vstupního a výstupního napětí je dán ω ω / out X = = = = + in in + X + ω Zapojení je horní propustí, protože poměr out / in se blíží jedné pro vysoké hodnoty úhlové frekvence ω Tématické otázky Mějme kondenzátor připojený ke zdroji střídavého napětí a Jak se změní kapacitance, pokud zdvojnásobíme frekvenci zdroje? o se stane, pokud snížíme frekvenci zdroje na polovinu? b Dodává v takovémto zapojení někdy kondenzátor energii do zdroje napětí? 6

27 Pokud napětí předbíhá proud v sériovém obvodu, je frekvence zdroje nad nebo pod rezonanční frekvencí? 3 Na obrázku je fázorový diagram pro obvod Obr : Fázorový diagram obvodu a Je frekvence zdroje pod nebo nad rezonanční frekvencí? b Nakreslete fázor zdroje střídavého napětí c Odhadněte fázový rozdíl ϕ zdroje střídavého napětí a proudu 4 Jak se účiník v obvodu mění s odporem, indukčností a kapacitou? 5 Můžeme použít baterii jako zdroj primárního napětí u transformátoru? 6 o můžete říci o fázi mezi proudem a napětím, pokud je účiník obvodu cosϕ = /? Předbíhá napětí proud nebo naopak? ysvětlete! Neřešené úlohy : Kapacitance a induktance (a) Kondenzátor o kapacitě =,5 µf je připojen ke zdroji střídavého napětí s amplitudou = 3, viz Obr nalevo Jaká je amplituda proudu I tekoucího kondenzátorem, pokud úhlová frekvence ω je (i) rad/s, nebo (ii) rad/s? Obr : Střídavý obvod s kondenzátorem (nalevo); s cívkou (napravo) (b) ívka o indukčnosti 45 mh je připojena podle obrázku napravo ke zdroji střídavého napětí s amplitudou = 3 Induktance cívky je X = 3 Ω (i) Jaká je úhlová frekvence ω? (ii) Jaká je frekvence f zdroje střídavého napětí? (iii) Jaká je amplituda I proudu tekoucího cívkou? 7

28 (c) Jaká by byla frekvence f, pokud my měly,5 µf kondenzátor a,5 mh cívka stejnou reaktanci? Jaká by byla její velikost? Jaká by byla tato frekvence ve srovnání s rezonanční frekvencí obvodu složeného z těchto součástek? : obvod blízko rezonance Zapojení na obrázku se skládá z rezistoru, cívky a kondenzátoru, které jsou sériově spojeny se zdrojem střídavého napětí se sinusovým průběhem elektromotorického napětí t () = sinωt Obvodem teče proud It () I sin( ωt ϕ) Obr = s úhlovou frekvencí ω (a) Při jaké úhlové frekvenci ω poteče obvodem proud s největší amplitudou I? Jaká je hodnota maximální amplitudy proudu I max? (b) Jaká je hodnota fázového rozdílu ϕ mezi napětím t ( ) a proudem I( t ) při rezonanční frekvenci? (c) Předpokládejte, že jsme zvýšili úhlovou frekvenci ω tak, aby amplituda proudu I klesla z hodnoty I max na hodnotu I max / Jaký je teď fázový rozdíl mezi elektromotorickým napětím a proudem? Předbíhá proud, nebo je opožděn za napětím? 3: obvod Sériově zapojený obvod s napětí s průběhem napětí t ( ) 3 = 4, Ω a =,4 µf je připojen ke zdroji střídavého ( ) = sinωt, kde ω = rad/s (a) Jaký je efektivní proud v zapojení? (b) Jaký je fázový rozdíl mezi napětím a proudem? (c) Spočítejte výkon disipovaný v obvodu (d) Spočítejte napětí na obou elementech, jak na kondenzátoru, tak na rezistoru 4: Černá skříňka Zdroj střídavého proudu je připojen k černé skříňce, která obsahuje obvod, viz Obr 3 8

29 Obr 3: Černá skříňka připojená ke zdroji střídavého napětí Neznáme jednotlivé součástky zapojené v černé skříňce, ani jejich uspořádání Jediná informace, kterou známe je, že: ( ) ωt ( ) ( ωt ) t () = 8 sin, It () =,6A sin + 45 (a) Předbíhá proud napětí nebo je za napětím opožděn? (b) Je v obvodu černé skříňky větší kapacitance nebo induktance? (c) Je obvod v černé skříňce v rezonanci? (d) Jaký je jeho účiník? (e) Je v obvodu zapojen rezistor? Kondenzátor? ívka? (f) Spočítejte průměrný příkon dodaný černé skříňce zdrojem střídavého napětí 5: Paralelní obvod Uvažme paralelní obvod zapojený podle obrázku 4 Obr 4: Paralelní obvod Zdroj střídavého napětí má průběh t () = sinωt (a) Spočítejte proud tekoucí rezistorem (b) Spočítejte proud tekoucí cívkou (c) Jaká je velikost celkového proudu? (d) Spočítejte impedanci celkového obvodu (e) Jaký je fázový rozdíl mezi proudem a napětím? 6: obvod Předpokládejte, že v čase t = je kondenzátor plně nabit nábojem Q pozdějším čase t = T /6, kde T je perioda oscilace, spočítejte poměr následujících veličin k jejich maximálním hodnotám: 9

30 (a) náboje na kondenzátoru, (b) energie uložené v kondenzátoru, (c) proudu v obvodu, (d) energie uložené v cívce 7: Paralelní obvod Uvažme paralelní obvod, který je zapojen podle schématu na obrázku 5 Obr 5: Paralelní obvod Průběh napětí zdroje je t () = sinωt (a) Spočítejte proud tekoucí rezistorem (b) Spočítejte proud tekoucí kondenzátorem (c) Jaká je velikost celkového proudu? (d) Spočítejte impedanci zapojení (e) Jaký je fázový rozdíl mezi proudem a napětím v tomto zapojení? 8: Disipace výkonu Sériově zapojený obvod s parametry =, Ω, = 4 mh a = µf je připojen ke zdroji střídavého napětí s amplitudou = (a) Spočítejte rezonanční frekvenci ω (b) Spočítejte efektivní hodnotu proudu při rezonanci (c) Nechť je úhlová frekvence ω = 4 rad/s Spočítejte X, X, Z a ϕ 9: FM anténa FM anténa je složena (viz Obr 6) z cívky o impedanci = H, kondenzátoru o kapacitě = F a rezistoru o odporu = Ω ádiový signál na anténě indukuje 5 elektromotorické napětí o amplitudě 6 3

31 Obr 6: FM anténa (a) Spočítejte úhlovou frekvenci ω pro elektromagnetické vlnění, pro které je anténa vyladěna tedy pro které bude obvodem téci maximální proud (b) Jaký je činitel jakosti Q? (c) Předpokládejme, že anténa zachytává signál, pro který je naladěna, jaká je amplituda proudu pro tuto frekvenci? (d) Jaká je amplituda potenciálového rozdílu na kondenzátoru při frekvenci, na kterou je anténa naladěna? : obvod Předpokládejme, že chcete navrhnout obvod pro naladění ašeho oblíbeného rádia vysílajícího na frekvenci 89,7 MHz hcete se však vyhnout opovržlivé stanici, která vysílá na frekvenci 89,5 MHz Abyste toho mohli dosáhnout, potřebujete pro daný napěťový signál z anténního vstupu vyladit rezonanční obvod tak, aby proud jím tekoucí byl alespoň krát nižší pro frekvenci 89,5 MHz než pro aši oblíbenou frekvenci 89,7 MHz Odpor nemůže být nižší než =, Ω a z praktických důvodů musíte použít minimální možnou indukčnost (a) Nalezněte závislost amplitudy proudu tekoucího obvodem na úhlové frekvenci vysílaného signálu yjádřete jí v závislosti na parametrech, a (b) Spočítejte úhlovou frekvenci vaší oblíbené stanice (c) Jaké hodnoty a musíte použít? (d) Jaký je činitel jakosti pro tuto rezonanci? (e) Ukažte, že při rezonanci je poměr amplitudy napětí na induktoru a amplitudy řídícího signálu roven činiteli jakosti rezonance (f) Ukažte, že při rezonanci je poměr amplitudy napětí na kondenzátoru a amplitudy řídícího signálu roven činiteli jakosti rezonance (g) Jaký je průměrný příkon, který dodá anténní vstup obvodu při rezonanci (89,7 MHz)? (h) Jaký je fázový rozdíl pro signál na 89,5 MHz? (i) Jaký je průměrný příkon, který dodá anténní vstup při 89,5 MHz? (j) Je pro frekvenci 89,5 MHz větší induktance nebo kapacitance? 3

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

I. STEJNOSMĚ RNÉ OBVODY

I. STEJNOSMĚ RNÉ OBVODY Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Řízené LRC Obvody ELEKTŘNA A MAGNETZMUS Řešené úlohy a postupy: Řízené L Obvody Peter Dourmashkin MT 6, překlad: Jan Pacák (7) Obsah 9. ŘÍZENÉ L OBODY 3 9. ÚKOLY 3 9. OBENÉ LASTNOST ŘÍZENÝH L OBODŮ 3 ÚLOHA : ŘÍZENÉ OSLAE

Více

Fázory, impedance a admitance

Fázory, impedance a admitance Fázory, impedance a admitance 1 Dva harmonické zdroje napětí s frekvencí jsou zapojeny sériově a S použitím fázorů vypočítejte časový průběh napětí mezi výstupními svorkami, jestliže = 30 sin(100¼t);u

Více

Czech Technical University in Prague Faculty of Electrical Engineering. České vysoké učení technické v Praze. Fakulta elektrotechnická

Czech Technical University in Prague Faculty of Electrical Engineering. České vysoké učení technické v Praze. Fakulta elektrotechnická Výkon v HUS Rezistor: proud, procházející rezistorem, ho zahřívá, energie, dodaná rezistoru, se tak nevratně mění na teplo Kapacitor: elektrický proud, protékající obvodem dodává kapacitoru elektrický

Více

Jednoduché rezonanční obvody

Jednoduché rezonanční obvody Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako

Více

výkon střídavého proudu, kompenzace jalového výkonu

výkon střídavého proudu, kompenzace jalového výkonu , výkon střídavého proudu, kompenzace jalového výkonu Návod do měření ng. Václav Kolář, Ph.D., Doc. ng. Vítězslav týskala, Ph.D., poslední úprava 0 íl měření: Praktické ověření vlastností reálných pasivních

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Katedra inženýrské pedagogiky BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Katedra inženýrské pedagogiky BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky KÁŘSKÁ PÁE Praha 9 c. Pavel Řezníček ČESKÉ VYSOKÉ ČENÍ TEHNKÉ V PZE MSYKŮV ÚSTV VYŠŠÍH STDÍ Katedra inženýrské pedagogiky

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12

Více

Ele 1 RLC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických strojů

Ele 1 RLC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických strojů Předmět: očník: Vytvořil: Datum: ELEKTOTECHNIKA PVNÍ ZDENĚK KOVAL Název zpracovaného celku: 3. 0. 03 Ele LC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických

Více

3.4 Ověření Thomsonova vztahu sériový obvod RLC

3.4 Ověření Thomsonova vztahu sériový obvod RLC 3.4 Ověření Thomsonova vztahu sériový obvod RLC Online: http://www.sclpx.eu/lab3r.php?exp=9 Tímto experimentem ověřujeme známý vztah (3.4.1) pro frekvenci LC oscilátoru, který platí jak pro sériové, tak

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Datum tvorby 15.6.2012

Datum tvorby 15.6.2012 Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_2.MA_01_Lineární prvky el_obvodů Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící

Více

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T 1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

3.2. Elektrický proud v kovových vodičích

3.2. Elektrický proud v kovových vodičích 3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický

Více

W1- Měření impedančního chování reálných elektronických součástek

W1- Měření impedančního chování reálných elektronických součástek Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu

Více

R w I ź G w ==> E. Přij.

R w I ź G w ==> E. Přij. 1. Na baterii se napojily 2 stejné ohřívače s odporem =10 Ω každý. Jaký je vnitřní odpor w baterie, jestliže výkon vznikající na obou ohřívačích nezávisí na způsobu jejich napojení (sériově nebo paralelně)?

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014

Více

Mechatronické systémy s krokovými motory

Mechatronické systémy s krokovými motory Mechatronické systémy s krokovými motory V současné technické praxi v oblasti řídicí, výpočetní a regulační techniky se nejvíce používají krokové a synchronní motorky malých výkonů. Nejvíce máme možnost

Více

M R 8 P % 8 P5 8 P& & %

M R 8 P % 8 P5 8 P& & % ážení zákazníci dovolujeme si ás upozornit že na tuto ukázku knihy se vztahují autorská práva tzv. copyright. To znamená že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby ètenáø

Více

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í VEDENÍ ELEKTICKÉHO POD V KOVECH. Elektrický proud (I). Zdroje proudu elektrický proud uspořádaný pohyb volných částic s elektrickým nábojem mezi dvěma

Více

STŘÍDAVÝ PROUD periodický frekvenci počet kmitů za jednu sekundu herz f = 1/T Příklad periodického obdélníkový, pilovitý, trojúhelníkovitý sinusový

STŘÍDAVÝ PROUD periodický frekvenci počet kmitů za jednu sekundu herz f = 1/T Příklad periodického obdélníkový, pilovitý, trojúhelníkovitý sinusový STŘÍDAVÝ PROUD Pod tímto pojmem rozumíme elektrický proud, jehož velikost i směr se s časem mění. Pokud má tato změna periodický charakter, označujeme tento průběh periodický, periodu značíme T. Dále určujeme

Více

Interakce ve výuce základů elektrotechniky

Interakce ve výuce základů elektrotechniky Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky OBVODY RLC Číslo projektu

Více

Elektrická impedanční tomografie

Elektrická impedanční tomografie Biofyzikální ústav LF MU Projekt FRVŠ 911/2013 Je neinvazivní lékařská technika využívající nízkofrekvenční elektrické proudy pro zobrazení elektrických vlastností tkaní a vnitřních struktur těla. Různé

Více

9 Impedanční přizpůsobení

9 Impedanční přizpůsobení 9 Impedanční přizpůsobení Impedančním přizpůsobením rozumíme situaci, při níž činitelé odrazu zátěže ΓL a zdroje (generátoru) Γs jsou komplexně sdruženy. Za této situace nedochází ke vzniku stojatého vlnění.

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

VÝKON V HARMONICKÉM USTÁLENÉM STAVU

VÝKON V HARMONICKÉM USTÁLENÉM STAVU VÝKON V HARMONICKÉM USTÁLENÉM STAVU Základní představa: Rezistor: proud, procházející rezistorem, ho zahřívá, energie, dodaná rezistoru, se tak nevratně mění na teplo Kapacitor: pokud ke kondenzátoru připojíme

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace Automatizace 4 Ing. Jiří Vlček Soubory At1 až At4 budou od příštího vydání (podzim 2008) součástí publikace Moderní elektronika. Slouží pro výuku předmětu automatizace na SPŠE. 7. Regulace Úkolem regulace

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

Aplikovaná elektronika pro aplikovanou fyziku

Aplikovaná elektronika pro aplikovanou fyziku Milan Vůjtek Aplikovaná elektronika pro aplikovanou fyziku Předkládaný text je určen k výuce studentů oboru Aplikovaná fyzika. Věnuje se primárně vlastnostem a aplikacím operačních zesilovačů, především

Více

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem.

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem. Petr Novotný Úloha č. 7 Operační zesilovač, jeho vlastnosti a využití Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem. Zapojení zesilovače s invertujícím

Více

Prozkoumejte chování kondenzátoru v obvodu s generátorem obdélníkového napětí a s generátorem harmonického napětí.

Prozkoumejte chování kondenzátoru v obvodu s generátorem obdélníkového napětí a s generátorem harmonického napětí. ýstup P: Klíčová slova: inforace pro učitele obvody Střídavý obvod ojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant, aplikuje poznatky o echanisech vedení elektrického proudu při analýze

Více

Zadání I. série. Obr. 1

Zadání I. série. Obr. 1 Zadání I. série Termín odeslání: 21. listopadu 2002 Milí přátelé! Vítáme vás v XVI. ročníku Fyzikálního korespondenčního semináře Matematicko-fyzikální fakulty Univerzity Karlovy. S první sérií nám prosím

Více

Impulsní LC oscilátor

Impulsní LC oscilátor 1 Impulsní LC oscilátor Ing. Ladislav Kopecký, 2002 Upozornění: Tento článek předpokládá znalost práce Rezonanční obvod jako zdroj volné energie. Při praktických pokusech s elektrickou rezonancí jsem nejdříve

Více

stránka 101 Obr. 5-12c Obr. 5-12d Obr. 5-12e

stránka 101 Obr. 5-12c Obr. 5-12d Obr. 5-12e BIPOLÁRNÍ TRANZISTOR: Polovodičová součástka se dvěma přechody PN a se třemi oblastmi s příměsovou vodivostí (NPN, popř. PNP, K kolekor, B báze, E emitor) u níž lze proudem procházejícím v propustném směru

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření elektrofyzikálních parametrů krystalových rezonátorů . Úvod Krystalový rezonátor (krystal) je

Více

Řešení elektronických obvodů Autor: Josef Sedlák

Řešení elektronických obvodů Autor: Josef Sedlák Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení

Více

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4. Magnetické pole je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4.1. Fyzikální podstata magnetismu Magnetické pole vytváří permanentní (stálý) magnet, nebo elektromagnet. Stálý magnet,

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

7. Kondenzátory. dielektrikum +Q + + + + + + + + U - - - - - - - - elektroda. Obr.2-11 Princip deskového kondenzátoru

7. Kondenzátory. dielektrikum +Q + + + + + + + + U - - - - - - - - elektroda. Obr.2-11 Princip deskového kondenzátoru 7. Kondenzátory Kondenzátor (někdy nazývaný kapacitor) je součástka se zvýrazněnou funkční elektrickou kapacitou. Je vytvořen dvěma vodivými plochami - elektrodami, vzájemně oddělenými nevodivým dielektrikem.

Více

15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH

15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH 15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH Rozdělení zesilovačů podle velikosti rozkmitu vstupního napětí, podle způsobu zapojení tranzistoru do obvodu, podle způsobu vazby na následující stupeň a podle

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu

Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu 1. Rozbor možných opravných prostředků na výstupu z napěťového střídače vč. příkladů zapojení

Více

Obecný úvod do autoelektroniky

Obecný úvod do autoelektroniky Obecný úvod do autoelektroniky Analogové a digitální signály Průběhy fyzikálních veličin jsou od přírody analogové. Jako analogový průběh (analogový signál) označujeme přitom takový, který mezi dvěma krajními

Více

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory K620ZENT Základy elektroniky Přednáška ř č. 6 Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory Bistabilní klopný obvod Po připojení ke zdroji napájecího napětí se obvod ustálí tak, že jeden

Více

8. Operaèní zesilovaèe

8. Operaèní zesilovaèe zl_e_new.qxd.4.005 0:34 StrÆnka 80 80 Elektronika souèástky a obvody, principy a pøíklady 8. Operaèní zesilovaèe Operaèní zesilovaèe jsou dnes nejvíce rozšíøenou skupinou analogových obvodù. Jedná se o

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 51: ŽÁROVKY A BATERIE 2 OTÁZKA 52: ŽÁROVKY A

Více

TECHNIKA VYSOKÝCH NAPĚŤÍ. Měření vysokých napětí a velkých proudů

TECHNIKA VYSOKÝCH NAPĚŤÍ. Měření vysokých napětí a velkých proudů TECHNIKA VYSOKÝCH NAPĚŤÍ Měření vysokých napětí a velkých proudů Vysokonapěťová měření Měření vysokých napětí (high voltage measurement) vyžaduje speciální techniky, jejichž nároky rostou s amplitudou

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Experimentální metody EVF II.: Mikrovlnná

Experimentální metody EVF II.: Mikrovlnná Experimentální metody EVF II.: Mikrovlnná měření parametrů plazmatu Vypracovali: Štěpán Roučka, Jan Klusoň Zadání: Měření admitance kolíku impedančního transformátoru v závislosti na hloubce zapuštění.

Více

PŘECHODOVÝ JEV V RC OBVODU

PŘECHODOVÝ JEV V RC OBVODU PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí

Více

Výpis. platného rozsahu akreditace stanoveného dokumenty: HES, s.r.o. kalibrační laboratoř U dráhy 11, 664 49, Ostopovice.

Výpis. platného rozsahu akreditace stanoveného dokumenty: HES, s.r.o. kalibrační laboratoř U dráhy 11, 664 49, Ostopovice. Český institut pro akreditaci, o.p.s. List 1 z 39!!! U P O Z O R N Ě N Í!!! Tento výpis má pouze informativní charakter. Jeho obsah je založen na dokumentech v něm citovaných, jejichž originály jsou k

Více

1. Obecná struktura pohonu s napěťovým střídačem

1. Obecná struktura pohonu s napěťovým střídačem 1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:

Více

1. Pasivní součásti elektronických obvodů

1. Pasivní součásti elektronických obvodů Přednáška téma č.1 : 1. Pasivní součásti elektronických obvodů V tomto učebním textu se budeme zabývat pouze tzv. obvody se soustředěnými parametry. To jsou obvody, které známe z mnoha aplikací, např.

Více

Laboratorní práce č. 4: Měření kapacity kondenzátorů pomocí střídavého proudu

Laboratorní práce č. 4: Měření kapacity kondenzátorů pomocí střídavého proudu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého a. ročník čtyřletého studia G Gymnázium Hranice Laboratorní práce č. : Měření kapacity kondenzátorů pomocí střídavého proudu Přírodní vědy

Více

4.2.15 Konstrukce voltmetru a ampérmetru

4.2.15 Konstrukce voltmetru a ampérmetru 4.2.15 Konstrukce voltmetru a ampérmetru Předpoklady: 4205, 4207, 4210, 4214 Pedagogická poznámka: Hodina je hodně nabitá, pokud ji nemůžete roztáhnout do části další hodiny, budete asi muset omezit počítání

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VII. Stejnosměrné obvody Obsah 7 STEJNOSMĚNÉ OBVODY 7. ÚVOD 7. ELEKTOMOTOICKÉ NAPĚTÍ 3 7.3 EZISTOY V SÉIOVÉM A PAALELNÍM ZAPOJENÍ 5 7.4 KICHHOFFOVY ZÁKONY 6 7.5 MĚŘENÍ NAPĚTÍ A

Více

Číslicové a analogové obvody

Číslicové a analogové obvody Číslicové a analogové obvody doprovodný text k přednáškám předmětu BI-AO Číslicové a analogové obvody 2. svazek z osmisvazkové edice napsal: Doc. Dr. Ing. Jan Kyncl, katedra elektroenergetiky Fakulta elektrotechnická

Více

LOGIC. Stavebnice PROMOS Line 2. Technický manuál

LOGIC. Stavebnice PROMOS Line 2. Technický manuál ELSO, Jaselská 177 28000 KOLÍN, Z tel/fax +420-321-727753 http://www.elsaco.cz mail: elsaco@elsaco.cz Stavebnice PROMOS Line 2 LOGI Technický manuál 17. 04. 2014 2005 sdružení ELSO Účelová publikace ELSO

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Název: Chování cívky v obvodu, vlastní indukce, indukčnost

Název: Chování cívky v obvodu, vlastní indukce, indukčnost Název: Chování cívky v obvodu, vlastní indukce, indukčnost Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

1 Přesnost měření efektivní hodnoty různými typy přístrojů

1 Přesnost měření efektivní hodnoty různými typy přístrojů 1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké faklty Masarykovy niverzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikm 2 Zpracoval: Jakb Jránek Naměřeno: 24. září 2012 Obor: UF Ročník: II Semestr: III Testováno: Úloha

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá 4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro

Více

Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1

Příklady: 28. Obvody. 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 28. Obvody 1. V obvodu na obrázku je dáno E 1 = 6, 0 V, E 2 = 5, 0 V, E 3 = 4, 0 V, R 1 = 100 Ω, R 2 = 50 Ω. Obě baterie jsou ideální. Vypočtěte a) [0,3 b] napětí mezi body a a b a b) [0,7 b]

Více

Základní radiometrické veličiny

Základní radiometrické veličiny Základní radiometrické veličiny Radiometrické veličiny se v textech, se kterými jsem se setkal, zavádějí velmi formálně, např. iradiance E= dφ da.pokusiljsemsepřesnějipopsat,cojednotlivéfunkceznamenají.formálnízápisyjsouzde

Více

Počítačové cvičení BNEZ 2. Snižující měnič

Počítačové cvičení BNEZ 2. Snižující měnič Počítačové cvičení BNEZ 2 Snižující měnič Úkol 1: Úkol 2: Úkol 3: Úkol 4: Úkol 5: Dle schématu na Obr. 2 zakreslete v programu OrCAD Capture obvod snižujícího DC-DC měniče. Měnič má mít následující parametry:

Více

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky. Regulace jednofázového napěťového střídače

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky. Regulace jednofázového napěťového střídače ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE Regulace jednofázového napěťového střídače vedoucí práce: Ing. Vojtěch Blahník,

Více

4. Modelování větrné elektrárny [4]

4. Modelování větrné elektrárny [4] 4. Modelování větrné elektrárny [4] Katedra disponuje malou větrnou elektrárnou s asynchronním generátorem. Konstrukce větrné elektrárny je umístěna v areálu Vysoké školy báňské v Ostravě-Porubě. Větrná

Více

5. ELEKTRICKÁ MĚŘENÍ

5. ELEKTRICKÁ MĚŘENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTCKÁ MĚŘENÍ rčeno pro posluchače všech bakalářských studijních programů FS 5.1 Úvod 5. Chyby měření 5.3 Elektrické

Více

ZRYCHLENÍ KMITAVÉHO POHYBU

ZRYCHLENÍ KMITAVÉHO POHYBU Jaroslav Reichl, 011 ZRYCHLENÍ KMITAVÉHO POHYBU Pomůcky: tříosé čidlo zrychlení 3D-BTA (základní měření lze realizovat i s jednoosým čidlem zrychlení), optická závora VPG-BTD, větší lékovka (nebo nádobka

Více

Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru

Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru kde ε permitivita S plocha elektrod d tloušťka dielektrika kapacita je schopnost kondenzátoru uchovávat náboj kondenzátor

Více

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz.

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz. FYZKA. OČNÍK Příklady na obvody střídavého proudu A. rčete induktanci cívky o indukčnosti 500 H v obvodu střídavého proudu o frekvenci 50 Hz. = 500 0 3 H =?. = ω = π f = 57 Ω ívka á induktanci o velikosti

Více

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva). Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro

Více

Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě.

Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě. Klíčová slova Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě. Princip Podle Stefanova-Boltzmannova zákona vyzařování na jednotu plochy a času černého tělesa roste se čtvrtou

Více

Elektrotechnická měření - 2. ročník

Elektrotechnická měření - 2. ročník Protokol SADA DUM Číslo sady DUM: Název sady DUM: VY_32_INOVACE_EL_7 Elektrotechnická měření pro 2. ročník Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Registrační

Více

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D17_Z_OPAK_E_Stridavy_proud_T Člověk a příroda Fyzika Střídavý proud Opakování

Více

HARMONICKÝ USTÁLENÝ STAV - FÁZOR, IMPEDANCE

HARMONICKÝ USTÁLENÝ STAV - FÁZOR, IMPEDANCE HAMONICKÝ USTÁLENÝ STAV - FÁZO, IMPEDANCE Úvodem Fyzikální popis induktoru a kapacitoru vede na integrodiferenciální rovnice, jejichž řešení je značně obtížné, zvláště v případě soustav rovnic. Příklad

Více