Test studijních předpokladů Varianta A2 FEM UO, Brno

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Test studijních předpokladů Varianta A2 FEM UO, Brno 2013. 1"

Transkript

1 Test studijních předpokladů Varianta A2 FEM UO, Brno Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): V týmu není Pavel nebo není Václav. A: V týmu je Pavel nebo není Václav. D: V týmu není Pavel ani Václav. B: Jestliže v týmu je Pavel, není v týmu Václav. E: V týmu není Pavel a je Václav. C: Jestliže v týmu není Pavel, je v týmu Václav. Příklad 2. Ve skoku do dálky Cyril nebyl horší než David, ale prohrál s Alfou. David porazil Evžena i Bohumila. Vyberte pravdivé tvrzení, které vyplývá z uvedených informací: A: Evžen byl poslední. D: Cyril obsadil 3. místo. B: Evžen nebyl poslední. E: Bohumil byl poslední. C: Alfa zvítězil. Příklad 3. Pohádkový Honza došel na křižovatku čtyř cest, z nichž pouze jedna vede k cíli. Na začátku každé z nich je cedule s nápisem (nápis na ceduli u 1. cesty vystihuje níže uvedená 1. věta, nápis na ceduli u 2. cesty vystihuje níže uvedená 2. věta,...): 1: Čtvrtá cesta není správná. 2: Tato cesta je správná. 3: Jestliže tato cesta není správná, pak je správná druhá cesta. 4: Tato cesta není správná. Z nápisů na cedulích je právě jeden nepravdivý. Která z cest vede k cíli? A: Třetí. D: Druhá. B: Čtvrtá. E: Nelze určit. C: První. Příklad 4. Jsou dány věty: Hana obdivuje některé herce (avšak nikoho jiného). Tomáš je herec. Vyberte tvrzení, které z výše uvedených vět logicky vyplývá: A: Pokud je Tomáš herec, Hana ho neobdivuje. B: Pokud je Tomáš herec, Hana ho obdivuje. C: Pokud Tomáš není herec, Hana ho neobdivuje. D: Hana obdivuje Tomáše. E: Hana neobdivuje Tomáše. Příklad 5. Pravidlo: Student může vykonat zkoušku tehdy a jen tehdy, splnil-li podmínky zápočtu. Vyberte logicky správný výklad tohoto pravidla: A: Student nesplnil podmínky zápočtu a nemůže vykonat zkoušku. B: Student splnil podmínky zápočtu a může vykonat zkoušku, nebo nesplnil podmínky zápočtu a zkoušku vykonat nemůže. C: Splní-li student podmínky zápočtu, může vykonat zkoušku. D: Jestliže student nemůže vykonat zkoušku, znamená to, že nesplnil podmínky zápočtu. E: Nesplní-li student podmínky zápočtu, nemůže vykonat zkoušku.

2 Test studijních předpokladů Varianta A2 FEM UO, Brno Příklad 6. V níže uvedené tabulce jsou zobrazeny vzájemné výsledky týmů, které se zúčastnily jistého sportovního turnaje. Kritéria pro umístění jsou podle významu v tomto pořadí: počet bodů (za výhru tři body, za remízu jeden bod, za prohru nula bodů), výsledek vzájemného zápasu, vyšší počet vstřelených branek v celém turnaji. Kdo se umístil na druhém místě? Anglie Brazílie Česko Dánsko Finsko Anglie xxx 0:0 2:2 1:0 2:1 Brazílie 0:0 xxx 3:0 1:3 0:1 Česko 2:2 0:3 xxx 6:1 1:1 Dánsko 0:1 3:1 1:6 xxx 0:0 Finsko 1:2 1:0 1:1 0:0 xxx A: Anglie D: Česko B: Brazílie E: Finsko C: Dánsko Příklad 7. Určete 10 % z 3 5 a 20 % z 1 4. A: 0,05 a 0,05 D: 0,08 a 0,06 B: 0,06 a 0,04 E: 0,05 a 0,08 C: 0,06 a 0,05 Příklad 8. Které číslo patří na místo otazníku? A: 5 D: 6 B: 10 E: 8 C: 11 Příklad 9. V hotelu se ubytovalo 20 hostů. Česky jich mluvilo o čtyři více než anglicky. Jedním nebo žádným z těchto dvou jazyků mluvilo 15 hostů. Alespoň jedním z těchto dvou jazyků mluvilo 17 hostů. Kolik hostů mluvilo česky? A: 11 D: 13 B: 8 E: 14 C: 15 Příklad 10. Doplňte číslo na místo otazníku. A: 3 D: 5,5 B: 3,5 E: 4,5 C: 4

3 Test studijních předpokladů Varianta A2 FEM UO, Brno Příklad 11. Na kterém z provazů zůstane uzel, zatáhnete-li za jeho konce? A: B: C: D: E: Příklad 12. Která z uvedených sítí není sítí krychle? Příklad 13. Kterým bludištěm vede nejkratší cesta? Příklad 14. Standardní hrací kostka (tj. součet ok na protilehlých stěnách je roven 7) se kutálí po vyznačené dráze. Která stěna bude vespod, až kostka dorazí na pole označené křížkem? Příklad 15. Bílé dílky skládačky jsou upevněny černými šroubky, v nichž se mohou otáčet. Jaký digitální kód lze vhodným otočením bílých dílků získat?

4 Test studijních předpokladů Varianta A2 FEM UO, Brno Příklad 16. Doplňte obrázek, který logicky následuje. Příklad 17. Doplňte chybějící řádek do schématu: A: B: C: D: E: Příklad 18. Doplňte řadu: Příklad 19. Kolik čtverců bude v obrazci na pozici β? α β A: 31 B: 23 C: 21 D: 35 E: 34 Příklad 20. Který kód nepatří mezi ostatní? A: NKGTJMOYW B: EZKPBGNXL C: FTEOJGMIN D: INVRGDYHK E: NHFJORVMZ

5 Test studijních předpokladů Varianta A2 FEM UO, Brno Příklad 21. Definičním oborem funkce y = 1 x (2 x)(x+1) jsou všechna x R, pro která platí A: x 1, 2) D: x 1, 2) B: x (, 1) (2, ) E: x 1, 1 2, ) C: x ( 1, 1 (2, ) Příklad 22. Výraz A: x x+y ( ) ( 2 x + 1 x+y 3 : y x + ) y x+y je pro přípustná x, y roven D: 2 B: 2 E: x+y C: 2x ( a 5 3 b 3 2 ) ( : a 3 b 5 2 Příklad 23. Výraz : a 3 2 b 7 3 a 1 3 a 2 1 b 2 3 a 3 1 A: ab 3 D: ab B: b a C: 3 a b ) je pro přípustné hodnoty a, b roven Příklad 24. Nerovnici x x x vyhovují všechna x R, pro která platí A: x (, 0 6, ) D: x 1 B: x ( 1, 1) E: x (, 1 1, ) C: x 0, ) Příklad 25. Rovnici přímky procházející body A = [3, 2] a B = [1, 3] lze vyjádřit ve tvaru A: y = x 5 D: x = 3 2t, y = 2 + 4t, t R B: 2x + y 4 = 0 E: y = x + 2 C: 5x + 2y 11 = 0 Příklad 26. Průsečíky funkcí y = 3x 2 x 5 a y = 2x 2 3x + 3 jsou: A: P 1 = [0, 3], P 2 = [ 1, 1] D: P 1 = [ 2, 11], P 2 = [4, 39] B: P 1 = [1, 3], P 2 = [ 1, 8] E: P 1 = [2, 5], P 2 = [ 4, 47] C: P = [3, 19] E: a b Příklad 27. Dlužník splatil nejdříve 20 % půjčky, potom 15 % ze zbylé dlužné částky a ještě mu zbývá splatit Kč. Jaká byla původní výše půjčky? A: Kč D: Kč B: Kč E: Kč C: Kč Příklad 28. Ve firmě pracuje 170 zaměstnanců. Žen je o 30 % méně než mužů. Kolik pracuje ve firmě žen? A: 80 D: 70 B: 75 E: 100 C: 60 Příklad 29. Kolika způsoby mohu vybrat 3 různá čísla z 10 různých čísel (nezáleží-li na pořadí čísel)? A: 15 D: 220 B: 27 E: 720 C: 120 Příklad 30. Průzkum čtenářských zájmů ukázal, že ze sta žáků jich 60 čte časopis A, 50 časopis B, 50 časopis C, 30 časopis A i B, 20 časopis B i C, 30 časopisy A i C a 10 všechny tři časopisy. Kolik žáků nečte ani jeden z těchto časopisů? A: 0 D: 10 B: 15 E: 5 C: 20

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto.

Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. Příklad 1. Z uvedených možností vyberte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Koupím byt nebo nové auto. A: Koupím-li byt, nekoupím nové auto. B: Koupím byt nebo nekoupím nové auto.

Více

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jestliže v sootu neude pěkně, koncert se

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut.

MATEMATIKA. společná část maturitní zkoušky. Pokyny pro vyplňování záznamového archu. Testový sešit obsahuje 10 úloh. Na řešení úloh máte 60 minut. Krok za krokem k nové maturitě Maturita nanečisto 005 MA MATEMATIKA společná část maturitní zkoušk Testový sešit obsahuje 0 úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu. Poznámk

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

DOVEDNOSTI V MATEMATICE

DOVEDNOSTI V MATEMATICE Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA1ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test A Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení

MATEMATIKA 5 M5PZD15C0T01 DIDAKTICKÝ TEST. Jméno a příjmení MTEMTIK 5 M5PZD15C0T01 DIDKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60 minut.

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024. Stereometrické hry

Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024. Stereometrické hry Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Stereometrické hry Příklad 1. Klasickou hrací kostku umístěme do rohu o dvanácti

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Test studijních předpokladů 2

Test studijních předpokladů 2 Test studijních předpokladů 2 event. číslo Správná je vždy jenom jedna odpověď- zakroužkujte ji, nebo doplňte požadovaný údaj. 1. Které slovo nejlépe vystihuje opak slova MIMOŘÁDNÝ? a) klidný b) nezajímavý

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Obecné studijní předpoklady TEST 1

Obecné studijní předpoklady TEST 1 Obecné studijní předpoklady TEST 1 A.) Text k první sérii otázek ( porozumění textu ) Před 2,5 až 2 miliardami let se začala tvářnost Země výrazně měnit. Mnoho radioaktivních prvků přítomných při vzniku

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Zápas o 3. místo na turnaji: Poraženi v semifinále Finále: i semifinále

Zápas o 3. místo na turnaji: Poraženi v semifinále Finále: i semifinále - 2 - PROPOZICE TURNAJE: Turnaje se z 4 8 skupin po 5 týmech Utkání ve skupinách budou hrána systémem každý s každým Z každé skupiny postupují 2 nejlepší týmy a 8 Lucky Loser do mezikola (24 tým ). V mezikole

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

STONOŽKA 2008/2009-5. TŘÍDY

STONOŽKA 2008/2009-5. TŘÍDY Škola: Název: Obec: BCST Základní škola, Školní Řevnice BCST Základní škola, Školní Řevnice STONOŽKA 8/9-5. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou nadprůměrné. Patříte mezi úspěšné

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Propozice FOTBALOVÉHO TURNAJE mladších přípravek pro ročník 2006. pořádaného. OS Tygříci - FK Neratovice-Byškovice. 5. ročník: BYŠKOVICE CUP

Propozice FOTBALOVÉHO TURNAJE mladších přípravek pro ročník 2006. pořádaného. OS Tygříci - FK Neratovice-Byškovice. 5. ročník: BYŠKOVICE CUP Propozice FOTBALOVÉHO TURNAJE mladších přípravek pro ročník 2006 pořádaného OS Tygříci - FK Neratovice-Byškovice 5. ročník: BYŠKOVICE CUP 06.06.2015 Pořadatel : Termín : 6. června 2015 Čas : 09:00 14:15

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Mistrovství České republiky v logických úlohách

Mistrovství České republiky v logických úlohách Mistrovství České republiky v logických úlohách Blok 1 - Logický mixer 10:00-11:40 Řešitel 1 Praha 013 Mrakodrapy 3 Heywake 4 Rybáři 5 Dvojblok Pentomina 7 Nádraží 8 Slalom 9 Plot 10 Kriskros 11 Cesta

Více

STONOŽKA 2008/2009-9. TŘÍDY

STONOŽKA 2008/2009-9. TŘÍDY Škola: Název: Obec: BCDE BCDE Základní škola, Dambořice č.p. Základní 466 škola, Dambořice č.p. 466 Dambořice Dambořice STONOŽKA 28/29-9. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou špičkové.

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Fotbal Atletika Vybíjená Přehazovaná Streetball In-line biatlon

Fotbal Atletika Vybíjená Přehazovaná Streetball In-line biatlon 20.000 dětí 10.000 sportovců 70 základních škol 6 sportovních disciplín 80 rozhodčích 5 sportovních týdnů Slavnostní losování států 8 kvalifikačních dnů 1 velký finálový DEN Mediální podpora projektu Fotbal

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Pohár města Česká Lípa

Pohár města Česká Lípa HOKEJOVÝ CLUB ČESKÁ LÍPA O.S. www.hcceskalipa.cz Hokejový turnaj 2015 Pohár města Česká Lípa 10. 12. 4. 2015 3 - denní turnaj pro děti narozené r. 2004 a mladší Hokejový turnaj 2015 - Česká Lípa - r. 2004

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 009/010 MATEMATIKA ZÁKLADNÍ ÚROVEŇ OBTÍŽNOSTI Zpracoval: Schválil: Centrum pro zjišťování výsledků vzdělávání Ministerstvo

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

STONOŽKA 2008/2009-9. TŘÍDY

STONOŽKA 2008/2009-9. TŘÍDY Škola: Název: Obec: FIMN FIMN Základní škola, Komenského Základní 828/9 škola, Komenského 828/9 Týniště nad Orlicí Týniště nad Orlicí STONOŽKA 28/29-9. TŘÍDY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ

PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ PŘÍKLADY ÚLOH TESTU STUDIJNÍCH PŘEDPOKLADŮ PRO UCHAZEČE Z 9. ROČNÍKU ZŠ OBČANSKÉ SDRUŽENÍ MATT A HURRY, O. S. Střelničná 5 8 00 PRAHA 8 KOBYLISY Občanské sdružení MATT a HURRY, o.s., 0 ODDÍL : VERBÁLNÍ

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

10. 12. dubna 2015, Zimní stadion HC Slavia Praha

10. 12. dubna 2015, Zimní stadion HC Slavia Praha 10. 12. dubna 2015, Zimní stadion HC Slavia Praha Propozice : Pořádající oddíl : HC Slavia Praha Datum konání : 10 12. dubna 2015 Čas : Zahájení a zakončení turnaje dle rozlosování viz.rozpis utkání. Pořadatel

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

Město Jihlava Město Pelhřimov Město Žďár nad Sázavou. Ve spolupráci s KVV ČSLH Kraje Vysočina

Město Jihlava Město Pelhřimov Město Žďár nad Sázavou. Ve spolupráci s KVV ČSLH Kraje Vysočina V. ROČNÍK TRADIČNÍHO TURNAJE O POHÁR HEJTMANA KRAJE VYSOČINA Město Jihlava Město Pelhřimov Město Žďár nad Sázavou Ve spolupráci s KVV ČSLH Kraje Vysočina V. ROČNÍK TRADIČNÍHO TURNAJE O POHÁR HEJTMANA KRAJE

Více

PODROBNÁ PRAVIDLA SÁZEK

PODROBNÁ PRAVIDLA SÁZEK PODROBNÁ PRAVIDLA SÁZEK OBSAH: 1 - ÚVODNÍ USTANOVENÍ 2 - VÝKLAD POJMŮ SÁZKY 3 - ZÁKLADNÍ TYPY SÁZKOVÝCH PŘÍLEŽITOSTÍ 4 - DALŠÍ SÁZKOVÉ PŘÍLEŽITOSTI ZÁKLADNÍ DRUHY SÁZEK 5 - SÓLO SÁZKA 6 - AKU SÁZKA ROZPISOVÉ

Více

Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA

Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA Kropáčkův memoriál 22. 23. 8. 2015 Ústí nad Labem POZVÁNKA Vážení sportovní přátelé, Tímto si Vás oficielně dovolujeme pozvat na jubilejní 40. ročník Kropáčkova Memoriálu, turnaj mladších žáků v ledním

Více

O pohár starosty města Modřice

O pohár starosty města Modřice Pozvánka na XIV. ročník mezinárodního turnaje mladších žáků (roč. 2002) O pohár starosty města Modřice srpna 2014 na hřišti v Modřicích www.turnaj-modrice.cz POZVÁNKA Organizační výbor zve všechny hráče,

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

KEA 2009/2010-9. ROČNÍKY

KEA 2009/2010-9. ROČNÍKY Škola: Název: Obec: DEHK DEHK Základní škola, Kvítková 4338 Základní škola, Kvítková 4338 Zlín Zlín KEA 9/1-9. ROČNÍKY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou špičkové. Vaše škola patří mezi

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

UKÁZKY TESTŮ Z PŘIJÍMACÍHO ŘÍZENÍ 2012 JAZYKY (SPRÁVNÉ ODPOVĚDI JSOU NA KONCI)

UKÁZKY TESTŮ Z PŘIJÍMACÍHO ŘÍZENÍ 2012 JAZYKY (SPRÁVNÉ ODPOVĚDI JSOU NA KONCI) UKÁZKY TESTŮ Z PŘIJÍMACÍHO ŘÍZENÍ 2012 JAZYKY (SPRÁVNÉ ODPOVĚDI JSOU NA KONCI) Němčina Angličtina Ruština Francouzština Španělština Ot. A2 B5 A8 B3 B7 C3 A2 A1 A2 A3 1 D D D D D B D

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Otvírací turnaj Starobrno Univerzitní ligy Jarní část 2015

Otvírací turnaj Starobrno Univerzitní ligy Jarní část 2015 Otvírací turnaj Starobrno Univerzitní ligy Jarní část 2015,,Ukaž svou sílu. Propozice turnaje TERMÍN: 28.2.2015 MÍSTO: Venkovní hřiště TJ Sokol Brno 1, Kounicova 20, 602 00, Brno, Česká Republika HARMONOGRAM

Více