mikropolutanty = pesticidy, polychlorované bifenyly (PCB),

Rozměr: px
Začít zobrazení ze stránky:

Download "mikropolutanty = pesticidy, polychlorované bifenyly (PCB),"

Transkript

1 1 Přírodní voda disperzní systém obsahující řadu látek anorganického i organického původu Analyticky disperzní (rozpuštěné látky) Ø < 10-8 m mangan; nízkomolekulární organické látky (peptidy, fulvokyseliny...); mikropolutanty = pesticidy, polychlorované bifenyly (PCB), polyaromatické uhlovodíky (PAU), těžké kovy,... Koloidně disperzní - Ø = m hlinitokřemičitany, amorfní oxid křemičitý, huminové kyseliny, polysacharidy, proteiny, řasy, sinice, bakterie, viry Hrubě disperzní (nerozpuštěné látky) - Ø > 10-6 m zrna písku a půdy, nerozložený biologický materiál, mikroorganismy Přechod mezi systémy je plynulý obtížné určení hranic především mezi a analytickými a koloidními disperzemi Platí dohoda, že látky procházející filtrem 0,45 µm jsou rozpuštěné

2 2 Koloidní disperze = heterogenní systémy složené z několika fází jednotlivé dispergované částice nejsou volné molekuly, ale shluky mnoha molekul, kterým lze přisoudit veškeré termodynamické vlastnosti fáze vznik fázového rozhraní je podmíněn nerozpustností (velmi malou rozpustností) jedné fáze ve druhé vlastnosti: vysoký stupeň disperzity, rozptyl světla, opalescence (Tyndallův jev), pomalá difúze, malý osmotický tlak, možná dialýza, agregátní nestálost, Brownův pohyb, obvykle elektroforetické vlastnosti často mezi koloidy řadíme i pravé roztoky vysokomolekulárních látek, ALE částice v nich obsažené se neskládají z množství malých molekul jsou to jednotlivé molekuly

3 3 Koloidní disperze 1) hydrofobní koloidy nemají schopnost molekulárně interagovat s vodou (např. pomocí vodíkové vazby) => mají ostře vymezené fázové rozhraní jsou tvořeny převážně anorganickými látkami, nevznikají samovolně a bez dodatečné stabilizace jsou termodynamicky nestálé 2) hydrofilní koloidy mohou molekulárně interagovat s vodou, fázové rozhraní je rozprostřeno do větších šířek většinou jsou tvořeny vysokomolekulárními organickými látkami, vznikají samovolným rozpouštěním a jsou termodynamicky stabilní často se označují jako koloidní roztoky

4 4 Koloidní disperze 3) asociativní (micelární) koloidy vznikají spojováním molekul povrchově aktivních látek jsou tvořeny jak lyofilní tak lyofobní částí v povrchových vodách např. soli mastných kyselin nebo saponáty (alkylsulfáty, alkylbenzensulfonany) 4) gely mají schopnost přecházet z kapalné formy do pevného stavu tvorba pevných trojrozměrných síťových struktur tvořit gely mohou některé lyofobní a řada lyofilních koloidů, např. intracelulární polysacharidy

5 5 o jílové minerály (hlinitokřemičitany), amorfní oxid křemičitý, hydratované oxidy kovů (hydrolyzovaná destabilizační činidla) o mikroorganismy (řasy, sinice) o huminové látky, polysacharidy, proteiny AFM snímek huminových kyselin nanesených na povrch slídy pomocí spin-coating Copyright Forschungszentrum Dresden Copyright Forschungszentrum Dresden SEM snímek huminových částic na 100-nm Nuclepore filtru

6 Copyright Hydrochemie obecné složení vod částice kaolínu hydratovaný oxid železitý kaučukové částice Copyright Max-Planck-Institut für Polymerforschung, Mainz Richardson, W. D., Mills, A. D., Dilworth, S. M., Laskey, R. A. and Dingwall, C. (1988):Cell 52, Copyright Cell Press Copyright Dentisse, Inc., Indiana proteiny a koloidní částice 6

7 7 částice kaolínu většina částic obsažených ve vodě nese povrchový náboj charakter a velikost náboje určuje povahu a míru interakcí mezi částicemi = ovlivňuje jejich agregátní stabilitu původ náboje je dán: a) rozpouštěním iontů b) povrchovou ionizací c) izomorfní substitucí d) specifickou adsorpcí iontů proteiny a koloidní částice

8 8 Rozpouštění iontů částice kaolínu málo rozpustné sloučeniny (uhličitan vápenatý, jodid stříbrný atd.) rozdílná rozpustnost iontů Ag + větší tendence vstupovat do vodné fáze než I -, částice AgI pozvolna získávají záporný náboj změnou koncentrace Ag + (např. přídavkem NaI) nebo I - (např. přídavkem AgNO 3 ) lze měnit povrchový náboj AgI tak, že celkový povrchový náboj částice bude nulový nulový bod náboje (NBN) proteiny a koloidní částice

9 9 Povrchová ionizace organické látky částice kaolínu kyselé nebo zásadité funkční skupiny na povrchu, které v závislosti na ph mohou přijímat nebo odevzdávat protony (H + ) např. proteiny obsahují kyselé karboxylové (COOH) i zásadité aminové (NH 2 ) skupiny disociace v závislosti na ph roztoku nízké PH karboxylové skupiny nedisociují aminové skupiny jsou protonované 0 + vysoké PH karboxylové skupiny disociují - aminové skupiny nejsou protonované 0 R C H N H 3 + C O O H R C H N H 3 + C O O R C H C O N H 2 O proteiny a koloidní částice N B N r o s t o u c í p H

10 10 Povrchová ionizace organické látky částice kaolínu izoelektrický bod = hodnota ph, při které je počet kladně nabitých a záporně nabitých skupin v rovnovážném stavu Povrchová ionizace oxidy kovů např. Al2O3, Fe2O3, TiO2 tvorba amfoterních skupin Al-OH, Fe-OH na jejich povrchu M OH 2 + M OH M O NBN rostoucí ph proteiny a koloidní částice

11 11 Izomorfní substituce částice kaolínu přebytek náboje koloidních částic (jílové minerály kaolinit) střídání tetraedrických vrstev Si s oktaedrickými vrstvami Al ve vstvách křemíku mohou být kationty Si 4+ nahrazeny kationty Al 3+ a ve vrstvách hliníku kationty Al 3+ např. Mg 2+ výměna Si za Al vede k přebytku záporného náboje, který musí být vyvážen vhodným počtem kompenzujících kationtů, např. Ca 2+ (nejsou v mřížce kaolinitu, zůstávají pohyblivé) tzv. kation-výměnné vlastnosti jílů proteiny a koloidní částice

12 12 Specifická adsorpce iontů částice kaolínu v případě, že koloidní částice nemá vlastní náboj ani ionizovatelné skupiny může získat náboj specifickou (tj. jinou než elektrostatickou) adsorpcí iontů z roztoku např. adsorpce iontů povrchově aktivních látek hydrofobní uhlovodíková část minimalizuje kontakt s vodou adsorpcí na hydrofobní koloidní částici bez náboje a hydrofilní ionizovaná část s nábojem určuje náboj koloidní částice proteiny a koloidní částice

13 13 Analytické disperze pravé roztoky Látky rozpuštěné: 1) Iontově (např. Ca 2+, Mg 2+, Na +, K +, SO 4 2-, Cl -, NO 3-, HCO 3- ) 2) Neiontově (sloučeniny Si, B, plyny O 2, CO 2 ) Dělení podle kvantitativního zastoupení: 1) Makrokomponenty 2) Mikrokomponenty c < 1 mg/l, resp. < 0,02 mmol/l 3) Stopové látky c < 1 µg/l, resp. < 0,02 mmol/l Vlastnosti mikrokomponentů: 1) Sorpce na tuhých fázích (hlinitokřemičitany, sedimenty, kaly, hydratované oxidy kovů atd.) 2) Tvoří koloidní disperze, netvoří sraženiny 3) Pomalé ustavování reakční rovnováhy

14 14 Koncentrace celkových, rozpuštěných a nerozpuštěných látek skupinové stanovení sušiny celk., rozp. a nerozp. látek (mg/l); ztráty sušiny žíháním - T = 550 C (mg/l nebo jako % ze sušiny) Koncentrace celkových látek (CL) - součet koncentrací netěkavých a nerozkládajících se rozpuštěných a nerozpuštěných látek za uvedené teploty Stanovení: odpařením vzorku vody na vodní lázni a vysušením odparku při T = 105 C (CL105) Koncentrace rozpuštěných látek (RL) - součet koncentrací netěkavých a nerozkládajících se rozpuštěných látek za uvedené teploty Stanovení: odpařením filtrovaného (0,45 µm) vzorku vody na vodní lázni a vysušením odparku při T = 105 C (RL105)

15 15 Stanovení rozpuštěných látek ~ obsah veškerých anorganických látek Může docházet ke značné chybě! - při odpařování a sušení vzorku se některé anorg. l. hydrolyzují, případně rozkládají - hydratační nebo okludovanou vodu nelze vždy kvantitativně odstranit Rozklad hydrogenuhličitanů - ztráta hmotnosti uvolněním CO 2 Ca(HCO 3 ) 2 = CaCO 3 + H 2 O + CO 2 Vznik hydroxid chloridu rozkladem chloridu hořečnatého ztráta cca 145 mg hořčíku na 100 mg chloridů MgCl 2 + H 2 O = Mg(OH)Cl + HCl

16 16 Celková mineralizace 1) součet hmotnostních koncentrací všech rozp. anorg. tuhých látek Σρ (mg/l) 2) součet látkových koncentrací všech rozp. anorg. tuhých látek Σc (mmol/l) - vystihuje počet iontů či molekul bez ohledu na jejich hmotnost - není závislý na formě výskytu dané složky (Si SiO 2, P PO 4 3- ) při stanovení celkové mineralizace se započítávají pouze makrokomponenty

17 17 Mineralizace přírodních vod Kategorie vod Σc (mmol/l) Σρ (mg/l) S velmi malou mineralizací do 2 do 100 S malou mineralizací Se stření mineralizací Se zvýšenou mineralizací S velkou mineralizací nad 20 nad 1000

18 18 U vod s vysokým organickým znečištěním (odpadní vody) se kromě RL stanovují také rozpuštěné anorganické soli (RAS) rozpuštěné látky žíhané (RL550) - dojde ke spálení organického uhlíku zbytek anorg. l. Podhodnocení reality v důsledku: 1) sublimace amonných solí 2) ztráta hydratační vody - 3) rozklad NO 3 4) rozklad MgCO 3

19 19 Nerozpuštěné látky (NL) v přírodních vodách nejčastěji hlinitokřemičitany NL hydratované oxidy kovu (Fe, Mn, Al) fytoplankton zooplankton organický detrit usaditelné (suspenze suspendované látky) - neusaditelné (koloidní látky) - vzplývavé Pozn. Suspended solids (particulate matter) všechny nerozpuštěné látky větší než 2 µm, tj. látky usaditelné

20 20 Formy výskytu látek ve vodách různé formy látek (speciace) různé vlastnosti vliv např. na toxicitu, bioakumulaci, sorpci, migraci atd. formy výskytu prvků ve vodách jsou výsledkem protolytických, komplexotvorných, redoxních a polymeračních reakcí Distribuci forem lze zjistit: 1) Řešením chemických rovnováh (chemická termodynamika) 2) Experimentálně tzv. speciační analýzou - ISE (iontově selektivní elektroda) - anodická rozpouštěcí voltametrie - dělící metody (extrakce, sorpce, LC, elektroforeza atd.)

21 21 Příklady rozdílných vlastností jednotlivých forem - toxicita + NH 3 x NH 4 vyšší toxicita nedisociovaných forem H 2 S x HS - x S 2- CN - x kyanokomplexy F - x fluorokomplexy vyšší toxicita jednoduchých iontů (čím stabilnější komplex, tím méně toxický) organokovové sl. rtuti (alkylderiváty) x anorg. sl. rtuti vyšší toxicita organokov. sl.

22 22 Vyjadřování kvalitativního složení vod Nejednotnost ve vyjadřování složení vod např. běžně se uvádí sulfidická síra jako koncentrace H 2 S chybné! síra v ox. st. II. jako H 2 S, HS -, S 2- Optimální stav - vyjadřování prvků (kovů i nekovů) v elementární formě s rozlišeným oxidačním stupněm, např. síru jako S VI, S II, železo jako Fe II, Fe III Celková koncentrace C T (T total) - např. při bilanci dusíku, fosforu atd. P T = P org + P anorg = P org + P(PO 3-4 ) + P(poly) N T = N org + N anorg = N org + N(NH + 4 ) + N(NO - 2 ) + N(NO - 3 )

23 23 Vyjadřování kvantitativního složení vod 1) Hmotnostní koncentrace ρ [mg.l -1 ] 2) Látková koncentrace c [mmol.l -1 ] Výhody látkové koncentrace: - nezávisí na formě výskytu - je úměrná počtu reagujících částic (chemická reaktivita je závislá na počtu částic dané látky nikoli na jejich hmotnosti) - stejné látkové koncentrace znamenají stejný počet částic daných látek (počet částic na 1mol je dán Avogadrovou konstantou - 6, mol -1 )

24 24 látková koncentrace X hmotnostní koncentrace Příklad: 1 mg.l -1 fenolu (M = 94 g.mol -1 ) = 10,6 µmol.l -1 1mg.l -1 dodecylsulfátu sodného (M = 288 g.mol -1 ) = 3,46 µmol.l -1

25 Hydrochemie anorganické látky ve vodách 25 Anorganické látky ve vodách většina prvků je přítomna jako kationty, anionty i neelektrolyty převážně jako kationty: Ca 2+, Mg 2+, Na +, K + převážně jako anionty: HCO 3 -, SO 4 3-, Cl - převážně v neiontové formě: Si, B Členění podle elektronové konfigurace na: 1) kovy 2) polokovy 3) nekovy Pozn.: kov - počet elektronů nejvyšších zaplňovaných orbitalů číslu periody do níž prvek patří

26 Hydrochemie anorganické látky ve vodách 26 Kovy -těžké - ρ > 5000 kg.m -3, jejich soli se srážejí sulfidem sodným - toxické - není synonymum pro těžké beryllium toxický kov, ale není kov těžký železo a mangan jsou těžké kovy, ale nejsou toxické - např. Hg, Cd, Pb, As, Se, Cr, Ni, Be, Ag, Sb - esenciální mají biologické funkce, jsou běžnou součástí biomasy - např. Ca, Mg, K, Na, Mn, Fe, Cu, Zn, Co, Mo, Ni, W, Se - některé jsou ve větším množství toxické

27 Hydrochemie anorganické látky ve vodách 27 Dělení kovů a polokovů podle hygienické závadnosti: 1) Toxické (viz výše) 2) S karcinogenními nebo teratogenními účinky (As, Cd, Cr VI, Ni, Be) 3) Chronicky toxické (Hg, Cd, Pb, As) 4) Ovlivňující organoleptické vlastnosti (chuť, barvu) vody (Mn, Fe, Cu) Příčiny toxicity: 1) Afinita k reaktivním skupinám enzymů (amino-, imino- a thio- skupiny) 2) Tvoří cheláty s organickými látkami v buňkách pravděpodobně hlavní příčina bioakumulace kovů (Hg, Pb, Se, Cu) 3) Katalyzují rozklad koenzimů (lanthanoidy rozkládají ADP) 4) Inkorporace do látek tvořících buněčné stěny (Au, Cd, Cu, Hg, Pb)

28 Hydrochemie anorganické látky ve vodách 28 Další vlastnosti kovů: 1) Tvorba komplexní sloučenin odlišné vlastnosti od jednoduchých iontů např. s organickými látkami přírodního původu (NOM) 2) Katalyzují chemické reakce ve vodách např. oxidačně-redukční reakce Cu, Co, Ni značně urychlují oxidaci Fe II a Mn II Cu katalýza chemické redukce NO 3-3) Mnohé podléhají biochemickým transformacím - biomethylacím - bakteriální přeměna Hg II na methylrtuť CH 3 Hg + a dále až na těkavou dimethylrtuť (CH 3 ) 2 Hg - bakteriální oxidace Fe II a Mn II na hydratované oxidy Fe a Mn

29 Hydrochemie anorganické látky ve vodách 29 Akumulace v tuhých fázích (sedimentech) imobilizační procesy 1) Alkalizace vody - srážení kovů ve formě hydratovaných oxidů, uhličitanů nebo sulfidů 2) Oxidace - kovy ve vyšších ox. st. se snáze hydrolyzují a vylučují jako sraženina např. hydratovaný oxid železitý 3) Adsorpce na tuhých fázích - adsorpce kovů na hlinitokřemičitanech, hydratovaných oxidech atd. 4) Inkorporace do biomasy - aktivní transport kovů do buňky

30 Hydrochemie anorganické látky ve vodách 30 Uvolňování z tuhých fází remobilizační procesy 1) Pokles ph - rozpouštění málo rozpustných sloučenin kovů 2) Redukce - sloučeniny kovů jsou zpravidla rozpustnější v redukované formě 3) Komplexace - komplexní sloučeniny s org. l. jsou v rozpuštěné formě 4) desorpce - souvisí s redukcí, kdy dochází k uvolňování dříve sorbovaných kovů 5) Uvolňování z odumřelé biomasy

31 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 31 Na, K, Ca, Mg, Sr, Ba obsah v zemské kůře: Na ~ 2,5 hmot.% K ~ 2,5 hmot.% Ca ~ 0,035 hmot.% Mg ~ 0,020 hmot.% 4 základní kationty přírodních a užitkových vod Geneze Na a K zvětrávání některých hlinitokřemičitanů, např. albitu NaAlSi 3 O 8 nebo ortoklasu KAlSi 3 O 8 a slíd vyluhování Na ze solných ložisek a K z tzv. odklizovacích draselných solí (karnalitu, kainitu, polyhalitu), které převrstvují ložiska kamenné soli výměna iontů Ca 2+ za Na + při styku vody s některými jílovými minerály antropogenní zdroje: průmyslové odpadní vody výroby obsahující NaCl nebo Na 2 SO 4 (neutralizace, vysolování), výroba draselných a sodných solí, výroba a aplikace draselných hnojiv, odpady z regenerace iontoměničů městské odpadní vody vylučování Na a K močí, posyp komunikací v zimě

32 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 32 albit NaAlSi 3 O 8 ortoklas KAlSi 3 O 8

33 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 33 Výskyt Na a K jednoduché kationty Na + a K + při vysoké koncentraci síranů (důlní vody) a uhličitanů (alkalické vody) výskyt iontových asociátů [NaSO 4 ] -, [KSO 4 ] -, [NaHCO 3 ] 0, [NaCO 3 ] - v podzemních a povrchových vodách vždy více sodíku než draslíku (důvod: větší sorpce K + na půdní minerály, přednostní odčerpávání K + rostlinami) POZOR: poměr Na : K jiné hodnoty pro hmotnostní a látkové koncentrace látkový poměr Na : K = 1 odpovídá hmotnostnímu poměru asi 0,59!!!!! atmosférické vody setiny desetiny mg/l Na (K) podzemní a povrchové vody jednotky desítky mg/l Na (K) minerální vody tisíce mg/l Na, > 100 mg/l K světové oceány průměr 10 g/l Na a 0,4 g/l

34 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 34 Vlastnosti a význam Na a K podzemní a povrchové vody není hygienický význam, koncentrace není limitována pitné vody MH (Na) = 200 mg/l kojenecká a stolní voda - MH (Na) = 100 mg/l minerální vody s vyšším obsahem Na a HCO 3- léčba žaludečních chorob a chorob žlučových cest kotelní voda limit nánosy uhličitanů i Na 2 O.R 2 O 3.xSiO 2.yH 2 O voda pro závlahu limitován poměr Na : Σ(Ca+Mg) (velké koncentrace Na při deficitu Ca a Mg zasolení půd) vody obsahující K = slabě radioaktivní (K v přírodě obsahuje asi 0,011 hmot.% radioaktivního izotopu 40 K emise záření β a γ) Na a K úloha při klasifikaci chemického složení vod, při úvahách o genezi podzemních vod a při kontrole výsledků chemického rozboru

35 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 35 Geneze Ca a Mg rozkladem hlinitokřemičitanů vápenatých a hořečnatých (anortit CaAl 2 Si 2 O 8, chlorit Mg 5 Al 2 Si 3 O 10 (OH) 8 ) rozpouštěním vápence CaCO 3, dolomitu CaCO 3.MgCO 3, magnezitu MgCO 3, sádrovce CaSO 4.2H 2 O aj. závislost koncentrace Ca a Mg v podzemních vodách na rozpuštěném CO 2 antropogenní zdroje: průmyslové odpadní vody neutralizace kyselin vápnem, vápencem, dolomitem nebo magnezitem, odkyselování podzemních vod vápnem - Ca(OH) 2 nebo filtrací přes odkyselovací materiály (CaCO 3, MgCO 3, MgO), stabilizace málo mineralizovaných vod přídavkem CaO a CO 2

36 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 36 kalcit CaCO 3 magnezit MgCO 3 sádrovec CaSO 4.H 2 O dolomit CaCO 3.MgCO 3

37 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 37 Výskyt Ca a Mg málo a středně mineralizované vody - jednoduché ionty Ca 2+ a Mg 2+ více mineralizované vody s vyšší koncentrací HCO 3- a SO iontové asociáty, např. [CaCO 3 (aq)] 0, [CaHCO 3 ] +, [CaSO 4 (aq)] 0 a [CaOH] +, obdobně s hořčíkem atmosférické vody - koncentrace Ca a Mg < 1 mg/l prosté podzemní a povrchové vody Ca: desítky - několik set mg/l - Mg: jednotky několik desítek mg/l pitné vody ČR průměr: 50 mg/l Ca, 10 mg/l Mg (Σ Ca+Mg = 1,7 mmol/l) minerální vody koncentrace Ca do 1 g/l (omezená rozpustnost CaCO 3 a CaSO 4 ) Větší koncentrace rozpuštěného vápníku - jen při dostatečné koncentraci rozpuštěného oxidu uhličitého! CaCO 3 (s) + H 2 O + CO 2 = Ca HCO 3 -

38 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 38 Výskyt Ca a Mg - pokračování rozpouštění CaCO 3 (s) CaCO 3 (s) + H 2 O + CO 2 = Ca HCO 3 - vylučování CaCO 3 (s) hořčík ve vodách obvykle méně zastoupen než vápník (důvod: Mg je v porovnání s Ca méně zastoupen v zemské kůře, dochází k sorpci Mg a k výměně iontů při styku vody s některými horninami a jílovými minerály, Mg je využíván rostlinami) prosté podzemní a povrchové vody - běžně hmotnostní poměr Ca : Mg ~ 4 (látkový poměrjen 2,4) minerální vody - hodnota poměru Ca:Mg se zmenšuje

39 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 39 Vlastnosti a význam Ca a Mg Tvrdost vody pojem používaný v hydrochemii a technologii vody ve spojitosti s Ca a Mg pojem zastaralý a nepřesný!!! chybně přisuzuje vápníku a hořčíku stejné chemické i biologické vlastnosti, viz následující příklady: tvorba inkrustů v potrubí - vápník závadnější než hořčík stejná koncentrace Σ(Ca+Mg) x různý poměr Ca:Mg - odlišné inkrustující účinky vápník - výraznější komplexační schopnosti než hořčík hořčík (narozdíl od vápníku) působí agresivně na beton hořčík nepříznivě ovlivňuje chuť pitné vody, vápník naopak příznivě dávkování CaO, CaCO 3, CaSO 4, CO 2 a H 2 SO 4 pro dosažení vápenatouhličitanové rovnováhy z důvodu zpomalení koroze potrubí = původně ztvrzování = chybné označení => lépe stabilizace vody

40 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 40 Tvrdost vody - nejednotná definice a) technologické hledisko: tvrdost vody = koncentrace všech iontů kovů s vyšším nábojovým číslem, které se nepříznivě projevují v provozních vodách b) analytické hledisko tvrdost vody = součet látkových koncentrací buď Ca+Mg+Sr+Ba, nebo jen Ca+Mg (možno stanovit klasickou komplexometrickou metodou) - někdy rozlišována tvrdost chloridová, síranová a dusičnanová (= chybné přičleňování aniontů ke kationtům) nebo tvrdost přechodná, stálá, uhličitanová a neuhličitanová (zastaralé, dnes se již nepoužívá) alternativní vyjadřování tvrdosti vody: Německý stupeň ( něm, DH, dh) = konc. 10 mg CaO, resp. 7,2 mg MgO v 1 litru vody Anglický stupeň ( Clark) = konc. 14,3 mg CaCO 3 v 1 litru vody (1 grain CaCO 3 per imperial gallon) Francouzský stupeň = konc. 10 mg CaCO 3 v 1 litru vody Americký stupeň = konc. 1 mg CaCO 3 v 1 litru vody miligramekvivalenty (milivaly, mval) v 1 litru vody Přepočet: 1 mmol/l = 2 mval/l = 5,6 něm = 7,02 angl = 10 franc = 100 amer

41 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 41 Geneze Sr a Ba rozkladem minerálů stroncianitu SrCO 3, witheritu BaCO 3, celestinu SrSO 4 a barytu BaSO 4 průmyslové odpadní vody výroba keramiky, barev, skla, papíru, televizních obrazovek; součást kalicích lázní, fungicidů, aditiv do paliv Výskyt Sr a Ba jednoduché ionty Sr 2+ a Ba 2+ nebo iontové asociáty s CO 3 2- a SO 4 2- Sr a Ba = běžná součást přírodních vod stroncium vždy dominuje nad baryem podzemní vody asi 50 µg/l Ba pitné vody v ČR (průměr) 80 µg/l Ba minerální vody Vincentka, Poděbradka, Šaratice vysoké koncentrace Sr mořská voda - 30 µg/l Ba a 8 mg/l Sr

42 Hydrochemie anorganické látky ve vodách: Na, K, Ca, Mg, Sr, Ba 42 Vlastnosti a význam Sr a Ba rozpustnost Sr a Ba limitována sloučeninami: SrCO 3 (log K S = -9,1) SrSO 4 (log K S = -6,46) BaSO 4 (log K S = -9,95) BaCO 3 (log K S = -8,3) málo rozpustné jsou také fluoridy pitná voda NMH (Ba) = 1 mg/l (je toxické) kojenecká a stolní voda - NMH (Ba) = 0,5 mg/l balená minerální voda - NMH (Ba) = 1 mg/l vodárenské toky - limit 0,7 mg/l Ba ostatní toky - limit 1 mg/l Ba Sr není limitováno je netoxické s výjimkou radionuklidu 90 Sr

Úprava podzemních vod

Úprava podzemních vod Úprava podzemních vod 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek z vody (Rn,

Více

Základy pedologie a ochrana půdy

Základy pedologie a ochrana půdy Základy pedologie a ochrana půdy 6. přednáška VZDUCH V PŮDĚ = plynná fáze půdy Význam (a faktory jeho složení): dýchání organismů výměna plynů mezi půdou a atmosférou průběh reakcí v půdě Formy: volně

Více

Hrubě disperzní (nerozpuštěné látky) - Ø > 10-6 m zrna písku a půdy, nerozložený biologický materiál, mikroorganismy. Hydrochemie obecné složení vod

Hrubě disperzní (nerozpuštěné látky) - Ø > 10-6 m zrna písku a půdy, nerozložený biologický materiál, mikroorganismy. Hydrochemie obecné složení vod 1 Přírodní voda disperzní systém obsahující řadu látek anorganického i organického původu Analyticky disperzní (rozpuštěné látky) Ø < 10-8 m mangan; nízkomolekulární organické látky (peptidy, fulvokyseliny...);

Více

Hydrochemie Oxid uhličitý a jeho iontové formy, ph, NK

Hydrochemie Oxid uhličitý a jeho iontové formy, ph, NK 1 Oxid uhličitý - CO 2 původ: atmosférický - neznečištěný vzduch 0,03 obj. % CO 2 biogenní aerobní a anaerobní rozklad OL hlubinný magma, termický rozklad uhličitanových minerálů, rozklad uhličitanových

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.

) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě. Amoniakální dusík Amoniakální dusík se vyskytuje téměř ve všech typech vod. Je primárním produktem rozkladu organických dusíkatých látek živočišného i rostlinného původu. Organického původu je rovněž ve

Více

Ukázky z pracovních listů B

Ukázky z pracovních listů B Ukázky z pracovních listů B 1) Označ každou z uvedených rovnic správným názvem z nabídky. nabídka: termochemická, kinetická, termodynamická, Arrheniova, 2 HgO(s) 2Hg(g) + O 2 (g) H = 18,9kJ/mol v = k.

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální

Více

OBECNÁ FYTOTECHNIKA BLOK: VÝŽIVA ROSTLIN A HNOJENÍ Témata konzultací: Základní principy výživy rostlin. Složení rostlin. Agrochemické vlastnosti půd a půdní úrodnost. Hnojiva, organická hnojiva, minerální

Více

Základy analýzy potravin Přednáška 1

Základy analýzy potravin Přednáška 1 ANALÝZA POTRAVIN Význam a využití kontrola jakosti surovin, výrobků jakost výživová jakost technologická jakost hygienická autenticita, identita potravinářských materiálů hodnocení stravy (diety) Analytické

Více

Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+

Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+ Sloučeniny dusíku Dusík patří mezi nejdůležitější biogenní prvky ve vodách Sloučeniny dusíku se uplatňují při všech biologických procesech probíhajících v povrchových, podzemních i odpadních vodách Dusík

Více

Modul 02 - Přírodovědné předměty

Modul 02 - Přírodovědné předměty Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 - Přírodovědné předměty Hana Gajdušková Výskyt

Více

Elektrická dvojvrstva

Elektrická dvojvrstva 1 Elektrická dvojvrstva o povrchový náboj (především hydrofobních) částic vyrovnáván ekvivalentním množstvím opačně nabitých iontů (protiiontů) o náboj koloidní částice + obal protiiontů = tzv. elektrická

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech.

Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech. Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech. hydrologie hydrogeografie oceánografie hydrogeologie Hydrologický

Více

GEMATEST spol. s r.o. Laboratoře pro geotechniku a ekologii

GEMATEST spol. s r.o. Laboratoře pro geotechniku a ekologii GEMATEST spol. s r.o. CENÍK Laboratoř analytické chemie Černošice tel: +420 251 642 189 fax.: +420 251 642 154 mobil: +420 604 960 836 +420 605 765 448 analytika@gematest.cz www.gematest.cz Platnost od:

Více

Technologie pro úpravu bazénové vody

Technologie pro úpravu bazénové vody Technologie pro úpravu GHC Invest, s.r.o. Korunovační 6 170 00 Praha 7 info@ghcinvest.cz Příměsi významné pro úpravu Anorganické látky přírodního původu - kationty kovů (Cu +/2+, Fe 2+/3+, Mn 2+, Ca 2+,

Více

H - -I (hydridy kovů) vlastnosti: plyn - nekov 14x lehčí než vzduch bez barvy, chuti, zápachu se vzduchem tvoří výbušnou směs redukční činidlo

H - -I (hydridy kovů) vlastnosti: plyn - nekov 14x lehčí než vzduch bez barvy, chuti, zápachu se vzduchem tvoří výbušnou směs redukční činidlo Otázka: Vodík, kyslík Předmět: Chemie Přidal(a): Prang Vodík 1. Charakteristika 1 1 H 1s 1 ; 1 proton, jeden elektron nejlehčí prvek výskyt: volný horní vrstva atmosféry, vesmír - elementární vázaný- anorganické,

Více

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku. Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik

Více

5. Třída - karbonáty

5. Třída - karbonáty 5. Třída - karbonáty Karbonáty vytváří cca 210 minerálů, tj. 6 % ze známých minerálů. Chemicky lze karbonáty odvodit od slabé kyseliny uhličité nahrazením jejich dvou vodíků kovem. Jako kationty vystupují

Více

Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866

Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866 Martin Hynouš hynous@ghcinvest.cz gsm: 603 178 866 1. VODA 2. LEGISLATIVA 3. TECHNOLOGIE 4. CHEMIE H 2 0 nejběţnější sloučenina na světě tvoří přibliţně 71% veškerého povrchu Země je tvořena 2 atomy vodíku

Více

ODPADNÍ VODY ODPADNÍ VODY. další typy znečištění. Ukazatele znečištění odpadních vod. přehled znečišťujících látek v odpadních vodách

ODPADNÍ VODY ODPADNÍ VODY. další typy znečištění. Ukazatele znečištění odpadních vod. přehled znečišťujících látek v odpadních vodách 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 množství (mil.m 3 ) ODPADNÍ VODY ODPADNÍ VODY vody

Více

Pedogeochemie VÁPNÍK V PŮDĚ. Vápník v půdě HOŘČÍK V PŮDĚ. 12. přednáška. Koloběh a přeměny vápníku v půdě

Pedogeochemie VÁPNÍK V PŮDĚ. Vápník v půdě HOŘČÍK V PŮDĚ. 12. přednáška. Koloběh a přeměny vápníku v půdě Pedogeochemie 12. přednáška VÁPNÍK V PŮDĚ v půdách v průměru 0,057 (0,0001 32) % vápnité sedimenty > bazické vyvřeliny > kyselé vyvřeliny plagioklasy, pyroxeny kalcit, dolomit, anhydrit, sádrovec fosfáty

Více

Koncepční model proudění podzemních vod založený na korelaci hydrochemických a hydrogeologických dat, provincie Dorno Gobi, Mongolsko

Koncepční model proudění podzemních vod založený na korelaci hydrochemických a hydrogeologických dat, provincie Dorno Gobi, Mongolsko Koncepční model proudění podzemních vod založený na korelaci hydrochemických a hydrogeologických dat, provincie Dorno Gobi, Mongolsko Adam Říčka Ústav geologických věd PřF MU Brno Vilém Fürych, Antonín

Více

OBECNÁ CHEMIE František Zachoval CHEMICKÉ ROVNOVÁHY 1. Rovnovážný stav, rovnovážná konstanta a její odvození Dlouhou dobu se chemici domnívali, že jakákoliv chem.

Více

Biogeochemické cykly vybraných chemických prvků

Biogeochemické cykly vybraných chemických prvků Biogeochemické cykly vybraných chemických prvků Uhlík důležitý biogenní prvek cyklus C jedním z nejdůležitějších látkových toků v biosféře poměr mezi CO 2 a C org - vliv na oxidačně redukční potenciál

Více

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah 10 CHEMIE 10.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vyučovací předmět Chemie zpracovává vzdělávací obsah oboru Chemie vzdělávací oblasti Člověk a příroda. Vzdělávání v předmětu chemie

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

Kovy II. hlavní skupiny (alkalických zemin + Be,, Mg)

Kovy II. hlavní skupiny (alkalických zemin + Be,, Mg) Kovy II. hlavní skupiny (alkalických zemin + Be,, Mg) I II III IV V VI VII VIII I II III IV V VI VII VIII 1 H n s n p He 2 Li Be B C N O F Ne 3 Na Mg (n-1) d Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co

Více

Úprava podzemních vod ODKYSELOVÁNÍ

Úprava podzemních vod ODKYSELOVÁNÍ Úprava podzemních vod ODKYSELOVÁNÍ 1 Způsoby úpravy podzemních vod Neutralizace = odkyselování = stabilizace vody odstranění CO 2 a úprava vody do vápenato-uhličitanové rovnováhy Odstranění plynných složek

Více

Univerzita Karlova v Praze. Pedagogická fakulta BAKALÁŘSKÁ PRÁCE. Stanovení tvrdosti vody a celkové vodivosti pitné vody

Univerzita Karlova v Praze. Pedagogická fakulta BAKALÁŘSKÁ PRÁCE. Stanovení tvrdosti vody a celkové vodivosti pitné vody Univerzita Karlova v Praze Pedagogická fakulta Katedra chemie a didaktiky chemie BAKALÁŘSKÁ PRÁCE Stanovení tvrdosti vody a celkové vodivosti pitné vody Determination of hardness and total conductivity

Více

VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium

VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium VI. skupina PS, ns 2 np4 Kyslík, síra, selen, tellur, polonium O a S jsou nekovy (tvoří kovalentní vazby), Se, Te jsou polokovy, Po je typický kov O je druhý nejvíce elektronegativní prvek vytváření oktetové

Více

HYDROSFÉRA 0,6% 2,14% 97,2%

HYDROSFÉRA 0,6% 2,14% 97,2% HYDROSFÉRA 0,6% 2,14% 97,2% PODZEMNÍ VODA Fosilní voda Proudící voda evapotranspirace Celkový odtok Přímý odtok infitrace Základní odtok VODA OBNOVITELNÝ PŘÍRODNÍ ZDROJ Hydrologický cyklus Zdrojem energie

Více

Ochrana půdy. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

Ochrana půdy. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Ochrana půdy Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky Vlastnosti půdy Změna kvality půdy Ochrana před chemickou degradací -

Více

DUM VY_52_INOVACE_12CH01

DUM VY_52_INOVACE_12CH01 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH01 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 8. a 9. vzdělávací oblast: vzdělávací obor:

Více

Chemie životního prostředí III Hydrosféra (03) Sedimenty

Chemie životního prostředí III Hydrosféra (03) Sedimenty Centre of Excellence Chemie životního prostředí III Hydrosféra (03) Sedimenty Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni muni.cz Koloidní

Více

GEMATEST spol. s r.o. Laboratoř analytické chemie Černošice

GEMATEST spol. s r.o. Laboratoř analytické chemie Černošice GEMATEST spol. s r.o. Laboratoř analytické chemie Černošice CENÍK tel: +420 251 642 189 fax.: +420 251 642 154 mobil: +420 604 960 836 +420 605 765 448 analytika@gematest.cz www.gematest.cz Platnost od:

Více

Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů

Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů Ochrana kvality vod Klasifikace vod podle čistoty Jakost (kvalita) vod Čištění vod z rybářských provozů Doc. Ing. Radovan Kopp, Ph.D. Klasifikace vod podle čistoty JAKOST (= KVALITA) VODY - moderní technický

Více

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton varianta A řešení (správné odpovědi jsou podtrženy) 1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton 2. Sodný kation Na + vznikne, jestliže atom

Více

Přílohy. Příloha 1. Mapa s výskytem dolů a pramenů s hladinami vod po r (Čadek et al. 1968) [Zadejte text.]

Přílohy. Příloha 1. Mapa s výskytem dolů a pramenů s hladinami vod po r (Čadek et al. 1968) [Zadejte text.] Přílohy Příloha 1 Mapa s výskytem dolů a pramenů s hladinami vod po r. 1895 (Čadek et al. 1968) Příloha 2 Komplexní rozbor vody z pramene Pravřídlo 2002 (Lázně Teplice) Chemické složení Kationty mg/l mmol/l

Více

AKREDITOVANÁ ZKUŠEBNÍ LABORATOŘ č.1489 AKREDITOVÁNA ČESKÝM INSTITUTEM PRO AKREDITACI, o.p.s. DLE ČSN EN ISO/IEC 17025:2005

AKREDITOVANÁ ZKUŠEBNÍ LABORATOŘ č.1489 AKREDITOVÁNA ČESKÝM INSTITUTEM PRO AKREDITACI, o.p.s. DLE ČSN EN ISO/IEC 17025:2005 United Energy, a.s. Teplárenská č.p.2 434 03 Komořany u Mostu IČO: 273 09 959 DIČ: CZ27309959 AKREDITOVANÁ ZKUŠEBNÍ LABORATOŘ č.1489 AKREDITOVÁNA ČESKÝM INSTITUTEM PRO AKREDITACI, o.p.s. DLE ČSN EN ISO/IEC

Více

Kvalitativní analýza - prvková. - organické

Kvalitativní analýza - prvková. - organické METODY - chemické MATERIÁLY - anorganické - organické CHEMICKÁ ANALÝZA ANORGANICKÉHO - iontové reakce ve vodných roztocích rychlý, jednoznačný a často kvantitativní průběh kationty, anionty CHEMICKÁ ANALÝZA

Více

CHEMICKY ČISTÁ LÁTKA A SMĚS

CHEMICKY ČISTÁ LÁTKA A SMĚS CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic

Více

Chemické složení surovin Chemie anorganických stavebních pojiv

Chemické složení surovin Chemie anorganických stavebních pojiv Chemické složení surovin Chemie anorganických stavebních pojiv Ing. Milena Pavlíková, Ph.D. K123, D1045 224 354 688, milena.pavlikova@fsv.cvut.cz tpm.fsv.cvut.cz Základní pojmy Materiál Stavební pojiva

Více

Balíček k oběhovému hospodářství PŘÍLOHY. návrhu nařízení Evropského parlamentu a Rady,

Balíček k oběhovému hospodářství PŘÍLOHY. návrhu nařízení Evropského parlamentu a Rady, EVROPSKÁ KOMISE V Bruselu dne 17.3.2016 COM(2016) 157 final ANNEXES 1 to 5 Balíček k oběhovému hospodářství PŘÍLOHY návrhu nařízení Evropského parlamentu a Rady, kterým se stanoví pravidla pro dodávání

Více

Anorganické sloučeniny opakování Smart Board

Anorganické sloučeniny opakování Smart Board Anorganické sloučeniny opakování Smart Board VY_52_INOVACE_210 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8.,9. Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

Přechodné prvky, jejich vlastnosti a sloučeniny

Přechodné prvky, jejich vlastnosti a sloučeniny Přechodné prvky, jejich vlastnosti a sloučeniny - jsou to d-prvky, nazývají se také přechodné prvky - v PSP jsou umístěny mezi s a p prvky - nacházejí se ve 4. 7. periodě - atomy přechodných prvků mají

Více

Kyslík. Kyslík. Rybářství 3. Kyslík. Kyslík. Koloběh kyslíku 27.11.2014. Chemismus vodního prostředí. Výskyty jednotlivých prvků a jejich koloběhy

Kyslík. Kyslík. Rybářství 3. Kyslík. Kyslík. Koloběh kyslíku 27.11.2014. Chemismus vodního prostředí. Výskyty jednotlivých prvků a jejich koloběhy Rybářství 3 Chemismus vodního prostředí Výskyty jednotlivých prvků a jejich koloběhy Kyslík Významný pro: dýchání hydrobiontů aerobní rozklad organické hmoty Do vody se dostává: difúzí při styku se vzduchem

Více

6.Úprava a čistění vod pro průmyslové a speciální účely

6.Úprava a čistění vod pro průmyslové a speciální účely 6.Úprava a čistění vod pro průmyslové a speciální účely Ivan Holoubek Zdeněk Horsák RECETOX, Masaryk University, Brno, CR holoubek@recetox.muni.cz; http://recetox.muni.cz Inovace tohoto předmětu je spolufinancována

Více

1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ. 1.5 Úlohy. 1.5.1 Analýza farmakologických a biochemických dat

1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ. 1.5 Úlohy. 1.5.1 Analýza farmakologických a biochemických dat 1 DATA: CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1.5 Úlohy Úlohy jsou rozděleny do čtyř kapitol: B1 (farmakologická a biochemická data), C1 (chemická a fyzikální data), E1 (environmentální,

Více

Hydrochemie anorganické látky ve vodách: Ca, Mg, Al, Fe, Mn, těžké kovy

Hydrochemie anorganické látky ve vodách: Ca, Mg, Al, Fe, Mn, těžké kovy 1 Geneze Ca a Mg rozkladem hlinitokřemičitanů vápenatých a hořečnatých (anortit CaAl 2 Si 2 O 8, chlorit Mg 5 Al 2 Si 3 O 10 (OH) 8 ) rozpouštěním vápence CaCO 3, dolomitu CaCO 3.MgCO 3, magnezitu MgCO

Více

TEORETICKÁ ČÁST (70 BODŮ)

TEORETICKÁ ČÁST (70 BODŮ) Řešení okresního kola ChO kat. D 0/03 TEORETICKÁ ČÁST (70 BODŮ) Úloha 3 bodů. Ca + H O Ca(OH) + H. Ca(OH) + CO CaCO 3 + H O 3. CaCO 3 + H O + CO Ca(HCO 3 ) 4. C + O CO 5. CO + O CO 6. CO + H O HCO 3 +

Více

DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY. Jaké je nejnižší ph zjištěné v přírodních vodách?

DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY DŮLNÍ VODY. Jaké je nejnižší ph zjištěné v přírodních vodách? s. l. podzemní nebo meteorická voda, která změní své fyzikálně-chemické vlastnosti v důsledku interakce s pevným důlním odpadem v místě těžby nebo během úpravy surovin Užitková voda: snížení prašnosti,

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů

a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKY ČISTÉ LÁTKY A SMĚSI Látka = forma hmoty, která se skládá z velkého množství základních částic: atomů, iontů a... 1. Přiřaďte látky: glukóza, sůl, vodík a helium k níže zobrazeným typům částic.

Více

Hydrochemie přírodní organické látky (huminové látky, AOM)

Hydrochemie přírodní organické látky (huminové látky, AOM) Hydrochemie přírodní organické látky (huminové látky, AM) 1 Přírodní organické látky NM (Natural rganic Matter) - významná součást povrchových vod dělení podle velikosti částic: rozpuštěné - DM (Dissolved

Více

Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA

Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA Směsi Látky a jejich vlastnosti Předmět a význam chemie Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA Téma Učivo Výstupy Kódy Dle RVP Školní (ročníkové) PT K Předmět

Více

VY_52_INOVACE_208 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9

VY_52_INOVACE_208 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Soli prezentace VY_52_INOVACE_208 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost Soli jsou chemické

Více

Chemické názvosloví anorganických sloučenin 1

Chemické názvosloví anorganických sloučenin 1 Chemické názvosloví anorganických sloučenin 1 Dvouprvkové sloučeniny Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem

Více

ZÁKLADNÍ ANALYTICKÉ METODY Vážková analýza, gravimetrie. Jana Sobotníková VÁŽKOVÁ ANALÝZA, GRAVIMETRIE

ZÁKLADNÍ ANALYTICKÉ METODY Vážková analýza, gravimetrie. Jana Sobotníková VÁŽKOVÁ ANALÝZA, GRAVIMETRIE Jana Sobotníková ZÁKLADÍ AALYTIKÉ METODY Vážková analýza, gravimetrie ke stažení v SIS nebo Moodle www.natur.cuni.cz/~suchan suchan@natur.cuni.cz jana.sobotnikova@natur.cuni.cz telefon: 221 951 230 katedra

Více

2. ÚVODNÍ USTANOVENÍ KANALIZAČNÍHO ŘÁDU

2. ÚVODNÍ USTANOVENÍ KANALIZAČNÍHO ŘÁDU 2. ÚVODNÍ USTANOVENÍ KANALIZAČNÍHO ŘÁDU Účelem kanalizačního řádu je stanovení podmínek, za nichž se producentům odpadních vod (odběratelům) povoluje vypouštět do kanalizace odpadní vody z určeného místa,

Více

Oborový workshop pro ZŠ CHEMIE

Oborový workshop pro ZŠ CHEMIE PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Oborový workshop pro ZŠ CHEMIE

Více

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic 4. CHEMICKÉ ROVNICE A. Vyčíslování chemických rovnic Klíčová slova kapitoly B: Zachování druhu atomu, zachování náboje, stechiometrický koeficient, rdoxní děj Čas potřebný k prostudování učiva kapitoly

Více

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 26 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tematický celek: Anotace: CZ.1.07/1.5.00/3.010

Více

Křemík a jeho sloučeniny

Křemík a jeho sloučeniny Křemík a jeho sloučeniny Mgr. Jana Pertlová Copyright istudium, 2008, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení

Více

Ústřední komise Chemické olympiády. 48. ročník 2011/2012. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

Ústřední komise Chemické olympiády. 48. ročník 2011/2012. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH Ústřední komise Chemické olympiády 48. ročník 2011/2012 ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (70 BODŮ) Úloha 1 Neznámý prvek 16 bodů 1. A síra 0,5 bodu 2. t t = 119 C, t v = 445

Více

Soli. Vznik solí. Názvosloví solí

Soli. Vznik solí. Názvosloví solí Soli Vznik solí Soli jsou chemické sloučeniny složené z kationtů kovů ( popř. amonného kationtu NH4 + ) a aniontů kyselin. Např. KNO 3 obsahuje draselný kationt K + a aniont kyseliny dusičné NO 3, NaCl

Více

Základní stavební částice

Základní stavební částice Základní stavební částice ATOMY Au O H Elektroneutrální 2 H 2 atomy vodíku 8 Fe Ř atom železa IONTY Na + Cl - H 3 O + P idávat nebo odebírat se mohou jenom elektrony Kationty Kladn nabité Odevzdání elektron

Více

Úprava podzemních a povrchových vod 2/0, Zk (3 kr.)

Úprava podzemních a povrchových vod 2/0, Zk (3 kr.) Úprava podzemních a povrchových vod Úprava podzemních a povrchových vod /0, Zk (3 kr.) Martin Pivokonský Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 33 09 068 e mail: pivo@ih.cas.cz Texty přednášek na:

Více

Ch - Stavba atomu, chemická vazba

Ch - Stavba atomu, chemická vazba Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

HACH CHEMIKÁLIE, REAGENCIE A STANDARDY

HACH CHEMIKÁLIE, REAGENCIE A STANDARDY HACH CHEMIKÁLIE, REAGENCIE A STANDARDY Společnost Hach má více než 60 letou historii věnovanou vyvíjení a balení vysoce kvalitních reagencií pro analýzu vody. Rozumíme vašim aplikacím a vyvíjíme naše reagencie

Více

KANALIZAČNÍ ŘÁD. stokové sítě obce NENKOVICE

KANALIZAČNÍ ŘÁD. stokové sítě obce NENKOVICE Vodovody a kanalizace Hodonín, a.s. Purkyňova 2933/2, 695 11 Hodonín KANALIZAČNÍ ŘÁD stokové sítě obce NENKOVICE POZN. Toto je verze kanalizačního řádu utčená ke zveřejnění na webových stránkách společnosti

Více

Otázky a jejich autorské řešení

Otázky a jejich autorské řešení Otázky a jejich autorské řešení Otázky: 1a Co jsou to amfoterní látky? a. látky krystalizující v krychlové soustavě b. látky beztvaré c. látky, které se chovají jako kyselina nebo jako zásada podle podmínek

Více

TEORETICKÁ ČÁST (OH) +II

TEORETICKÁ ČÁST (OH) +II POKYNY nejprve si prostuduj teoretickou část s uvedenými typovým příklady jakmile si budeš jist, že teoretickou část zvládáš, procvič si své dovednosti na příkladech k procvičování jako doplňující úlohu

Více

METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY

METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY Základní fyzikálně chemické parametry tekoucích a stojatých vod, odběr vzorků METEOROLOGICKÉ A FYZIKÁLNĚ-CHEMICKÉ FAKTORY Doc. Ing. Radovan Kopp, Ph.D. Odběr vzorků Při odběrech vzorků se pozoruje, měří

Více

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce 6 ČLOVĚK A PŘÍRODA UČEBNÍ OSNOVY 6. 2 Chemie Časová dotace 8. ročník 2 hodiny 9. ročník 2 hodiny Celková dotace na 2. stupni je 4 hodiny. Charakteristika: Vyučovací předmět chemie vede k poznávání chemických

Více

Pracovní list: Opakování učiva 8. ročníku

Pracovní list: Opakování učiva 8. ročníku Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.

Více

AKREDITOVANÉ ANALYTICKÉ LABORATOŘE

AKREDITOVANÉ ANALYTICKÉ LABORATOŘE AKREDITOVANÉ ANALYTICKÉ LABORATOŘE LABTECH s. r. o. je dynamická společnost dlouhodobě se zabývající laboratorními rozbory a zkouškami, prodejem, servisem a aplikační podporou laboratorní instrumentace,

Více

1 mol (ideálního) plynu, zaujímá za normálních podmínek objem 22,4 litru. , Cl 2 , O 2

1 mol (ideálního) plynu, zaujímá za normálních podmínek objem 22,4 litru. , Cl 2 , O 2 10.výpočty z rovnic praktické provádění výpočtů z rovnic K výpočtu chemických rovnic je důležité si shrnout tyto poznatky: Potřebujem znát vyjadřování koncentrací, objemový zlomek, molární zlomek, molární

Více

Mohamed YOUSEF *, Jiří VIDLÁŘ ** STUDIE CHEMICKÉHO SRÁŽENÍ ORTHOFOSFOREČNANŮ NA ÚČOV OSTRAVA

Mohamed YOUSEF *, Jiří VIDLÁŘ ** STUDIE CHEMICKÉHO SRÁŽENÍ ORTHOFOSFOREČNANŮ NA ÚČOV OSTRAVA Sborník vědeckých prací Vysoké školy báňské Technické univerzity Ostrava Řada hornicko-geologická Volume XLVIII (2002), No.2, p. 49-56, ISSN 0474-8476 Mohamed YOUSEF *, Jiří VIDLÁŘ ** STUDIE CHEMICKÉHO

Více

Univerzita Palackého v Olomouci. Přírodovědecká fakulta. Katedra fyzikální chemie BAKALÁŘSKÁ PRÁCE. Ondřej Smyslil. doc. RNDr. Taťjana Nevěčná, CSc.

Univerzita Palackého v Olomouci. Přírodovědecká fakulta. Katedra fyzikální chemie BAKALÁŘSKÁ PRÁCE. Ondřej Smyslil. doc. RNDr. Taťjana Nevěčná, CSc. 10 12 34 56 78 9 Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra fyzikální chemie Sledování kvality podzemních vod v závislosti na poloze zdroje v oblasti Drahanské vrchoviny a okolí BAKALÁŘSKÁ

Více

Příspěvek ke studiu problematiky vzniku žlutých skvrn na prádle.

Příspěvek ke studiu problematiky vzniku žlutých skvrn na prádle. Příspěvek ke studiu problematiky vzniku žlutých skvrn na prádle. Ing. Jan Kostkan, společnost DonGemini s.r.o. Tímto příspěvkem reaguji na článek Ing, Zdeňka Kadlčíka z června tohoto roku o názvu Diskutujeme

Více

Jakost vody. Pro tepelné zdroje vyrobené z nerezové oceli s provozními teplotami do 100 C. Provozní deník 6 720 806 967 (2013/02) CZ

Jakost vody. Pro tepelné zdroje vyrobené z nerezové oceli s provozními teplotami do 100 C. Provozní deník 6 720 806 967 (2013/02) CZ Provozní deník Jakost vody 6 720 806 966-01.1ITL Pro tepelné zdroje vyrobené z nerezové oceli s provozními teplotami do 100 C 6 720 806 967 (2013/02) CZ Obsah Obsah 1 Kvalita vody..........................................

Více

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob Kyselina fosforečná bezbarvá krystalická sloučenina snadno rozpustná ve vodě komerčně dodávané koncentrace 75% H 3 PO 4 s 54,3% P 2 O 5 80% H 3 PO 4 s 58.0% P 2 O 5 85% H 3 PO 4 s 61.6% P 2 O 5 po kyselině

Více

PRVKY 17. (VII. A) SKUPINY

PRVKY 17. (VII. A) SKUPINY PRVKY 17. (VII. A) SKUPINY TEST Úkol č. 1 Doplň následující text správnými informacemi o prvcích 17. skupiny: Prvky 17. skupiny periodické soustavy prvků jsou společným názvem označovány halogeny. Do této

Více

Denitrifikace odpadních vod s vysokou koncentrací dusičnanů

Denitrifikace odpadních vod s vysokou koncentrací dusičnanů Denitrifikace odpadních vod s vysokou koncentrací dusičnanů Dorota Horová, Petr Bezucha Unipetrol výzkumně vzdělávací centrum, a.s., Ústí nad Labem dorota.horova@unicre.cz Souhrn Biologická denitrifikace

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech

Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech Spolupracovaly: Technická univerzita v Liberci, fakulta mechatroniky a mezioborových studií Masarykova univerzita, Přírodovědecká

Více

Úprava podzemních a povrchových vod. Úprava podzemních a povrchových vod 2/0, Zk (3 kr.)

Úprava podzemních a povrchových vod. Úprava podzemních a povrchových vod 2/0, Zk (3 kr.) Úprava podzemních a povrchových vod Úprava podzemních a povrchových vod /0, Zk (3 kr.) Martin Pivokonský Ústav pro hydrodynamiku V ČR, v. v. i. Tel.: 33 09 068 e-mail: pivo@ih.cas.cz Texty přednášek na:

Více

Environmentální geomorfologie

Environmentální geomorfologie Nováková Jana Environmentální geomorfologie Chemické zvětrávání Zemská kůra vrstva žulová (= granitová = Sial) vrstva bazaltová (čedičová = Sima, cca 70 km) Názvy granitová a čedičová vrstva neznamenají

Více

NEUTRALIZACE. (18,39 ml)

NEUTRALIZACE. (18,39 ml) NEUTRALIZACE 1. Vypočtěte hmotnostní koncentraci roztoku H 2 SO 4, bylo-li při titraci 25 ml spotřebováno 17,45 ml odměrného roztoku NaOH o koncentraci c(naoh) = 0,5014 mol/l. M (H 2 SO 4 ) = 98,08 g/mol

Více

Disperzní soustavy. Pravé roztoky (analytické disperze) Látková koncentrace (molarita) Molalita. Rozdělení disperzních soustav

Disperzní soustavy. Pravé roztoky (analytické disperze) Látková koncentrace (molarita) Molalita. Rozdělení disperzních soustav Rozdělení disperzních soustav Disperzní soustavy částice jedné nebo více látek rovnoěrně rozptýlené (dispergované) ve forě alých částeček v dispergující fázi podle počtu fází podle skupenského stavu jednofázové

Více

TVRDOST, VODIVOST A ph MINERÁLNÍ VODY

TVRDOST, VODIVOST A ph MINERÁLNÍ VODY TRDOST, ODIOST A ph MINERÁLNÍ ODY A) STANOENÍ TRDOSTI MINERÁLNÍCH OD Prinip: Tvrdost, resp. elková tvrdost vody, je způsobena obsahem solí alkalikýh zemin vápník, hořčík, stronium a barium. Stronium a

Více

Voda. živina funkce tepelné hospodářství organismu transportní médium stabilizátor biopolymerů rozpouštědlo reakční médium reaktant

Voda. živina funkce tepelné hospodářství organismu transportní médium stabilizátor biopolymerů rozpouštědlo reakční médium reaktant Voda živina funkce tepelné hospodářství organismu transportní médium stabilizátor biopolymerů rozpouštědlo reakční médium reaktant bilance příjem (g/den) výdej (g/den) poživatiny 900 moč 1500 nápoje 1300

Více

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY Zuzana Špalková Věra Vyskočilová BRNO 2014 Doplňkový studijní materiál zaměřený na Chemické výpočty byl vytvořen v rámci projektu Interní vzdělávací agentury

Více

Teorie kyselin a zásad poznámky 5.A GVN

Teorie kyselin a zásad poznámky 5.A GVN Teorie kyselin a zásad poznámky 5A GVN 13 června 2007 Arrheniova teorie platná pouze pro vodní roztoky kyseliny jsou látky schopné ve vodném roztoku odštěpit vodíkový kation H + HCl H + + Cl - CH 3 COOH

Více