OXIDATIVNÍ FOSFORYLACE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "OXIDATIVNÍ FOSFORYLACE"

Transkript

1 OXIDATIVNÍ FOSFORYLACE

2 OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu.

3 Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací řetězec - oxidativní fosforylace Oxidativní fosforylace je proces tvorby ATP při přenosu elektronů z NADH a FADH 2 na kyslík přes řadu přenašečů elektronů. NADH a FADH 2 jsou vytvořené při glykolýze, oxidaci mastných kyselin a cyklu trikarboxylových kyselin Oxidativní fosforylace je hlavním zdrojem energie aerobních organismů.

4 Významné reakce katalyzované NAD(P)H dehydrogenasami

5 Mitochondrie Mitochondrie jsou místem eukaryotního oxidačního metabolismu. Vnější membrána Vnitřní membrána Kristy Matrix Mezimembránový prostor Drsné endoplazmatické retikulum Mitochondrie obsahují: pyruvátdehydrogenasu enzymy citrátového cyklu enzymy katabolismu mastných kyselin enzymy spolu s proteiny elektronového transportního řetězce a oxidativní fosforylace.

6 Mitochondriální transportní systém Vnější mitochondriální membrána, stejně jako bakteriální, obsahuje poriny, proteiny, které dovolují volnou difúzi molekul do 10 kd. Vnitřní membrána, která je hmotnostně složena ze 75 % z proteinů, volně propouští O 2, CO 2 a H 2 O. Jinak obsahuje řadu transportních proteinů, které kontrolují průchod metabolitů jako jsou ATP, ADP, pyruvát, Ca 2+ a fosfát. Redukované ekvivalenty (NADH) se transportují z cytosolu do mitochondrie, buď malát-aspartátovým člunkem nebo glycerol-3- fosfátovým člunkem. NADH transportované glycerol-3-fosfátovým člunkem poskytuje po oxidaci jen 2 ATP.

7 Mitochondriální přenašeče

8 Malát aspartátový člunek Malát aspartátový člunek (srdce a játra). Reversibilní závisí na poměru NADH/NAD + v cytoplasmě a matrix

9 Malát-aspartátový člunek

10 Glycerol-3-fosfátový člunek Glycerol-3-fosfátový člunek ve svalech(shuttle). Redukce dihydroxyacetonfosfátu na glycerol-3-fosfát a poté mitochondriální glycerol-3-fosfátdehydrogenasa. Tvoří se pouze 2 ATP!!!

11 Glycerol-3-fosfátový člunek

12 Translokátor ADP ATP Většina v mitochondrii vytvořeného ATP se využívá v cytoplasmě. Vnitřní mitochondriální membrána obsahuje ADP-ATP translokator transportující ATP do cytosolu a ADP z cytosolu do mitochondrie. Translokator je dimer identických 30 kd podjednotek s jedním vazebným místem pro ADP i ATP, které vzájemně kompetují. Translokátor mění konformaci při vazbě buď ADP nebo ATP. Export ATP (4 záporné náboje) proti importu ADP (3 záporné náboje) je elektrogenní antiport poháněný rozdílem membránového potenciálu.

13 Mechanismus mitochondriální ATP-ADPtranslokasy Mechanismus mitochondriální ATP-ADPtranslokasy (14 % proteinů mitochondriální membrány) ANTIPORTER. ATP je transportován 30 x rychleji ven, než ADP dovnitř. Čtvrtina energie získaná ox. fosforylací jde na konto exportu ATP. Inhibice atraktylosid (rostlinný glykosid) a bongkreková kyselina (antibiotikum z plísně).

14 Konformační změny ADP-ATP translokátoru

15 Transport fosfátů K syntéze ATP z ADP a P i je nutné transportovat fosfát z cytosolu do mitochondrie. Fosfátový nosič lze charakterizovat jako elektrochemický P i -H + symport poháněný rozdílem (D ph) (transmembránový protonový gradient). Vytvořený transmembránový protonový gradient nevede pouze k syntéze ATP, ale také k transportu ADP a P i.

16 1. Vstup do matrix je poháněn membránovým potenciálem (uvniř negativní) 2. Antiport s H + Transport Ca 2+ Mitochondrie působí jako pufr pro cytosolový Ca 2+

17 Elektronový transport / Termodynamika Elektronové nosiče přenášející elektrony z NADH a FADH 2 na kyslík jsou lokalizovány ve vnitřní mitochondriální membráně. Oxidace NADH je silně exergonická. Měřítkem afinity substrátu k elektronům je standardní redukční potenciál ( o ). Čím vyšší hodnota, tím větší afinita k elektronům. Poloreakce oxidace NADH kyslíkem jsou: NAD + + H e - NADH ½ O H e - H 2 O o = - 0, 315 V o = 0, 815 V NADH je donor elektronů, O 2 akceptor. Celková reakce: ½ O 2 + NADH + H + H 2 O + NAD + D o = 0, 815 V (-0, 315 V) = 1, 130 V!!!

18 Elektronový transport / Termodynamika Redukční potenciál páru H + : H 2 je definován jako 0 voltů. Např. NADH jako silné redukční činidlo předává elektrony a má tak negativní redukční potenciál. Silné oxidační činidlo jako je O 2 přijímá elektrony a má tak pozitivní redukční potenciál. V biochemických textech je redukční potenciál uváděn při koncentraci H + = 10-7 M (ph 7), zatímco v chemických 1 M (ph 0) Redukční potenciál v biochemii je tak označen jako E o (obdobně jako D G o ) Vztah mezi změnou standardní volné (Gibbsovy) energie a změnou redukčního potenciálu: D G o = - nfde o n = počet přenášených elektronů, F je Faradayův náboj (96, 48 kj.mol -1.V -1 ) a DE o je ve voltech.

19 Elektronový transport / Termodynamika Oxidace NADH poskytuje D G o = kj.mol -1 volné energie. K syntéze jednoho molu ATP z ADP a P i je třeba 30, 5 kj.mol -1. Energetický rozdíl D G o = kj.mol -1 nelze přímo převést na několik ATP. Ve vnitřní mitochondriální membráně je soustava tří proteinových komplexů přes které putují elektrony z NADH ke kyslíku. Celková volná energie je tak rozdělena na tři menší části z nichž každá se podílí na tvorbě ATP oxidativní fosforylací. Oxidace NADH poskytne přibližně 3 ATP. Termodynamická efektivita za standardních biochemických podmínek je 42 %. (3 x 30,5 kj.mol -1 x 100 / 218 kj.mol -1 ).

20 Komplexy sekvence elektronového transportu

21 Komplexy sekvence elektronového transportu Komplexy jsou řazeny podle vzrůstajícího redukčního potenciálu. Komplex I: Katalyzuje oxidaci NADH koenzymem Q (CoQ). NADH + CoQ (oxidovaný) NAD + + CoQ (redukovaný) D o = 0, 360 V; D G o = - 69, 5 kj.mol -1 Komplex II: Katalyzuje oxidaci FADH 2 koenzymem Q. FADH 2 + CoQ (oxidovaný) FAD + CoQ (redukovaný) D o = 0, 085 V; D G o = - 16, 4 kj.mol-1 Redoxní reakce neposkytuje dostatečné množství energie pro tvorbu ATP. Funkcí je, pouze předávat elektrony z FADH 2 do elektronového transportního řetězce.

22 Komplexy sekvence elektronového transportu Komplex III: Katalyzuje oxidaci CoQ (red.) cytochromem c. CoQ (redukovaný) + 2 cytochrom c (oxidovaný) CoQ (oxidovaný) + 2 cytochrom c (redukovaný) D o = 0, 190 V; D G o = - 36, 7 kj.mol -1 Komplex IV: Katalyzuje oxidaci redukovaného cytochromu c kyslíkem terminálním akceptorem elektronů. 2 cytochrom c (red.) + ½ O 2 2 cytochrom c (oxid.) + H 2 O D o =0, 580 V; D G o = kj.mol -1.

23 Komplexy sekvence elektronového transportu

24

25 Mitochondriální elektronový transport

26 Mitochondriální elektronový transport

27 Komplex I: NADH koenzym Q oxidoreduktasa Komplex I je největší protein v mitochondriální membráně 43 podjednotek o celkové hmotnosti 900 kd. Komplex I obsahuje jednu molekulu FMN a 6 až 7 komplexů (klastrů) železo-síra. Klastry jsou prostetickými skupinami proteinů železo-síra nebo jinak nehemové proteiny. FMN je pevně vázaný na proteiny; zatímco CoQ je, díky svému hydrofobnímu isoprenoidnímu řetězci, volně pohyblivý v lipidové dvojvrstvě membrány. U savců obsahuje řetězec CoQ 10 C 5 isoprenoidních jednotek (Q 10 ). U některých organismů je řetězec CoQ kratší 6 nebo 8 jednotek.

28 Struktura NADH-Q oxidoreduktasy (Komplex I) Matrix Skládá se z části lokalizované v membráně a ramene v matrix. NADH se oxiduje v rameni a elektrony jsou přeneseny do membrány, kde redukují CoQ.

29 Klastry železo-síra. Přechod elektronů mezi Fe 2+ a Fe 3+

30 Oxidační stavy FMN a koenzymu Q (CoQ) 2- H 2 C OPO 3 H 3 C H 3 C H 3 C C C C CH 3 CH 3 CH 3 H CH 2 O H 3 C N N O H 3 CO CH 3 C H 3 H N O N H CH 3 H 3 CO CH 2 CH C CH 2 H n O Isoprenoidní jednotky Flavinmnonukleotid (FMN) (oxidovaná nebo chinonová forma) H Koenzym Q (CoQ) nebo ubichinon (oxidovaná nebo chinonová forma) H H R O H 3 C N N O H 3 CO CH 3 C H 3 N N H H 3 CO R H H O FAMNH (radikálová nebo semichinonová forma) H OH Koenzym QH nebo ubisemichinon (radikálová nebo semichinonová forma) H H R H OH H 3 C N N O H 3 CO CH 3 C H 3 N N H H 3 CO R H H O OH FMNH 2 (redukovaná nebo hydrochinonová forma) Koenzym QH 2 nebo ubichinol (redukovaná nebo hydrochinonová forma)

31 Reakce katalyzovaná NADH-Q oxidoreduktasy NADH + Q + 5 H + matrix NAD + + QH H + cytoplasma První krok: vazba NADH a přenos dvou elektronů na FMN (FMNH 2 ). Druhý krok: elektrony jsou přeneseny na soustavu sloučenin železo síra. Třetí krok: elektrony jsou přeneseny na vázaný CoQ. Tok dvou elektronů z NADH na vázaný CoQ přes komplex I pumpuje čtyři elektrony z matrix. Redukce CoQ na CoQH 2 vyžaduje další dva protony z matrix. Čtvrtý krok: pár elektronů z vázaného CoQH 2 se přenáší na 4Fe 4S a protony se uvolňují do cytoplasmy. Pátý krok: elektrony z 4Fe 4S se přenáší na mobilní CoQ v hydrofobní části membrány. To vede k odebrání dalších dvou protonů z matrix.

32 Přenos elektronů a translokace protonů v komplexu I. Tok elektronů z NADH na CoQ probíhá stupňovitě mezi redox centry. NADH se účastní vždy jen dvouelektronové výměny. FMN a CoQ mohou přenášet jak dva, tak jeden elektron a proto tvoří elektronovou spojku mezi dvouelektronovým NADH a jednoelektronovými akceptory cytochromy. Při toku elektronů mezi redox centry komplexu I jsou transportovány čtyři protony z matrix do mezimembránového prostoru.

33 Spojení přenosu elektron proton. Redukce chinonu (CoQ) na CoQH 2 vede k odčerpání dvou protonů z matrix

34 Komplex II: sukcinát-koenzym Q Komplex II obsahuje enzym citrátového cyklu sukcinátdehydrogenasu. Přenáší elektrony z FADH 2 na CoQ. Komlex II obsahuje sukcinátdehydrogenasu s kovalentně vázaným FAD, několik klastrů Fe-S a jeden cytochrom b 560. Komplex I a II nejsou v sérii. Komplex II přenáší elektrony ze sukcinátu na CoQ. CoQ je mobilní sběrač elektronů. oxidoreduktasa Cytochrom b 560 slouží pravděpodobně k odstraňování kyslíkatých radikálů vznikajících vedlejšími reakcemi.

35 Struktura sukcinát-koenzym Q oxidoreduktasy

36 Cytochromy-hemové transportní proteiny Během transportu elektronů alternují mezi Fe 2+ a Fe 3+. PROTEIN CH 3 Cys HO H 2 C CH CH 2 CH C CH 2 H 3 CH 3 CH 2 CH CH 3 H 3 C S CH CH 3 Cys 2 3 S H 3 C 1 N + N 4 CH CH 2 H 3 C N + N CH CH 2 H 3 C N + N CH CH 3 Fe 2+ Fe 2+ Fe 2+ O CH 8 N N + 5 CH 3 H 3 C N N + CH 3 H 3 C N N + CH CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH COO COO Hem a - - COO COO Hem b (Fe-protoporfyrin IX) - - COO COO Hem c

37 ABSORBANCE Absorpční spektra hemových skupin redukovaných Fe 2+ cytochromů Soretovy pásy Cytochrom a Cytochrom b Cytochrom c Cytochrom c Cytochrom c Vlnová délka (nm)

38 Komplex III: koenzym Q cytochrom c oxidoreduktasa Komplex III (také jako cytochrom bc 1 ) transportuje elektrony z redukovaného CoQH 2 na cytochrom c. Obsahuje: Dva cytochromy typu b, jeden c 1 a jeden klastr [2Fe- 2S], znám také jako Rieskeho centrum. Transport elektronů a pumpování protonů probíhá tzv. Q cyklem. CoQH 2 podstupuje dva cykly reoxidace za tvorby stabilních meziproduktů semichinonů CoQ. Existují dvě nezávislá centra pro koenzym Q: Q o vážící CoQH 2 (blíže vnější straně membrány out) a Q i (blíže vnitřní straně membrány inner) vážící semichinon CoQ..

39 Struktura koenzym Q cytochrom c oxidoreduktasy

40 Q-cytochrom c oxidoreduktasa Druhá protonová pumpa. Funkcí komplexu III je katalyzovat přenos elektronů z QH 2 na oxidovaný cytochrom c za současného pumpování protonů z matrix. QH Cyt c ox + 2 H + matrix Q + 2 Cyt c red + 4 H + cytoplasma

41 První cyklus: CoQH 2 + cytochrom c 1 (Fe 3+ ) CoQ. + cytochrom c 1 (Fe 2+ ) + 2 H + (mezimembránový prostor) Druhý cyklus - nejdříve další CoQH 2 opakuje první cyklus. CoQH 2 + CoQ. + cytochrom c 1 (Fe 3+ ) + 2 H + (z matrix) CoQ + CoQH 2 + cytochrom c 1 (Fe 2+ ) + 2 H + (do mezimembrány) Z každých dvou CoQH 2 vstupující do Q cyklu, je jeden regenerován. Celková reakce: Reakce Q cyklu CoQH cytochrom c 1 (Fe 3+ ) + 2H + (z matrix) CoQ + 2 cytochrom c 1 (Fe 2+ ) + 4 H + (do mezimembránového prostoru). Elektrony jsou následně přenášeny na cytochrom c, který je transportuje do komplexu IV.

42 Q cyklus první část M E Z I M E M B R Á N O V Ý Z KOMPLEXU I QH 2 QH 2 2H + Q - e - e - FeS-protein b Q - L e - P R e - b e - H O Q Q S c 1 Q Q T o i O R PRVNÍ CYKLUS M A T R I X

43 Q cyklus druhá část M E Z I M E M B R Á N O V Ý Z KOMPLEXU I QH 2 QH 2 2H + Q - QH 2 e - e - e - FeS-protein b L e - Q - P R O S T O R e - b H Q Q c 1 Q o DRUHÝ CYKLUS Q i 2H + M A T R I X

44 Q cyklus

45 Komplex IV: cytochrom c oxidasa Katalyzuje jednoelektronovou oxidaci čtyřech redukovaných cytochromů c a současnou čtyřelektronovou redukci jedné molekuly O 2. 4 Cytochrom c (Fe 2+ ) + 4 H + + O 2 4 cytochrom c (Fe 3+ ) + 2 H 2 O Obsahuje čtyři redoxní centra: cytochrom a, cytochrom a 3, atom mědi značený jako Cu B a dvojici atomů mědi označovaných jako Cu A centrum. Redukce O 2 cytochrom c oxidasou je postupný složitý proces.

46 Komplex IV: cytochrom c oxidasa Cytochrom c oxidasa má dva kanály translokace protonů. Čtyři tzv. chemické nebo skalární protony jsou odňaty z matrix během redukce kyslíku za tvorby dvou molekul vody. Proces je spojen s translokací čtyř tzv. pumpovaných nebo vektorových protonů z matrix do mezimembránového prostoru. Při reakci komplexu IV je celkově transportováno přes vnitřní mitochondriální membránu osm protonů. 8 H + (matrix) + O cytochrom c (Fe 2+ ) 4 cytochrom c (Fe 3+ ) + 2 H 2 O + 4 H + (do mezimembránového prostoru)

47 Struktura cytochrom c oxidasy

48 Transport protonů z matrix cytochrom c oxidasou Čtyři protony do cytoplasmy a čtyři na tvorbu vody

49 Reaktivní kyslíkaté radikály (ROS) Čtyřelektronová redukce kyslíku cytochrom c oxidasou je rychlá a precizní. Přesto vznikají kyslíkaté radikály, které reagují s různými buněčnými součástmi. Nejznámější je superoxidový radikál: O 2 + e - O 2 -. Superoxidový radikál je prekurzorem silnějších oxidačních radikálů jako jsou protonovaný (hydroxoniový) O 2 -. HO 2. a hydroxylový radikál. OH

50 Reaktivní kyslíkaté radikály (ROS) Antioxidační mechanismus: superoxiddismutasa (SOD) přítomná téměř ve všech buňkách. Katalyzuje přechod O 2 -. na peroxid vodíku. Vytvořený peroxid vodíku je degradován katalasou na vodu a kyslík: 2 H 2 O 2 2 H 2 O + O 2 nebo glutathionperoxidasou: 2 GSH + H 2 O 2 GSSG + 2 H 2 O Dalšími potenciálními antioxidanty jsou rostlinné sloučeniny jako askorbát (vitamin C) a -tokoferol (vitamin E). Pravděpodobně chrání rostliny před oxidačním stresem během fotosyntézy, kdy je H 2 O fotolýzou rozkládána na O 2, protony a elektrony.

51 Redoxní systémy dýchacího řetězce

52 Komplex V: ATP synthasa Oxidativní fosforylace. Energetické spojení. Volná energie transportu protonů se uplatní při tvorbě ATP.

53 Komplex V: ATP synthasa

54 Chemiosmotická hypotéza oxidativní fosforylace Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, (1961). Peter Mitchell ( ), Nobelova cena za Fyziologii a medicínu Volná energie elektronového transportu je realizována pumpováním H + z mitochondriální matrix do mezimembránového prostoru za tvorby elektrochemického H + gradientu přes membránu. Elektrochemický gradient je posléze uplatněn při syntéze ATP. Tato volná energie se nazývá protonmotivní síla.

55 Chemiosmotická hypotéza oxidativní fosforylace Naměřený membránový potenciál přes membránu jaterní mitochondrie je 0, 168 V (v matrix negativní). Naměřené ph v matrix je o 0,75 jednotky vyšší než v mezimembránovém prostoru. DG pro transport protonů z matrix je 21, 5 kj.mol -1 endergonní proces. Rušení gradientu, syntéza ATP, je proces exergonní!!

56 Procesy oxidace NADH a tvorby ATP NADH + ½ O 2 + H + H 2 O + NAD + D G o = - 220, 1 kj/mol ADP + P i + H + ATP + H 2 O D G o = + 30, 5 kj/mol

57 ATP synthasa protony pumpující ATP synthasa, F1Fo-ATPasa Multipodjednotkový transmembránový protein o celkové molekulové hmotnosti 450 kd. Složena ze dvou funkčních jednotek (komponent), F o a F 1. (F o vyslovuj ef ó - o znamená na oligomycin citlivá komponenta). protonvodivá (Fo) v membráně katalytická (F1) v matrix

58 ATP synthasa protony pumpující ATP synthasa, F1Fo-ATPasa Oligomycin B Antibiotikum produkované streptomycety Inhibuje ATP synthasu vazbou na F o Brání transportu H + kanálkem F o

59 ATP synthasa protony pumpující ATP synthasa, F1Fo-ATPasa. F o je ve vodě nerozpustný transmembránový protein obsahující více jak osm různých typů podjednotek. F 1 je vodě rozpustný periferní membránový protein složený z pěti typů podjednotek, které lze jednoduše oddělit od F o působením močoviny. Rozpuštěná F 1 komponenta (oddělená od F o ) hydrolyzuje, ale nesyntetizuje ATP. F 1 komponenta ATPsynthasy má podjednotkové složení 3 3 e. Další dva polipeptidy b2 a d tvoří stator, kterým jsou podjednotky a přichyceny k F o F o komponenta je složena z 12 peptidů c procházejících membránou a jedné podjednotky a.

60 Model F1Fo-ATPasy

61 Model F1Fo-ATPasy

62 Mechanismus syntézy ATP Rotace podjednotky o 120 o proti směru hodinových ručiček mění strukturu tří podjednotek. Podjednotka s nově syntetizovaným ATP je ve formě T (tight) nemůže uvolnit ATP. Pohybem podjednotky se převede na O formu, uvolní ATP a váže nové ADP a P i Tok protonů přes ATPsynthasu vede k uvolnění pevně vázaného ATP Role protonového gradientu nespočívá v syntéze ATP, ale v jeho uvolnění ze synthasy!!! ATP se tvoří i bez protonmotivní síly, ale neuvolňuje se (hydrolyzuje)

63 Mechanismus rotace F1Fo-ATPasy Protony z mezimembránového prostoru vstupují do podjednotky c, reagují s podjednotkou a vystupují ven až se c kruh otočí o jednu otočku, kdy se podjednotka c znovu setká s podjednotkou a.

64 Pohyb protonů přes membránu pohání rotaci c kruhu

65 Mechanismus vazebné změny tvorba ATP z ADP a Pi F 1 komponenta má tři reaktivní katalytické protomery ( jednotky), každý ve jiném konformačním stavu. L - váže substrát a produkt slabě (L = loosely) T - váže pevně (T = tightly) O - neváže vůbec, je otevřený (O = open) Uvolněná energie translokací protonů se realizuje přechodem mezi těmito stavy. Fosfoanhydridová vazba ATP je syntetizována jen ve stavu T a ATP se uvolňuje ve stavu O. Tři stupně: ADP a P i se váží do stavu L. Průchod protonů mění konformaci L na T. ATP je syntetizované ve stavu T, druhé ATP se dostává pohybem rotoru do stavu O a oddisociuje.

66 Mechanismus vazebné změny tvorby ATP 1. Vazba ADP a Pi k L-místu 2. Energeticky závislá konformační změna přemění vazebná místa L na T, T na O a O na L 3. Syntéza ATP v místě T a uvolnění ATP z místa L

67 Poměr P/O Poměr P/O reprezentuje relaci mezi množstvím syntetizovaného ATP (P) a množství redukovaného kyslíku (O). Tok dvou elektronů přes komplexy I, III a IV vede ke translokaci 10 protonů. Zpětný tok těchto protonů přes ATPasu poskytuje 3 ATP. Elektrony z FADH 2, vynechávají komplex I, vedou ke translokaci 6 protonů, což poskytuje jen 2 ATP. U aktivně respirujících mitochondrií nebývá poměr P/O celé číslo. Peter Hikle prověřoval P/O poměry a prokázal, že aktuální hodnoty jsou blíže číslů 2,5 a 1,5.

68 Kontrolní mechanismy oxidativní fosforylace Dospělý člověk spotřebuje denně kj metabolické energie. To odpovídá volné energii hydrolýzy 200 molů ATP na ADP a P i. Celkové množství v těle přítomného ATP je méně než 0,1 molu!!! ATP musí být nutně recyklován a jeho produkce regulována, protože se neprodukuje nikdy více ATP než je potřeba. V lidském těle se denně vytvoří 65 kg ATP Celkový obsah AMP + ADP + ATP je jen 3-4 g Každá molekula ADP se za den několikatisíckrát fosforyluje a pak defosforyluje

69 Regulace oxidativní fosforylace poměrem ATP/ADP regulace akceptorem Oxidativní fosforylace (od NADH k cytochromu c) je v rovnováze: ½ NADH + cytochrom c (Fe 3+ ) + ADP + P i ½ NAD + + cytochrom c (Fe 2+ ) + ATP D G 0 K eq = ([NAD + ] / [NADH]) ½.[c 2+ ] / [c 3+ ]. [ATP] /[ADP].[P i ] V cytcytochrom c oxidasové reakci je konečný krok řetězce elektronů ireversibilní. Cytochromoxidasa je řízena dostupností substrátů [NADH] / [NAD + ] a [ATP] / [ADP].[P i ]. Čím vyšší je poměr [NADH] / [NAD + ] a nižší [ATP] / [ADP].[P i ], tím vyšší je koncentrace redukovaného cytochromu c [c 2+ ] a vyšší cytochrom c oxidasová aktivita.

70 Regulace oxidativní fosforylace glykolýza, citrátový cyklus Vliv poměru NADH/NAD + Inhibice fosfofruktokinasy citrátem

71 Regulace oxidativní fosforylace poměrem ATP/ADP regulace akceptorem

72 Regulace oxidativní fosforylace poměrem ATP/ADP regulace akceptorem

73 Respirační kontrola Elektrony jsou trasportovány na O 2 tehdy, když je současně ADP fosforylováno na ATP. Kontrola hladinou ADP.

74 Inhibitory blokující elektronový transportní řetězec -0.4 NADH NAD + 2e - ( V) -0.2 KOMPLEX I D = V (DG = kj.mol -1 ) ADP + P i Rotenon, amytal ATP 0 ( V) Sukcinát 2e - FADH 2 KOMPLEX II CoQ ( V) D (V) +0.2 Fumarát KOMPLEX III D = V (DG = kj.mol -1 ) ADP + P i ATP Antimycin A Cytochrom c ( V) KOMPLEX IV D = V (DG = -112 kj.mol -1 ) 2e - ADP + P i ATP CN H + + 1/2 O 2 H 2 O ( V)

75 Inhibitory blokující elektronový transportní řetězec

76 Inhibitory blokující elektronový transportní řetězec Rotenon rostlinný toxin používaný indiány na Amazonce k lovu ryb, také insekticid) Amytal barbiturát. Antimycin antibiotikum. Proč lze inhibici rotenonem zrušit přídavkem sukcinátu??

77 Inhibitory blokující elektronový transportní řetězec OCH 3 CH 3 H 3 CO CH H O O C H 2 CH 3 HN CH 2 CH 2 CH 3 O H O O CH 2 O N H O Rotenon H CH 3 Amytal O O N C - NH O CH 3 Kyanid H 3 C OH O O CH 3 HN CHO (CH 2 ) 5 O CH 2 CH 3 Antimycin A H 3 C

78 Rozpojovače oxidativní fosforylace. Probíhá respirace netvoří se ATP

79 Rozpojovače oxidativní fosforylace. Probíhá respirace netvoří se ATP MATRIX Vysoká [H + ] CYTOSOL Nízká [H + ] O - OH OH O - H + + NO 2 NO 2 Difuze NO 2 NO 2 + H + NO 2 NO 2 NO 2 NO 2 2,4-Dinitrofenol (DNP) 2,4-Dinitrofenol (DNP)

80 Funkce odpojovacího proteinu UCP-1 Thermogenin UCP-1 protein) hnědá adiposní tkáň bohatá na mitochondrie (zazimující živočichové, novorozenci, zvířata adaptovaná na zimu) dimer (2x32 kda) u zvířat adaptovaných na chlad 15 % proteinů mitochondriální membrány hnědé adiposní tkáně

81 Funkce odpojovacího proteinu UCP-1

82 Regulace na úrovni proteinkinasy závislé na AMP Proteinkinasa závislá na AMP v játrech svalech a CNS Při vysoké spotřebě ATP je ADP přeměňován adenylátkinasou na ATP a AMP AMP aktivuje proteinkinasu závislou na AMP fosforylacíe řady enzymů - aktivace katabolických drah - inaktivace anabolických drah 2 adenylátkinasa 3 proteinkinasa závislá na AMP

83 Produkce ATP

Elektronový transport a oxidativní fosforylace

Elektronový transport a oxidativní fosforylace Elektronový transport a oxidativní fosforylace Mitochondrie Elektronový transport xidativní fosforylace Kontrolní systém oxidativního metabolismu. Moto: dpočívající lidské tělo spotřebuje asi 420 kj energie

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Aerobní odbourávání cukrů+elektronový transportní řetězec

Aerobní odbourávání cukrů+elektronový transportní řetězec Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)

Více

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová Citrátový cyklus a Dýchací řetězec Milada oštejnská elena Klímová 1 bsah 1 Citrátový cyklus Citrátový cyklus (reakce) Citrátový cyklus (schéma) espirace (dýchání) Vnější a vnitřní respirace Dýchací řetězec

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku? Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

Dýchací řetězec (DŘ)

Dýchací řetězec (DŘ) Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

UNIVERZITA PALACKÉHO V OLOMOUCI. Přírodovědecká fakulta Katedra biochemie

UNIVERZITA PALACKÉHO V OLOMOUCI. Přírodovědecká fakulta Katedra biochemie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra biochemie Dehydrosilybin jako protonofor: vztah struktury k biologické aktivitě DIPLOMOVÁ PRÁCE Autor: Hana Popelková Studijní program: N1406

Více

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík, DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

- pro biologickou funkci je rozhodující terciární (resp. kvartérní) struktura enzymu

- pro biologickou funkci je rozhodující terciární (resp. kvartérní) struktura enzymu Otázka: Enzymy, vitamíny, hormony Předmět: Chemie Přidal(a): VityVity Enzymy, vitamíny, hormony a jejich význam pro biologickou funkci živých organismů Enzymy - látka sloužící jako biokatalyzátory - historie:

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem

Více

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké

Více

CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS

CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS YKLUS TRIKARBXYLVÝ KYSELIN A GLYXYLÁTVÝ YKLUS BSA Základní charakteristika istorie Pyruvátdehydrogenasový komplex itátový cyklus dílčí reakce itátový cyklus výtěžek itátový cyklus regulace Anapleroticé

Více

Bp1252 Biochemie. #8 Metabolismus živin

Bp1252 Biochemie. #8 Metabolismus živin Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie

Více

PRODUKCE VOLNÝCH RADIKÁLŮ V MITOCHONDRIÍCH

PRODUKCE VOLNÝCH RADIKÁLŮ V MITOCHONDRIÍCH UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA BIOLOGICKÝCH A BIOCHEMICKÝCH VĚD PRODUKCE VOLNÝCH RADIKÁLŮ V MITOCHONDRIÍCH BAKALÁŘSKÁ PRÁCE AUTOR PRÁCE: Kateřina Zvoníčková VEDOUCÍ PRÁCE:

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

Přednáška 6: Respirace u rostlin

Přednáška 6: Respirace u rostlin Přednáška 6: Respirace u rostlin co vás v s dnes čeká: Co rostliny získávají respirací Procesy respirace: glykolýza Krebsův cyklus dýchací řetězec oxidativní fosforylace faktory ovlivňující rychlost respirace

Více

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj

Více

Procvičování aminokyseliny, mastné kyseliny

Procvičování aminokyseliny, mastné kyseliny Procvičování aminokyseliny, mastné kyseliny Co je hlavním mechanismem pro odstranění aminoskupiny před odbouráváním většiny aminokyselin: a. oxidativní deaminace b. transaminace c. dehydratace d. působení

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,

Více

TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT

TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT Termodynamická rovnováha systému je charakterizována absencí spontánních procesů. Poněvadž práce může být konána pouze systémem, který směřuje ke spontánní

Více

Biotransformace Vylučování

Biotransformace Vylučování Biotransformace Vylučování Toxikologie Ing. Lucie Kochánková, Ph.D. Biotransformace proces chemické přeměny látek v organismu zpravidla enzymaticky katalyzované reakce vedoucí k látkám tělu vlastním nebo

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1).

CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus Energetický metabolismus (obecně) (1). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

10. Minerální výživa rostlin na extrémních půdách

10. Minerální výživa rostlin na extrémních půdách 10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

ENZYMY. RNDr. Lucie Koláčná, Ph.D.

ENZYMY. RNDr. Lucie Koláčná, Ph.D. ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216. Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Seznam použitých zkratek (v abecedním pořadí)

Seznam použitých zkratek (v abecedním pořadí) Seznam použitých zkratek (v abecedním pořadí) A Adenin AD Alkoholdehydrogenasa ADP Adenosindifosfát AMP Adenosinmonofosfát ATP Adenosintrifosfát BM Bazální metabolismus ytosin AM rassulacean Acid Metabolism

Více

BIOKATALYZÁTORY I. ENZYMY

BIOKATALYZÁTORY I. ENZYMY BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)

Více

POZNÁMKY K METABOLISMU SACHARIDŮ

POZNÁMKY K METABOLISMU SACHARIDŮ POZNÁMKY K METABOLISMU SACHARIDŮ Prof.MUDr. Stanislav Štípek, DrSc. Ústav lékařské biochemie 1.LF UK v Praze Přehled hlavních metabolických cest KATABOLISMUS Glykolysa Glykogenolysa Pentosový cyklus Oxidace

Více

Buněčný metabolismus. J. Vondráček

Buněčný metabolismus. J. Vondráček Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, 2004. Biologie 6, 2015/2016, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 6, 2015/2016, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

Redoxní děj v neživých a živých soustavách

Redoxní děj v neživých a živých soustavách Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Metabolismus aminokyselin. Vladimíra Kvasnicová

Metabolismus aminokyselin. Vladimíra Kvasnicová Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABLISMUS SAHARIDŮ GLUKNEGENEZE GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Citrátový cyklus. VY_32_INOVACE_Ch0218.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Citrátový cyklus. VY_32_INOVACE_Ch0218. Vzdělávací materiál vytvořený v projektu P VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí: ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou

Více

Ukládání energie v buňkách

Ukládání energie v buňkách Ukládání energie v buňkách Josef Fontana EB - 58 Obsah přednášky Úvod do problematiky zásobních látek lidského organismu Přehled zásobních látek v těle Metabolismus glykogenu Struktura glykogenu Syntéza

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta

Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta Repetitorium chemie 2016/2017 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů

Více

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné) Kofaktory enzymů T. Kučera (upraveno z J. Novotné) Kofaktory enzymů neproteinová, nízkomolekulární složka enzymu ko-katalyzátor potřebný k aktivitě enzymu pomocné molekuly v enzymové reakci holoenzym (aktivní)

Více

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?

Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je? Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci

Více

Antioxidační ochrana. Stárnutí. Antioxidanty v potravě

Antioxidační ochrana. Stárnutí. Antioxidanty v potravě Antioxidační ochrana. Stárnutí. Antioxidanty v potravě MUDr. Jan Pláteník, PhD Ústav lékařské biochemie a laboratorní diagnostiky 1.LF UK Ionizační záření: Hydroxylový radikál vzniká ionizací vody: H 2

Více

Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze

Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze MUDr. Jan Pláteník, PhD březen 2007 Mitochondrie:... původně fagocytované/parazitující bakterie čtyři kompartmenty:

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,

Více

33.Krebsův cyklus. AZ Smart Marie Poštová

33.Krebsův cyklus. AZ Smart Marie Poštová 33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky

Více

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin

6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin 1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich

Více

MASTNÉ KYSELINY, LIPIDY (BIOSYNTÉZA)

MASTNÉ KYSELINY, LIPIDY (BIOSYNTÉZA) MASTNÉ KYSELINY, LIPIDY (BISYNTÉZA) BSAH Syntéza mastných kyselin cholesterolu žlučové kyseliny isoprenoidy steroly Rozdíly mezi odbouráváním a syntézou mastných kyselin 1. Syntéza mastných kyselin probíhá

Více

ení s chemickými látkami. l rní optiky

ení s chemickými látkami. l rní optiky OPTICKÉ SENSORY Základem je interakce světeln telného zářenz ení s chemickými látkami. l Při i konstrukci katalytických biosensorů se používaj vají: optické techniky: absorbance fluorescence luminiscence

Více

Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta

Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta Repetitorium chemie 2015/2016 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace

Více

Centrální metabolické děje

Centrální metabolické děje Základy biochemie KB / B entrální metabolické děje Inovace studia biochemie prostřednictvím elearningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Využití enzymů pro analytické a výzkumné účely

Využití enzymů pro analytické a výzkumné účely Využití enzymů pro analytické a výzkumné účely Enzymy jako analytická činidla Stanovení enzymových aktivit Diagnostika (klinická biochemie) Indikátory technologických a jakostních změn v potravinářství

Více

Odbourávání lipidů, ketolátky

Odbourávání lipidů, ketolátky dbourávání lipidů, ketolátky Josef Fontana EB - 56 bsah přednášky Energetický význam TAG Jednotlivé dráhy metabolismu lipidů lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK tvorba a využití

Více

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák BUŇKA A ENERGIE kajman brýlový Caiman crocodilus Kostarika, 2004 Biologie 8, 2017/2018, Ivan Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují POŘÁDEK VE SVĚTĚ, KTERÝ SPĚJE K ČÍM

Více

2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace

2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace 1. Úvod (proč jsou důled ležité) 2. Fotosensitizované reakce a jejich mechanismus 3. Fotodynamická terapie 4. Spontánní aggregace 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace Porfyriny

Více

Biochemie jater. Vladimíra Kvasnicová

Biochemie jater. Vladimíra Kvasnicová Biochemie jater Vladimíra Kvasnicová Obrázek převzat z http://faculty.washington.edu/kepeter/119/images/liver_lobule_figure.jpg (duben 2007) Obrázek převzat z http://connection.lww.com/products/porth7e/documents/ch40/jpg/40_003.jpg

Více

Biochemie svalu. Uspořádání kosterního svalu. Stavba kosterního svalu. Příčně pruhované svalstvo Hladké svalstvo Srdeční sval.

Biochemie svalu. Uspořádání kosterního svalu. Stavba kosterního svalu. Příčně pruhované svalstvo Hladké svalstvo Srdeční sval. Biochemie svalu Příčně pruhované svalstvo Hladké svalstvo Srdeční sval Uspořádání kosterního svalu Stavba kosterního svalu Tlustá filamenta myosin Tenká filamenta Aktin Tropomyosin Troponin Ostatní bílkoviny

Více

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky Kofaktory, koenzymy a prosthetické skupiny kofaktory nízkomolekulární sloučeniny potřebné pro enzymovou katalýzu, účastní se katalýzy - koenzymy - prosthetické skupiny - kovalentní modifikace aminokyselinových

Více

Kosterní svalstvo tlustých a tenkých filament

Kosterní svalstvo tlustých a tenkých filament Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

5. Lipidy a biomembrány

5. Lipidy a biomembrány 5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě

Více

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2.

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2. Regulace translace 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE LOKALIZACE BÍLKOVIN

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny

Více

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou

Více

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -

Více

RNDr. Klára Kobetičová, Ph.D.

RNDr. Klára Kobetičová, Ph.D. ENVIRONMENTÁLNÍ TOXIKOLOGIE ÚVODNÍ PŘEDNÁŠKA RNDr. Klára Kobetičová, Ph.D. Laboratoř ekotoxikologie a LCA, Ústav chemie ochrany prostředí, Fakulta technologie ochrany prostředí, VŠCHT Praha ÚVOD Předmět

Více

MEMBRÁNY AMPEROMETRICKÝCH SENSORŮ

MEMBRÁNY AMPEROMETRICKÝCH SENSORŮ MEMBRÁNY AMPEROMETRICKÝCH SENSORŮ Literatura: Petr Skládal: Biosensory (elektronická verze) Zajoncová L. Pospíšková K.(2009) Membrány Amperometrických biosensorů. Chem. Listy Belluzo 2008 upravila Pospošková

Více