Metody a nástroje OSINT

Rozměr: px
Začít zobrazení ze stránky:

Download "Metody a nástroje OSINT"

Transkript

1 Bankovní institut vysoká škola Praha Katedra matematiky, statistiky a informačních technologií Metody a nástroje OSINT Diplomová práce Autor: Bc. Petr Vondruška Informační technologie a management Vedoucí práce: Ing. Vladimír Beneš Praha Duben, 2013

2 Prohlášení: Prohlašuji, ţe jsem diplomovou práci zpracoval samostatně a v seznamu uvedl veškerou pouţitou literaturu. Svým podpisem stvrzuji, ţe odevzdaná elektronická podoba práce je identická s její tištěnou verzí, a jsem seznámen/ se skutečností, ţe se práce bude archivovat v knihovně BIVŠ a dále bude zpřístupněna třetím osobám prostřednictvím interní databáze elektronických vysokoškolských prací. V Praze, dne podpis autora Petr Vondruška

3 Poděkování Děkuji Ing. Vladimírovi Benešovi za ochotu a cenné připomínky při vedení této práce. Rád bych také poděkoval mé rodině, která mě podporovala nejen v průběhu tvorby této diplomové práce, ale i během celého studia.

4 Anotace Tato diplomová práce je zaměřena na komplexní popis problematiky OSINT, tedy Open Source Intelligence neboli zpravodajství z otevřených zdrojů. Jedná se o oblast zabývající se sběrem, zpracováním a analyzováním údajů a informací z volně dostupných (především internetových) zdrojů. Práce je zaměřena především na popis metod a nástrojů používaných v rámci OSINT analýzy. V závěru práce je popsán doporučený postup provedení OSINT analýzy vybraného firemního subjektu. Klíčová slova: OSINT, Competitive Intelligence, zpravodajský cyklus, vyhledávání informací na internetu, sociální média Annotation This thesis is focused on comprehensive description of OSINT (Open Source Intelligence). This field consists of collecting, processing and analyzing data and information from publicly available (mostly online) sources. The thesis is mainly focused on the description of the methods and tools used in the OSINT analysis. In conclusion, the paper describes the recommended steps of OSINT analysis of selected company. Key words: OSINT, Competitive Intelligence, Intelligence cycle, Internet searching, Social media

5 Obsah 1 Úvod Vymezení oblasti OSINT Základní pojmy Rozdílné přístupy k OSINT Plošný OSINT Cílený OSINT Vyuţití OSINT dle účelu Bezpečnostní a silové sloţky Soukromé bezpečnostní agentury Ţurnalistika Operativní firemní vyuţití Penetrační testování Historický vývoj OSINT Otevřené zdroje Deep Web Uniklé zdroje a databáze Dokumenty SQL databáze y Databáze Osobní údaje Příklad zneuţití Existující projekty v oblasti OSINT Společné výzkumné centrum Evropské Komise (JRC) EMM Media Monitoring and Open Source Intelligence Tools Newsbrief Newswxplorer Medisys Labs FRONTEX Counterterrorism Research Lab EUROSINT IHS a Jane s Information Group Metody OSINT Zpravodajský cyklus Zpracování a analýza informací Vyhodnocení kredibility informací

6 4.3.1 Přesnost Kredibilita a váha Aktuálnost Objektivita Relevance Škála pro vyhodnocení kredibility Nástroje OSINT Vyhledávače a metavyhledávače Google Alerts Google hacking Archivní zobrazení webových stránek Google Cache Wayback Machine WebArchiv Srovnání Kopírování webových stránek HTTrack Web Site Copier Website Ripper Copier Srovnání Síťová infrastruktura DNS dotazování Whois záznamy Sam Spade Knock Srovnání Metadata Foca Free Metagoofil ExifTool Creepy Srovnání Údaje o uţivatelích Scythe: Account enumerator The Harvester Web Data Extractor Link Extractor Zjištění IP uţivatele Skype Srovnání Monitoring sociálních médií

7 5.7.1 Recorded Future SiloBreaker Spicy Mango Srovnání Komplexní nástroje pro OSINT Paterva Maltego Netglub Srovnání Pokročilá analýza textu Copernic Summarizer Tovek Tools Cogito semantic technology Basis Technology Srovnání Vizuální analýza dat Paterva CaseFile IBM i2 Analyst s Notebook Srovnání Modelová OSINT analýza vybraného subjektu Závěr Slovník Pojmů Použitá literatura Seznam obrázků Seznam tabulek

8 1 Úvod Tato diplomová práce volně navazuje na bakalářskou práci Nástroje pro vyhledávání informací o osobách na internetu, kterou jsem v roce 2011 úspěšně obhájil na Vysoké škole ekonomické v Praze a jejímţ vedoucím byl Ing. Luboš Pavlíček a oponentem prof. Ing. Zdeněk Molnár, CSc. Problematika vyhledávání informací o osobách na internetu tvoří součást oblasti OSINT, která je však mnohem obsáhlejší. Některé vybrané pasáţe této diplomové práce (jako například některé základní definice, popis zpravodajského cyklu nebo některé vybrané metody a nástroje), byly zmíněny jiţ v uvedené bakalářské práci a jsou částečně převzaty a případně doplněny a aktualizovány také v této diplomové práci. Hlavním cílem této práce je komplexní a shrnující pohled na problematiku oblasti zpravodajství z otevřených zdrojů neboli OSINT (Open Source Intelligence). V době psaní této práce mi není známa existence jiné podobně rozsáhlé práce týkající se OSINT v českém jazyce. Dalším cílem této práce je poskytnutí přehledu existujících metod a nástrojů vhodných pro tvorbu OSINT analýzy, včetně jejich praktického otestování a dílčího srovnání nástrojů v rámci dané kategorie nástrojů. Srovnání všech nástrojů není moţné z důvodu jejich nesourodosti. Nástroje z jednotlivých kategorií se však vzájemně doplňují a umoţňují tak tvorbu výsledné OSINT analýzy. Posledním cílem je návrh modelového postupu pro OSINT analýzu vybraného firemního subjektu. Se všemi uvedenými nástroji jsem se setkal v praxi a při jejich výběru a popisu jsem vycházel především z osobní zkušenosti práce s těmito nástroji. Problematikou pokročilých metod vyhledávání a zpracování informací se dlouhodobě zabývám. Jde o téma, které se především s rostoucím vyuţitím internetu rychle rozvíjí a v současné době stojí v popředí zájmu mnoha společností a institucí. Problematikou pokročilých metod vyhledávání a zpracování informací se dlouhodobě zabývám. V roce 2010 jsem navštívil mezinárodní konferenci ASONAM (Advances in Social Networks Analysis and Mining) v Dánsku, jejíţ součástí bylo také symposium OSINT-WM (International Symposium on Open Source Intelligence and Web Mining). V roce 2011 jsem navštívil konferenci EISIC (European Intelligence and Security Informatics Conference) v Řecku, rovněţ ve spojení s OSINT-WM Symposium. 8

9 2 Vymezení oblasti OSINT Pojem OSINT (Open Source Intelligence) neboli Zpravodajství z otevřených zdrojů je oblast zabývající se sběrem, zpracováním a analyzováním údajů a informací z volně dostupných zdrojů. V rámci zdrojů dostupných v českém jazyce je oblast OSINT výstiţně popsána na webových stránkách ÚZSI: Otevřené zdroje nejsou jen obvyklé komerčně dostupné tištěné a elektronické sdělovací prostředky, ale celá škála sofistikovaných, málo známých postupů, v nichž jsou často "ukryta" cenná data, o nichž často dopředu nemáme tušení. S nástupem internetu (a po pádu mnoha diktatur ve světě) se staly otevřené zdroje ještě významnějšími. Data z otevřených zdrojů tvoří v databázích - informačních fondech zpravodajských služeb obrovský podíl. Na některá témata a při vyšším stupni obecnosti analýz mohou otevřené zdroje poskytnout uspokojivé odpovědi. OSINT je téměř bez rizik, ale hrozí utopení v množství dat. [1] Definice dle terminologického slovníku vojenského názvosloví amerického Ministerstva obrany (DoD) 1 : Informace s potencionální zpravodajskou hodnotou, které jsou dostupné široké veřejnosti. Také nazýváno jako OSINT. [2] Výše uvedené definice a popisy oblasti OSINT tedy mají několik společných znaků: jedná se o vyhledávání, sběr a zpracování informací, informace pocházejí výhradně z otevřených zdrojů, nejsou pouţity ţádné nelegální metody získávání informací, jde o relativně rychlý a levný způsob získávání informací, nejde o špionáţ. 1 Volný překlad z anglického jazyka 9

10 O významnosti a praktické vyuţitelnosti OSINT svědčí i vyjádření, dle kterého pochází 80 % všech informací CIA z vyhledávače Google. [3] Podobná čísla se objevují také například u příbuzné oblasti Competitive Intelligence (Konkurenční zpravodajství): Až 95 % informací potřebných pro oblast Competitive intelligence je dostupných z veřejně dostupných otevřených zdrojů a z toho 80 % prostřednictvím veřejně dostupných prostředků. [4] 2.1 Základní pojmy Mezi základní pojmy související s oblastí OSINT patří zejména OSD (Open Source Data), OSIF/OSINF (Open Source Information) a OSINT-V (Validated OSINT), které byly popsány v dokumentu NATO Open Source Intelligence Handbook vydaném v listopadu [5] Open Source Data (OSD) OSD označuje syrová nezpracovaná data z primárních zdrojů. Mezi OSD patří tištěné i elektronické dokumenty, rozhlas, audio a video záznamy, fotografie apod. Open Source Information (OSIF / OSINF) OSINF označuje informace z otevřených zdrojů. Jedná se o libovolné informace v tištěné či digitální podobě, které lze získat legální cestou. Proces třídění, zpracování a analyzování takových informací se nazývá OSINT. Open Source Intelligence (OSINT) OSINT označuje proces zpracování informací z otevřených zdrojů (OSIF / OSINF). Zpracování zahrnuje analýzu, třídění a ověřování informací. Pro zpracování dat v rámci OSINT je pouţíván zpravodajský, resp. OSINT cyklus. Výstupem OSINT analýzy je výstup s významnou přidanou hodnotou (např. analýza určité situace, hledání trendů, objevování vazeb mezi subjekty apod.) Validated OSINT (OSINT-V) OSINT-V dle definice NATO označuje ověřené informace, kterým lze přisoudit velmi vysoký stupeň určitosti. Tyto informace jsou produkovány informačními specialisty, kteří mají přístup k utajovaným informacím. OSINT-V tedy označuje takový typ informací z otevřených zdrojů, které jsou v souladu s dalšími (především utajovanými informacemi) a jsou nezpochybnitelné. Jak jiţ bylo zmíněno, jedná se o pojem pouţívaný v rámci NATO. 10

11 SOCMINT (Social Media Intelligence) SOCMINT označuje podoblast OSINT zaměřenou na monitorování a vytěţování sociálních médi, která v současné době zaţívá velmi výrazný rozvoj. To je dáno především rychle rostoucím mnoţstvím aktivních uţivatelů SNS (Social Networking Sites) či jiných sociálních médií. Uţivatelé sociálních sítí dobrovolně poskytují mnoţství svých osobních údajů, ale také fotografií či příspěvků týkajících se nejrůznějších společenských témat. Existují také nejrůznější metody sledování preferencí uţivatelů pro obchodní a marketingové účely. Vţdy je nutno respektovat obchodní podmínky jednotlivých sociálních médií, aby nedošlo k jejich porušení případným vytěţováním těchto médií. Jedná se o jeden z nejobsáhlejších informačních zdrojů současnosti. Například na síti Facebook je měsíčně přihlášeno 845 milionů aktivních uţivatelů (MAUs monthly active users), kteří denně vloţí celkem 2,7 miliardy příspěvků nebo kliknutí na tlačítko to se mi líbí. Denně je také vloţeno 250 milionů fotografií. Celkem jiţ vzniklo 100 miliard uzavřených přátelství. [6] Obdobná je situace i v případě dalších sociálních médií například na síti Twitter je vloţeno denně 400 [7] [8] milionů příspěvků ( tweetů ). Na serveru Youtube je denně shlédnuto 4 miliardy videí. Sociální média představují významný zdroj informací a dostávají se do popředí zájmu oblasti sběru a analýzy údajů z otevřených zdrojů. Zároveň se jedná o velmi cenná data, se kterými je dnes běţně obchodováno. Doxing Doxing označuje cílené vyhledávání a sběr informací o osobě a jejích osobních údajích. Doxing se můţe týkat také zveřejnění údajů o některé společnosti. Pojem Doxing vznikl fonetickým přepisem anglického slova documents, resp. zkráceného tvaru docs. Doxing zahrnuje také přiřazování internetových přezdívek a identit k identitě reálných osob. Výsledky mnoha výstupů doxingu je moţno nalézt například na serveru Pastebin.com nebo v rámci specializovaného necenzurovaného projektu Doxbin v rámci Tor hidden service. 11

12 2.2 Rozdílné přístupy k OSINT Pouţití OSINT v praxi existuje na několika různých úrovních, lišících se dle účelu a pouţití. Existují dva základní rozdíly v přístupu k OSINT. Pro účely této práce jsou tyto přístupy pojmenovány jako plošný OSINT a cílený OSINT. Zatímco plošný OSINT se zaměřuje na automatizovaný plošný sběr dat, cílený OSINT je zaměřen na vyhledání konkrétní informace Plošný OSINT Jednou z moţností pouţití OSINT je automatizované vyhledávání a zpracování velmi rozsáhlého objemu dat, která jsou následně analyzována. Můţe jít například o monitoring médií, blogosféry či sociálních médiích. Tyto informace mohou poslouţit například k monitorování vývoje v některé zemi či pro tvorbu systémů pro včasné varování. Spadá sem také podoblast SOCMINT (vytěţování informací ze sociálních médií). Patří sem také analýza sociálních sítí (ve smyslu analýzy vztahů prvků určité sociální sítě). Typické vyuţití pro plošný OSINT: systémy pro monitoring médií, systémy včasného varování, analýza sociálních sítí Cílený OSINT Dále můţe být OSINT pouţit pro vyhledávání konkrétních informací, kdy nejde o široce zaměřené monitorování dostupných médií, ale o vyhledání konkrétních relevantních informací v libovolných otevřených zdrojích. Do této oblasti spadají zejména rešerše, vyhledávání informací o osobách, či úvodní fáze penetračního testování, kdy jsou zjišťovány základní informace o společnosti a její technické a síťové infrastruktury. Typické vyuţití pro cílený OSINT: tvorba rešerší, vyhledávání informací o osobách, vyhledávání informací o firmách, úvodní fáze penetračního testování, Competitive intelligence doxing. 12

13 2.3 Využití OSINT dle účelu Bezpečnostní a silové složky Vyuţití OSINT v rámci bezpečnostních a silových sloţek zastává významnou roli. OSINT je zde moţno vyuţít na několika úrovních. V první řadě jde o monitoring médií a dalších (nejen internetových) zdrojů. Další významnou oblastí je vyhledávání informací o osobách a v širším kontextu také prevence internetové i jiné kriminality či boj proti terorismu. Předpokládá se pouţití velmi sofistikovaných metod, postupů a nástrojů. Velmi důleţitá je zde fáze verifikace a analýzy získaných údajů a informací. Bezpečnostní a silové sloţky mají z hlediska legislativy širší moţnosti ve srovnání s jinými subjekty. OSINT tedy slouţí jako rychlý a především bezpečný způsob získávání informací a jde o významný doplňující zdroj k dalším informacím, kterými dané subjekty disponují Soukromé bezpečnostní agentury Jednou z oblastí, které se věnují soukromé bezpečnostní agentury, je pátrání po osobách, či vyhledávání informací o osobách a firmách nebo vyhledávání vazeb mezi těmito subjekty. Dále můţe jít o monitorování vazeb mezi osobami či jinými subjekty. Také společnosti pro vymáhání pohledávek vyuţívají internet pro získání informací o dluţnících Žurnalistika Práce s otevřenými zdroji je důleţitou součástí ţurnalistické činnosti. V této oblasti jsou často vyhledávány informace o osobách (např. politici, podnikatelé, vědci, celebrity, pachatelé trestné činnosti) nebo o společnostech či dalších subjektech a jejich vzájemných vztahů. V rámci ţurnalistiky lze OSINT vyuţít k monitorování vývoje v některé zemi a k monitorování vývoje určitých událostí. Důleţitá je zde především práce s jiţ existujícími zdroji informací. Výstupem je zveřejnění prostřednictvím tištěných či audiovizuálních médií Operativní firemní využití Firemní vyuţití OSINT spadá spíše do oblasti Competitive Intelligence, avšak většina pouţitých metod, postupů či nástrojů je velmi podobná či shodná. Jde o součást strategické analýzy podniku. Příkladem vyuţití můţe být analýza trhu nebo určitého odvětví, 13

14 vyhledávání obchodních příleţitostí či informací o současných i budoucích obchodních partnerech. Je předpokládáno vyuţití sofistikovaných metod a nástrojů. Důleţitá je nejen samotná fáze vyhledávání, ale také analýza získaných údajů. Součástí můţe být i analýza vztahů mezi osobami či dalšími subjekty Penetrační testování Penetrační testování je součástí etického hackingu a označuje souhrn metod a postupů umoţňujících k odhalení existujících zranitelností informačního systému. Metody OSINT jsou vyuţívány v úvodních fázích penetračního testování, kdy jsou zjišťovány základní informace o společnosti, jejích systémech a dalších technických údajích či o zaměstnancích. Tato přípravná fáze se nazývá Reconnaissance. Cílem je komplexní sběr informací o daném subjektu (zahrnuje systémy, sítě, zaměstnance či případně klienty). Reconnaissance se rozděluje na pasivní a aktivní. Pasivní Reconnaissance zahrnuje získávání informací bez přímé interakce s daným cílem. Příkladem zdrojů takových informací jsou internetová média, veřejně dostupné databáze nebo vyhledávání pomocí vyhledávačů. Aktivní Reconnaissance zahrnuje přímou interakci s cílem. Jedná se například o zjišťování síťové architektury zkoumaného subjektu, skenování portů, Ping, Traceroute nebo zjišťování verzí OS či aplikačního SW. Zahrnuty jsou také metody sociálního inţenýrství (například telefonický rozhovor s cílem zjistit konkrétní informace - zejména takové, které nejsou z ostatních otevřených zdrojů běţně dostupné). Obrázek 1 - znázornění jednotlivých fází Reconnaissance zdroj: 14

15 2.4 Historický vývoj OSINT Informace měly vţdy zásadní význam pro společnost - při rozvoji států, vědy a techniky, stejně tak jako mohly mít zásadní vliv na výsledky válečných konfliktů. Počátek sofistikovaného přístupu ke zpracování informací z otevřených zdrojů souvisel s druhou světovou válkou, kdy došlo v USA v roce 1941 k zaloţení FBIS (Foreign Broadcast Information Service), jakoţto součásti CIA zaměřené na zpracování informací z otevřených zdrojů týkajících se druhé světové války. Mezi nejvýznamnější faktory následujícího rozvoje OSINT patří především masivní nárůst informací ve všech podobách a s tím související potřeba tyto informace třídit, zpracovávat a uchovávat. Dalším zásadním milníkem je vznik osobního počítače a následně internetu, coţ umoţnilo přístup k informacím (ale také jejich vytváření a šíření) převáţné části populace civilizovaného světa. Konec studené války a nárůst globalizace znamenal potřebu získávání a zpracování informací z mnoha různých jazyků, coţ kladlo nové poţadavky na rozvoj OSINT. Významný rozvoj získávání informací z otevřených zdrojů a oblasti OSINT se objevil v době po teroristickém útoku 11. září 2001, který byl v médiích mnohdy označován jako selhání práce zpravodajských sluţeb. V této souvislosti se objevila potřeba získávat informace v co nejkratším čase z co největšího mnoţství informačních zdrojů a jejich analyzováním získat cenné informace s vysokou přidanou hodnotou. Jedním z výstupů vyšetřovací komise k útokům z 11. září 2001 bylo doporučení pro zaloţení specializovaného oddělení, které by se této činnosti věnovalo. [9] Na základě tohoto doporučení vzniklo v roce 2005 DNI Open Source Center. Oblast OSINT je tedy v současném chápání poměrně mladou disciplínou zaţívající významný rozvoj. Mezi lety 1994 a 2011 vznikl některý typ organizace věnující se OSINT ve více neţ 40 zemích světa, ve většině případů pro vojenské vyuţití. [10] V současnosti je oblast OSINT uznávána jako jeden z plnohodnotných způsobů zpravodajské činnosti. 15

16 2.5 Otevřené zdroje Otevřené zdroje označuje jakékoliv údaje a informace, které lze získat legální cestou, ať uţ zdarma nebo za poplatek. Takto jsou otevřené zdroje definovány dle BIS: Do otevřených zdrojů patří např. noviny a časopisy, rozhlasové a televizní vysílání, Internet, různé publikace, knihy apod. Otevřenými zdroji mohou být i různé přednášky, sympózia, konference a jakékoliv jiné aktivity, které jsou zdrojem informací a odehrávají se ve veřejném, volně přístupném prostoru. [11] V minulosti se získávání informací týkalo především tištěných zdrojů či dalších klasických médií (rozhlas, televize). V současnosti je hlavní pozornost zaměřena na elektronická média (především internet). Základním a zcela zásadním rozdílem oproti jiným oblastem věnujícím se získávání informací je práce se všemi dostupnými informačními zdroji - tedy i s takovými, které nejsou označovány jako relevantní ve vědecké sféře. V rámci OSINT jsou běţně vytěţovány například i takové informační zdroje jako jsou blogy, diskusní fóra, newsgroups nebo (zejména v poslední době) sociální média. Tyto zdroje mohou poskytnout velmi aktuální a cenné údaje a informace. Zároveň však vzniká problém s velkým objemem takových dat a jejich problematickým zpracováním v reálném čase. Dále tyto informační zdroje kladou vysoké nároky na následnou analýzu a ověření, přičemţ můţe snadno dojít k dezinterpretaci takových informací. Dle původnosti obsahu tedy OSINT zahrnuje primární, sekundární i terciární informační prameny a bílé (publikované), šedé (polopublikované) a za určitých okolností i černé (nepublikované) informační zdroje. 16

17 Otevřené internetové zdroje zahrnují zejména: média a jejich digitalizovaná podoba (noviny, časopisy, rozhlas, televize, apod.), literatura a další publikace (knihy, sborníky, ţurnály, apod.), webové stránky a sluţby všech typů, o osobní a firemní stránky, o SNS (Social Networking Sites) a další sociální média, o diskuzní fóra, o chatovací sluţby (online chat, IRC), o wiki, o blogosféra, audiovizuální obsah, o fotografie a grafické soubory, o video a weby pro online sdílení videa, o zvuk, katalogy, databáze, soubory ke staţení (prostřednictvím internetových odkazů, P2P sítí, Torrent apod.), mapy (resp. GIS), alternativní webové sluţby jako Tor Hidden Service či Freenet apod. veškeré další údaje, informace a soubory, které lze na internetu legálně získat. 2.6 Deep Web Hluboký web (v češtině téţ označovaný jako neviditelný, skrytý, hlubinný; v anglickém jazyce Deep Web, Invisible Web, Hidden Web) je část internetu, kterou nedokáţí vyhledávací stroje indexovat a tudíţ takový obsah nelze vyhledat pomocí běţných vyhledávačů. Přesto však Deep Web spadá do kategorie otevřených zdrojů. Poprvé se pojmenování pro tento typ obsahu objevilo v roce 1994, kdy Jill Ellsworth pouţil termín Invisible Web. Toto někdy stále pouţívané označení "neviditelný web" není zcela přesné, neboť problém nespočívá ve viditelnosti daného obsahu, ale v technikách, jakými dokáţou běţné vyhledávače obsah internetu procházet a indexovat. Tomu také odpovídá odhad, ţe aţ 95 % obsahu hlubokého webu je veřejně dostupných [12]. Odhaduje se, ţe objem hlubokého webu je mnohanásobně větší neţ v případě tzv. povrchového webu (Surface Web). Nejčastěji je přejímán údaj o krát větším objemu hlubokého webu, tak jak jej jiţ v roce 2001 uvedla společnost Brightplanet.com v pravděpodobně první rozsáhlé studii na téma hlubokého webu. Dnešní rozsah hlubokého webu je pravděpodobně ještě mnohonásobně vyšší, ale konkrétní rozsah není současnými metodami přesně měřitelný. 17

18 Důvody, proč nemohou vyhledávací stroje některé stránky indexovat: [13] na stránku nevedou ţádné odkazy a zároveň sama ţádné neobsahuje, dynamicky generovaný obsah stránek, databáze, obsah souborů některých formátů (např. doc, pdf, postscript, komprimované soubory apod.), stránky s autorizovaným přístupem (chráněné heslem), stránky nepovolující indexaci, omezení počtu indexovaných stránek v rámci jedné domény, kontextuální web stránky s obsahem lišícím se dle způsobu přístupu (např. dle IP adresy nebo dle předchozího pohybu na stránce), skriptový obsah stránky přístupné pouze přes odkazy vytvořené Java skriptem nebo obsah přístupný přes Flash nebo Ajax, alternativní webové sluţby jako Tor Hidden Service či Freenet apod. 2.7 Uniklé zdroje a databáze Obtíţně zařaditelným typem otevřených zdrojů jsou původně neveřejná či utajovaná data, informace, dokumenty, databáze nebo soubory, u nichţ došlo k úniku a následnému zveřejnění na internetu. Přesto, ţe se jedná o údaje získané mnohdy nelegálním způsobem, jsou následně tyto údaje zveřejňovány a přístup k nim je velmi snadný. Kromě velmi známých příkladů serverů Cryptome.org či Wikileaks existuje stále více spíše drobnějších zdrojů zabývajících se podobnou aktivitou. Můţe jít o jednotlivce i o organizované skupiny (Anonymous, Team Ghost Shell apod.). V mnoha případech se jedná o hacktivistickou aktivitu Dokumenty Typickým příkladem je známý server Wikileaks, který byl zaměřen na zveřejňování utajovaných dokumentů. V českých podmínkách vznikl podobný projekt pod názvem Pirateleaks. Dalším příkladem zveřejňování uniklých dokumentů je projekt Par-anoia.net. Na webových stránkách jsou k dispozici odkazy na uniklé dokumenty zahrnující například 14 GB dat Bank of America, 1,5 GB dat ministerstva komunikací a IT Ázerbajdţánu nebo 2,7 GB dat německé obchodní komory. 18

19 2.7.2 SQL databáze Další podobné případy jsou úniky a zveřejnění kompletních SQL databází diskuzních fór. V srpnu 2008 se tímto způsobem na internetu objevila databáze diskuzního fóra sdruţujícího především příznivce extrémní pravice, mezi nimiţ bylo i mnoho uţivatelů z ČR. Případů podobných úniků bylo více, například v roce 2009 únik německého hackerského fóra nebo v roce 2010 únik databází německých hackerských diskuzních fór a Uniklé databáze umoţnily přístup k veškerému obsahu diskuzních fór, tedy včetně všech uţivatelských jmen, otisků hesel, ových adres, IP adres přístupů nebo soukromé pošty jednotlivých uţivatelů y Příkladem úniku ů je zveřejnění více neţ ů zaměstnanců firmy HBGary v únoru Tyto y jsou k dispozici ke staţení nebo je lze procházet a vyhledávat v nich přímo online Databáze Jako příklad z českého prostředí lze uvést únik a zveřejnění databáze členů ODS z února [14], resp. dubna 2012 [15]: V databázi se nachází záznamů a je označeno jako člen ODS. Podle obsahu databáze jsou ostatní záznamy (neoznačené jako člen ODS ) buďto zájemci o zasílání informací o ODS nebo bývalými členy ODS. Databáze ods_intranet obsahující tabulku s dalšími údaji o členech ODS pohlaví, rodné číslo, datum narození, jméno a příjmení, tituly, oblast, profese, vzdělání, sektor, povolání, telefon, dva y, členství v KSČ, údaje o členství a řadu dalších údajů (včetně přihlašovacího jména a hesla v MD5 podobě). [15] Osobní údaje Dalším zajímavým únikem soukromých osobních údajů je případ z roku 2006, kdy došlo ke zveřejnění přibliţně 36 miliónů dotazů, které za období tří měsíců hledalo přes 650 tisíc vybraných uţivatelů na portálu AOL. Tyto údaje byly anonymizovány, resp. IP adresy uţivatelů byly nahrazeny čísly. Přesto lze v mnoha případech dohledat konkrétní identitu uţivatele na základě obsahu vyhledávaných dotazů. 19

20 2.7.6 Příklad zneužití V některých případech vede zveřejnění podobných údajů k jejich následnému zneuţití. Příkladem je útok na stránky České televize ze dne , ke kterému se přihlásil uţivatel s přezdívkou [16]. Dne byly na serveru pastebin.com zveřejněny přístupové údaje celkem 189 uţivatelských účtů ČT. Databáze obsahovala uţivatelské ID, uţivatelské jméno a heslo (heslo nebylo zveřejněno v otevřené podobě, ale jako MD5 hash). Ke dni útoku na ČT ( ) bylo u této databáze umístěné na pastebin.com uvedeno pouze 60 zobrazení. Je velmi pravděpodobné, ţe v případě napadení ČT se nejednalo o sofistikovaný útok, ale právě o vyuţití údajů z výše zmíněné databáze. Podobných útoků se objevuje velké mnoţství. Existují také projekty agregující tyto databáze jedním z příkladů byla databáze OZ Data Centa na obsahující přes 4200 uniklých databází nebo odkazů na ně. Tento projekt byl dne ukončen. 20

21 3 Existující projekty v oblasti OSINT 3.1 Společné výzkumné centrum Evropské Komise (JRC) Společné výzkumné centrum Evropské Komise neboli Joint Research Centre (JRC) sestává ze sedmi výzkumných institucí rozmístěných v pěti členských státech (Belgii, Německu, Itálii, Nizozemí a Španělsku). Posláním JRC je poskytovat cílenou vědeckou a technickou podporu pro koncepci, rozvoj, implementaci a sledování politik Evropské unie. Tento útvar nacházející se v těsné blízkosti rozhodovacích procesů slouží společným zájmům členských států nezávisle na komerčních a národních zájmech. [17] Seznam výzkumných institucí při JRC: The Institute for Reference Materials and Measurements (IRMM), The Institute for Transuranium Elements (ITU), The Institute for Energy and Transport (IET), The Institute for the Protection and Security of the Citizen (IPSC), The Institute for Environment and Sustainability (IES), The Institute for Health and Consumer Protection (IHCP), The Institute for Prospective Technological Studies (IPTS). Vyuţitím OSINT v praxi se v rámci JRC zabývá výzkumná skupina OPTIMA (Open Source Text Information Mining and Analysis) spadající pod GlobeSec (Global Security and Crisis Management Unit) při IPSC (Institute for the Protection and Security of the Citizen). Nejvýznamnějším projektem OPTIMA je EMM (European Media Monitor), skládající se ze 4 částí: NewsBrief, NewsExplorer, MediSys, Labs. 21

22 3.1.1 EMM Media Monitoring and Open Source Intelligence Tools EMM poskytuje sadu nástrojů pro automatizovaný monitoring a analýzu online médií (včetně sociálních médií), které jsou určeny pro informační specialisty z jednotlivých členských zemí EU. [18] Monitorováno je přes RSS zdrojů a webových stránek, dále 3750 klíčových zpravodajských serverů z celého světa a 20 dalších komerčních zpravodajských databází. Denně je zpracováno přes zpráv v 60 různých jazycích. Při zpracování jsou příspěvky nejprve extrahovány, dojde k detekci jazyka, rozpoznání entit, zjištění geografických údajů, nalezení duplikátů a následně k tvorbě výstupů, varování a reportů Newsbrief Obrázek 2 - schéma automatizované extrakce zpráv v rámci EMM zdroj: Webové stránky: NewsBrief je veřejně dostupná webová aplikace zobrazující nejvýznamnější, resp. nejvíce diskutované události získané z lokálních zpravodajských serverů v celkem 60 různých jazycích. K aktualizaci dochází kaţdých deset minut. Zprávy jsou kategorizovány dle témat a lokality. 22

23 3.1.3 Newswxplorer Webové stránky: Na konci kaţdého dne jsou získané zprávy získané pomocí EMM seskupeny do různých kategorií (pokud informují o stejné události nebo jsou tematicky příbuzné). Dále jsou z textu extrahovány osoby, organizace a lokality, které jsou nejčastěji v získaných zprávách zmíněny. Nástroj umoţňuje nalézt informace o osobách nezávisle na pouţitém tvaru jména a detekuje citací od osob a o osobách. Součástí je mapa, zobrazující události dle lokality, a kalendář pro zobrazení článků z minulosti Medisys Webové stránky: MediSys byl vyvinut ve spolupráci JRC s EC Directorate General SANCO. Jedná se o webovou sluţbu agregující články týkající se zdravotnictví. Na základě automatického sběru dat a jejich analýzy jsou generována varování a reporty. Pro analýzu dat jsou pouţity všechny zdroje projektu EMM a navíc dalších 400 specializovaných zdrojů týkajících se oblasti veřejného zdraví a zdravotnictví. Nástroj umoţňuje pokročilé filtrování, analýzu a vizualizaci informací. Pro detekování relevantních zpráv jsou pouţity tisíce vyhledávacích dotazů ve všech dostupných jazycích. Upozornění jsou generována kaţdých 20 minut a společně s pravidelnými reporty jsou poskytovány mnoha veřejným zdravotnickým organizacím Labs Webové stránky: EMM-Labs je webová sluţba poskytující přístup k pokročilým analytickým systémům vycházejících z dat získaných v rámci projektu EMM. V rámci Labs jsou automaticky generovány statistiky o zprávách extrahovaných v rámci EMM (konkrétně o tématech a zemích, kterých se zprávy týkají). Součástí je vizualizace těchto informací prostřednictvím map, grafů a tabulek. Labs umoţňuje monitorování automaticky extrahovaných násilných událostí a katastrof a zobrazení těchto událostí prostřednictvím mapy (v prohlíţeči nebo v Google Earth). Nástroj dále umoţňuje vizualizaci automaticky generovaných sociálních sítí vzniklých v průběhu extrakce dat v rámci EMM. 23

24 3.2 FRONTEX Webové stránky: Agentura FRONTEX neboli celým názvem European Agency for the Management of Operational Cooperation at the External Borders of the Member States of the European Union (v češtině Evropská agentura pro řízení operativní spolupráce na vnějších hranicích členských států EU) vznikla v roce Jak vyplývá ze Zprávy o hodnocení a budoucím rozvoji Evropské agentury pro ochranu vnějších hranic (FRONTEX): Cílem agentury FRONTEX je zlepšit integrované řízení vnějších hranic členských států Evropské unie zjednodušením a účinnějším uplatňováním stávajících i budoucích opatření Společenství týkajících se řízení vnějších hranic, tj. pozemních i námořních hranic členských států a jejich letišť a námořních přístavů, na které se vztahují právní předpisy Společenství o překračování vnějších hranic osobami. [19] V rámci svého působení vyuţívá FRONTEX metody OSINT. Především se jedná o vícejazyčný systém pro extrahování událostí, který byl vybudován jako nadstavba nad EMM (European Media Monitor) spojením se systémy NEXUS (který je vyvíjen v JRC) a PULS (vyvíjen na Helsinské univerzitě). Systém umoţňuje automatickou extrakci a analýzu článků z online tisku (vyuţívány jsou pouze otevřené zdroje s cílem získat informace o určitých typech událostí (nelegální migrace, pašování, katastrofy způsobené člověkem, přírodní katastrofy, násilí, ozbrojené konflikty, zdravotní rizika, únosy). Systém umoţňuje automaticky extrahovat typ události, čas, lokalitu, počet zadrţených osob, jména, případně popis zadrţení. V současné době systém funguje v plném rozsahu v angličtině, španělštině a italštině a v omezeném rozsahu ve francouzštině, portugalštině, arabštině a ruštině. Výstup je zobrazen v aplikaci Google Earth za pomoci sady ikon označujících konkrétní typ události s moţností zobrazení podrobných informací o dané události. 24

25 3.3 Counterterrorism Research Lab Webové stránky: webové stránky nejsou k dispozici (provoz CTR byl ukončen) V roce 2009 vzniklo na The Maersk Mc-Kinney Moller Institute při University of Southern Denmark oddělení The Counterterrorism Research Lab (CTR). Cílem CTR byl výzkum pokročilých matematických modelů, nových algoritmů a technik a vývoji softwarových nástrojů pro získávání informací z otevřených zdrojů. Dalším cílem byla analýza, vizualizace, dolování, předpovídání a simulování teroristických sítí s cílem předejít teroristickým úkolům. Vzniku CTR předcházel jiţ od roku 2003 vývoj nástroje iminer, který byl určen pro investigativní dolování dat. Nástroj iminer umoţňoval prostřednictvím matematických modelů určit klíčové osoby v rámci teroristické sítě. Dle jednoho z autorů tohoto nástroje provily o iminer zájem zpravodajské sluţby Dánska i dalších zemí. [20] Vývoj tohoto nástroje byl ukončen v roce 2009, kdy na něj navázal vývoj sady nástrojů pod názvem CrimeFighter Toolbox. Od roku 2009 byl vyvíjen nástroj CrimeFighter Toolbox. Tento nástroj se skládá ze znalostní databáze a sady nástrojů, které podporují různé aktivity v rámci kriminálního vyšetřování: nástroje pro získávání dat prostřednictvím web harvestingu, nástroje pro podporu informační analýzy, nástroje pro vyhledávání v rámci znalostní databáze a dále algoritmy pro data mining, matematické modelování, analýzu sociálních sítí, teorii grafů, analýzu vztahů a znalostní management. Dle autorů nástroje se v době vzniku jednalo o nejkomplexnější nástroj (resp. sadu nástrojů a technik) pro protiteroristické pouţití. [21] CTR pořádala či spolupořádala několik konferencí na téma OSINT, CT-OSINT Workshop 2009 International Workshop on Counterterrorism and OSINT, OSINT-WM International Symposium on Open Source Intelligence & Web Mining, ASONAM International Conference on Advances in Social Networks Analysis and Mining, EISIC European Intelligence and Security Informatics Conference. CTR v současné době jiţ neexistuje, ale většina jejích aktivit přešla pod Laboratoř informačního a znalostního managementu (Information and Knowledge Management Lab IKM) spadající taktéţ pod the Maersk Mc-Kinney Moller Institute, University of Southern Denmark. 25

26 3.4 EUROSINT Webové stránky EUROSINT: https://www.eurosint.eu/ The EUROSINT Forum je belgická nezisková asociace věnující se evropské spolupráci a pouţití OSINT pro sníţení rizik a hrozeb pro mír a bezpečnost. EUROSINT Forum vzniklo v roce 2006 s podporou Justice, Liberty and Security Directorate (JLS) při Evropské komisi. Cílem EUROSINT Forum je identifikovat potřeby v rámci procesu, metodologie a nástrojích OSINT a vytvořit platformu pro komunikaci a sdílení myšlenek mezi informačními specialisty, vývojáři a uţivateli. Mezi členy EUROSINT patří významné evropské instituce a organizace zabývající se OSINT v praxi například FRONTEX nebo JRC. 3.5 IHS a Jane s Information Group Webové stránky IHS: Webové stránky Jane s: Společnost IHS (Information Handling Services, Inc.) je úspěšným příkladem vyuţití OSINT v soukromé sféře. IHS zaměstnává přes 6500 osob v celkem 31 zemích celého světa a patří mezi nejvýznamnější společnosti věnující se zpracování informací. Společnost IHS poskytuje informace, analýzy a predikce týkající se širokého spektra průmyslových odvětví. V roce 2007 zakoupila IHS britskou společnost Jane s information group, která se rovněţ věnuje tvorbě OSINT analýz v oblasti vojenství, obrany, bezpečnosti, dopravy a další témata zaměřena na potřeby orgánů vynucujících právo. Konzultační odnoţ s názvem Jane's Strategic Advisory Services pořádá vícedenní komplexní školení v oblasti OSINT. 26

27 4 Metody OSINT Tato kapitola popisuje metody pouţívané v rámci vyhledávání a zpracování otevřených informací na internetu. Cílem této kapitoly není podrobný podpis metod vyhledávání informací z různých informačních zdrojů, neboť této problematice byla věnována část bakalářské práce, na kterou tato diplomová práce navazuje. 4.1 Zpravodajský cyklus Jedná se o tradiční ustálený teoretický koncept obecné zpravodajské činnosti. Přeneseně se tento koncept pouţívá také v dalších oblastech a to zejména v oblasti OSINT nebo Competitive Intelligence. Zpravodajský cyklus označuje na sebe navazující fáze při získávání a zpracování informací a tvorbě výstupů. Jde o transformaci původního velkého mnoţství nestrukturovaných dat do srozumitelné podoby. V novější literatuře se tento cyklus označuje téţ jako zpravodajský proces nebo produkční proces. Zpravodajský cyklus vychází z konceptu rozhodovacího cyklu (Decision making cycle), který je znám pod označením OODA a skládá se z fází Observe, Orient, Decide a Act (pozoruj, orientuj se, rozhodni, čiň). Na rozdíl od OODA cyklu jsou ve zpravodajském cyklu důsledně rozlišováni producenti a konzumenti produktu. [22] Zpravodajský cyklus zahrnuje několik na sebe navazujících fází, jejichţ počet není pevně stanoven, ale nejčastěji se pohybuje od čtyř do osmi fází. Příkladem je zpravodajský cyklus sestávající z pěti částí, tak jak je definován dle CIA [23]. Se zpravodajským cyklem v tomto rozsahu se lze v literatuře setkat také pod názvem OSINT Cycle: plánování a řízení (Planning and Direction), sběr (Collection), zpracování (Processing), analýza a produkce (Analysis and Production), šíření (Dissemination). 27

28 Obrázek 3 - zpravodajský cyklus pro oblast OSINT zdroj: 28

29 4.2 Zpracování a analýza informací Ve fázích zpracování a analýzy informací je stěţejním úkolem zorientovat se ve velkém mnoţství nalezených informací a vyhodnotit jejich relevanci. Otevřené zdroje ze své podstaty nezajišťují vţdy objektivní nebo pravdivé informace, coţ činí jejich zpracování mnohdy velmi náročné. Riziko tedy spočívá ve vyuţití neověřených informací, či informací z méně důvěryhodných zdrojů. OSINT proces se tedy skládá z několika kroků, které umoţňují interpretaci získaných informací a vyhodnocení jejich spolehlivosti. Níţe je popsán obecný postup OSINT procesu v kontextu zpravodajského, resp. OSINT cyklu: plánování a řízení (Planning and Direction) o orientace v zadání a definování konkrétního cíle, o identifikace moţných zdrojů a postupů, sběr (Collection) o vyhledávání, o sběr, o odpovídající ukládání dat, zpracování (Processing) o extrahování dat, o čištění dat, analýza a produkce (Analysis and Production) o čtení a pochopení nalezených zdrojů, o evaluace zdrojů, o syntéza nalezených informací, o začlenění informací do širšího geoprostorového a časového kontextu, o strukturování informací, o pečlivá tvorba analytického shrnutí / anotace, šíření (Dissemination) o tvorba odpovídajícího výstupu ve formě srozumitelné (obsahově i formálně) cílovému čtenáři. 29

30 4.3 Vyhodnocení kredibility informací Správné vyhodnocení kredibility informací je v oblasti OSINT velmi důleţitý a zároveň obtíţný úkol. Vzhledem k povaze získaných informací (například v případě monitorování příspěvků v rámci sociálních médií, blogosféry, diskusních fór nebo komentářů pod články apod.) se velmi často jedná o neověřené a (především z vědeckého hlediska) nerelevantní informace. Aby bylo moţné rozlišit, které z takto získaných informací mohou mít pro dané téma informační hodnotu, je nutné tyto informace podrobit procesu vyhodnocení. Kritéria vyhodnocení jsou následující: Přesnost (Accuracy), Kredibilita a váha (Credibility & Authority), Aktuálnost (Currency), Objektivita (Objectivity), Relevance (Relevancy). Výše uvedená kritéria lze vyhodnotit na základě následujících znaků: Přesnost počet informačních zdrojů, na kterých se informace vyskytuje, ověření nezávislosti informačních zdrojů, ze kterých informace pochází, ověření konzistence informací nalezené na více informačních zdrojích, obecné ověření důvěryhodnosti nalezených informačních zdrojů (zda jsou ostatní informace z daného zdroje důvěryhodné) Kredibilita a váha ověření, zda je moţná jednoznačná identifikace daného informačního zdroje (nejčastěji webové stránky), zjištění údajů o provozovateli webové stránky nebo autorovi konkrétní informace, ověření, zda nalezený zdroj vykazuje známky moţného ovlivnění (názorové skupiny, vlastník konkrétních médií apod.), zjištění návštěvnosti webových stránek nebo citovanosti daného zdroje, v případě webových stránek ověření, zda se v minulosti staly terčem kybernetického útoku Aktuálnost zjištění, zda je daný informační zdroj, resp. konkrétní informace aktuální, u některých zdrojů lze dohledat datum a čas (např. u článků, v diskusních fórech apod.), případně ověření, zda existuje alternativní moţnost zjištění (např. z metadat dokumentů nebo pomocí The wayback machine apod.). 30

31 4.3.4 Objektivita ověření, zda nalezený zdroj zastupuje názory jednotlivce či nějaké organizace, ověření, zda dané informace odpovídají myšlenkám některé známé názorové skupiny, ověření, zda se v případě webových stránek jedná o oficiální webové stránky, ověření, zda se jedná o hlavní webovou stránku, či o některou podstránku (např. microsite ), zjištění na jaké další zdroje stránka odkazuje či zda je k dispozici seznam doporučených odkazů nebo odkazů na příbuzné organizace nebo podobná témata Relevance posouzení, zda nalezené informace odpovídají předmětu vyhledávání a zda poskytují odpovědi na stanovené otázky Škála pro vyhodnocení kredibility Pro rozlišení důvěryhodnosti (kredibility) zdroje nebo konkrétní informace lze pouţít číselnou škálu. Škála pouţitelná pro hodnocení důvěryhodnosti (kredibility) konkrétní informace [22]: 1. pravdivá informace = verifikována i z jiných nezávislých zdrojů, 2. pravděpodobně pravdivá = logicky skloubena s jinými, zapadá do kontextu, odjinud ale potvrzena není, 3. asi pravdivá = není potvrzena, ale ani vyvrácena, je logická, ale nezpůsobilá pro závěr, protoţe např. příliš obecná nebo fragmentární, nebo naopak vybočující, pochybná, ale moţná pravdivá = nyní nepravděpodobná, ale není nelogická, tj. nemůţeme přijmout ani zamítnout, nelze vyloučit, ţe získá v dalším vývoji platnost, 4. nepravděpodobná = je popřena jinými informacemi, nelogická, neodpovídá kontextu, 5. nelze posoudit = v současnosti chybí data ke srovnání. 31

32 5 Nástroje OSINT Cílem této kapitoly je poskytnout přehled nástrojů vhodných pro oblast OSINT včetně jejich stručného popisu a srovnání. Smyslem je tedy především uvést stručné zhodnocení potenciálního přínosu daných nástrojů pro oblast OSINT. Testované nástroje byly rozděleny do několika kategorií dle účelu jejich pouţití. Z důvodu nesourodosti nástrojů nelze provést přímé srovnání všech uvedených nástrojů. V závěru kaţdé podkapitoly je provedeno dílčí srovnání nástrojů formou tabulky nebo formou stručného slovního hodnocení, pokud nejde o přímo srovnatelné nástroje. Jednotlivé nástroje mají své konkrétní místo v rámci OSINT procesu, resp. zpravodajského cyklu. V současné době však není k dispozici komplexní komerční nástroj, který by umoţňoval pouţití pro všechny fáze OSINT procesu. Proto je velmi důleţité rozpoznat a vhodně vyuţít určitou kombinaci těchto nástrojů pro konkrétní pouţití. Cílem není podrobný popis všech funkcí uvedených nástrojů, neboť to rozsah této práce neumoţňuje. V případě většiny nástrojů je k dispozici dokumentace, která podrobněji popisuje instalaci i samotnou práci s daným nástrojem. Všechny uvedené nástroje (s výjimkou nástrojů zaloţených na Cogito semantic technology a Basis Technology) byly autorem práce testovány v praxi. Výše uvedené nástroje nebyly pro tuto práci zapůjčeny se zdůvodněním, ţe se jedná o nástroje, jejichţ pořizovací náklady daleko přesahují moţnosti akademické sféry; v obou případech byly společnostmi poskytnuty propagační materiály, ze kterých bylo při popisu a srovnávání nástrojů vycházeno. Srovnávané kategorie nástrojů: vyhledávače a metavyhledávače, archivní zobrazení webových stránek kopírování webových stránek, síťová a technická infrastruktura, metadata, údaje o uţivatelích, monitoring sociálních sítí, komplexní nástroje pro OSINT, pokročilá analýza textu, vizuální analýza dat. 32

33 5.1 Vyhledávače a metavyhledávače Základní vyhledávání probíhá prostřednictvím vyhledávačů (např. Google) nebo metavyhledávačů, které umoţňují vyhledávání ve více vyhledávačích zároveň (např. Copernic Agent nebo český nástroj Professional Web Orchestra). Pro přesnější výsledky je nutné pouţít vyhledávací operátory. Výhodou běţných vyhledávačů je velmi snadná práce s nimi a mnohdy jsou nejlepší volbou pro základní vyhledávání k danému tématu, společnosti či osobě. Na základě výsledků z vyhledávačů lze dále směřovat další způsoby vyhledávání a sběru informací. Obecnou nevýhodou vyhledávačů je nemoţnost vyhledávání v neindexovaném obsahu internetu. V současnosti je celosvětově nejpouţívanějším vyhledávačem Google, ale existuje velmi mnoho dalších vyhledávačů. Dalšími typickými příklady jsou Bing, Yahoo či Seznam. Mezi typické zástupce metavyhledávačů patří desktopová aplikace Copernic Agent. Pro přesnější výsledky vyhledávání je vhodné pouţívat vyhledávací operátory (booleovské operátory či zpřesňující parametry, tzv. Google Dorks více viz kapitola Google Hacking). Tato kapitola si neklade za cíl podrobný popis postupu vyhledávání pomocí vyhledávačů, neboť jde o základní metodu vyhledávání informací, jejíţ znalost je v dnešní době samozřejmostí. Protoţe se však jedná o velmi důleţitou metodu internetového vyhledávání, je zde pro úplnost tato moţnost alespoň zmíněna. Dále je vhodné vyhledávat v těchto internetových zdrojích: internetové katalogy (Web Directories), databáze, specializované nástroje pro vyhledávání informací o osobách, sociální média, blogosféra, diskuzní fóra, chat, IRC, Instant Messaging, Usenet/Newsgroups, mapy, vyhledávání souborů, Deep web. 33

34 5.1.1 Google Alerts Google Alerts (Upozornění Google) je sluţba monitorující obsah nově indexovaný vyhledávačem Google (Web, Zprávy, blogy, video, diskusní skupiny) dle nastavených klíčových slov. V případě, ţe se objeví nově indexovaný obsah s daným klíčovým slovem, je uţivateli automaticky zaslána notifikace. Tato sluţba je velmi vhodná pro průběţné monitorování odkazů týkajících se určitého tématu. Uţivatel zadá ovou adresu, na kterou jsou příspěvky zasílány (moţné frekvence zasílání jsou průběţně, jednou denně a jednou týdně). Jedná se o jednoduchý, ale zároveň účinný nástroj pro průběţné sledování výsledků vyhledávání pro libovolná klíčová slova. Sluţba Google Alerts (Upozornění Google) umoţňuje zejména: sledovat vývoj události, drţet krok s konkurencí nebo vývojem v oboru, získávat nejnovější informace o celebritách a událostech, vést si tabulky o oblíbených sportovních týmech. [24] Google hacking Google hacking označuje metodu vyhledávání prostřednictvím vyhledávače Google za pouţití pokročilých operátorů (tzv. Google dorks ) s cílem vyhledat specifické textové řetězce. Pomocí Google hackingu lze nalézt například stránky obsahující přihlašovací rozhraní, soubory obsahující přihlašovací údaje a hesla, chybové hlášky webových aplikací obsahující citlivá data, stránky obsahující známé zranitelnosti, síťová zařízení a datová úloţiště na síti, tiskárny nebo IP kamery. V rámci projektu Google Hacking Database dostupného na jsou zveřejňovány vybrané zajímavé řetězce umoţňující pouţití Google dorks pro vyhledání odkazů například s následujícím obsahem: soubory obsahující uţivatelská jména nebo hesla, detekce webových serverů, vyhledávání známých zranitelností, vyhledávání chybových hlášek, stránky obsahující přihlašovací okna, online zařízení. 34

35 Zneužívání Google hackingu Vzhledem k vzrůstajícímu zneuţívání moţností, které pouţití pokročilých operátorů při vyhledávání na Goolge nabízí, byly ze strany Google některé dotazy zakázány a není moţné je nadále pouţívat. V případě pouţití takového dotazu se objeví chybová hláška informující o pouţití nepovoleného vyhledávacího řetězce (zároveň dojde k monitorování IP adresy). Jedná se především o typ dotazů, které vedou k moţnému zneuţití, tedy především odhalování některých zranitelností. Oficiální seznam nepovolených dotazů však neexistuje. Zneuţití Google hackingu by mohlo vést k protiprávnímu jednání dle následujících paragrafů Trestního zákoníku: Jednání pachatele trestného činu podle 257a TrZ spočívá v získání přístupu k nosiči informací a zároveň: v neoprávněném užití informací ( 257a odst. 1a); ve zničení, poškození nebo učinění informací neupotřebitelnými ( 257a odst. 1b); v zásahu do technického nebo programového vybavení počítače ( 257a odst. 1c). [25] 35

36 Tabulka operátorů pro Google hacking, včetně příkladu jejich použití: [26] Operátor Určení Příklad použití site site:google.com fox najde všechny omezuje výsledek na strany strany obsahující v textu výraz fox, které se nacházející se v zadané doméně nacházejí v doméně *.google.com intitle omezuje výsledky na dokumenty intitle:fox fire najde všechny strany obsahující zadaný výraz ve jméně obsahující výraz fox ve jméně a fire v textu allintitle inurl allinurl filetype, ext numrange link inanchor allintext + - omezuje výsledky na dokumenty obsahující všechny zadané řetězce v titulku omezuje výsledky na strany bsahující zadaný řetězec v URL adrese omezuje výsledky na strany obsahující všechny zadané výrazy v URL adrese omezuje výsledky na dokumenty zadaného typu omezí výsledky na dokumenty obsahující ve svém obsahu číslo ze zadaného rozsahu omezí výsledky na strany obsahující odkazy na zadané umístění omezí výsledky na strany s odkazy obsahující v popise zadaný výraz omezí výsledky na dokumenty obsahující zadaný výraz v textu a současně neobsahující jej v popise, odkazech a URL adrese vynutí častý výskyt zadaného výrazu ve výsledcích vynutí nevyskytování se zadaného výrazu ve výsledcích umožňuje hledat celé fráze, nejenom výrazy allintitle:fox fire najde všechny strany obsahující v titulku výrazy fox a fire; funguje podobně jako intitle:fox intitle:fire inurl:fox fire najde strany obsahující v textu výraz firea fox v URL adrese allinurl:fox fire najde strany obsahující v URL adrese výrazy fox a fire; funguje podobně jako inurl:fox inurl:fire filetype:pdf fire vrátí dokumenty PDF obsahující výraz fire a filetype:xls fox vrátí dokumenty tabulkového kalkulátoru Excel obsahující fox numrange:1-100 fire vrátí strany obsahující hodnotu z rozsahu od 1 do 100 a výraz fire. Stejný efekt je možno získat dotazem: fire link:www.google.com vrátí dokumenty obsahující nejméně jeden odkaz na stranu inanchor:fire vrátí dokumenty obsahující odkazy, které mají v popisu výraz fire (ne v URL adrese, na kterou odkazují, ale v podtržené části textu) allintext:"fire fox" vrátí dokumenty, které obsahují výraz fire fox pouze v textu +fire třídí výsledky dle počtu výskytů výrazu fire -fire vrátí dokumenty neobsahující výraz fire "fire fox" vrátí dokumenty obsahující frázi fire fox. je zástupcem jednoho znaku fire.fox vrátí dokumenty obsahující fráze fire fox, fireafox, fire1fox, fire-fox apod. * je zástupcem libovolného výrazu fire * fox vrátí dokumenty obsahující frázi fire the fox, fire in fox, fire or fox apod. logické OR "fire fox" firefox vrátí dokumenty obsahující frázi fire fox nebo výraz firefox Tabulka 1 - tabulka operátorů pro Google hacking, včetně příkladu jejich použití zdroj: PIOTROWSKI, M. Nebezpečný Google vyhledávání důvěrných informací. Hakin9: jak se bránit. Warszawa: Software-Wydawnictwo Sp z o.o, 2005, č. 04. ISSN

37 5.2 Archivní zobrazení webových stránek Google Cache Google umoţňuje vyhledávání pouze na stránkách, které jsou předem indexovány. Google v roce 2008 uvedl, ţe jejich vyhledávač prohledal a indexoval materiál z více neţ 1 trilionu unikátních URL adres. [27] Indexace webových stránek není moţná v případě existence dynamického obsahu nebo v případě nutnosti autorizovaného přístupu ke stránce, kdy uţivatel zadává své uţivatelské jméno a heslo (například diskuzní fóra). Přesto jsou k dispozici i výsledky zobrazující obsah některých diskuzních fór (či jiných stránek vyţadujících autentizaci) a to díky moţnosti zobrazení výsledků z vyrovnávací paměti vyhledávače výběrem odkazu Archiv. Pro zobrazení stránek z vyrovnávací paměti vyhledávače lze také přímo v poli pro vyhledávání pouţít rozšiřující operátor cache:, tedy například zadáním řetězce: cache:bivs.cz lze získat pohled na stránku indexovanou v minulosti. Je však vţdy zobrazen pouze poslední indexovaný pohled na stánku a nelze se posouvat v čase dále zpět k dalším předchozím indexovaným verzím stránek Wayback Machine Webové stránky: Wayback Machine je sluţba, kterou provozuje organizace Internet Archive, umoţňující vyhledávání obsahu jiţ neexistujících stránek nebo zobrazení webové stránky v určitém okamţiku v minulosti. Wayback Machine nabízí archivní pohled na webové stránky zpět v minulosti aţ do roku Jedná se o nejrozsáhlejší archiv tohoto typu WebArchiv Webové stránky: V ČR existuje obdobná sluţba WebArchiv, kterou od roku 2000 zajišťuje Národní knihovna ČR ve spolupráci s Moravskou zemskou knihovnou a Ústavem výpočetní techniky Masarykovy univerzity. Pro archivaci webového obsahu je pouţívána technologie vyvinutá organizací Internet Archive (jde o stejnou technologii jako v případě Wayback Machine). Nevýhodou projektu WebAarchiv je indexace pouze obsahu, s jehoţ indexací autor souhlasí. Některé další zdroje, u kterých provozovatel nedal souhlas s archivací, lze zobrazit pouze při přístupu z prostor Národní knihovny ČR. K bylo uzavřeno 37

38 celkem 3707 smluv s poskytovateli obsahu o jeho zařazení k indexaci. WebArchiv obsahoval 60,3 TB dat k První dokument byl archivován [28] Srovnání Sluţby Google Cache, Wayback Machine a WebArchiv umoţňují archivní pohled na stránky, tak jak byly v minulosti indexovány. Pouţití kaţdého nástroje je však odlišné. Google Cache umoţňuje pohled na poslední indexovanou verzi webových stránek, coţ je výrazný rozdíl oproti dalším zmíněným sluţbám, které umoţňují pohled na kaţdou indexovanou verzi zpět v minulosti (indexace probíhá nepravidelně; obecně ale platí, ţe čím je stránka více navštěvována, tím častěji dochází k její indexaci). Výhodou Google Cache je moţnost získat v určitých případech pohled na stránku (nejčastěji diskuzní fórum) vyţadující k přístupu autentizaci. Wayback Machine i Webarchive pouţívají stejnou metodu sběru dat i indexace. Technologicky jde tedy o velmi podobné sluţby. Výhodou sluţby Webarchive je cílení na obsah českého internetu a zaměření především na kvalitní zdroje informací. Nevýhodou je indexace pouze obsahu, s jehoţ archivací majitel autorských práv souhlasí (v souladu se Zákonem č. 121/2000 Sb.). Wayback Machine není omezen autorskými právy a zaměřuje se na libovolný internetový obsah. Výhodou je dále indexace obsahu jiţ od roku 1996 (oproti Webarchiv, který začal s indexací aţ v roce 2001). 38

39 5.3 Kopírování webových stránek Kopírování webových stránek pro offline pouţití (označováno také jako website mirroring) slouţí ke zkopírování celého obsahu vybrané webové stránky. Tato metoda je vhodná pro prohlíţení a zpracování obsahu dané stránky offline (např. vyhledávání metadat v získaných dokumentech či fotografiích nebo pro vyhledávání informací ve zdrojovém kódu stránek. Nástroje pro website mirroring umoţňují filtrování pro staţení pouze určitého typu obsahu nebo výběr maximální hloubky interního či externího stahování HTTrack Web Site Copier Webové stránky: HTTrack je desktopová aplikace dostupná zdarma pod licencí GPL. HTTrack umoţňuje staţení obsahu webových stránek na lokální disk, staţení určitého typu souborů z webových stránek nebo kontrolu odkazů na webových stránkách. Nástroj je k dispozici pro OS Windows a Linux. Nástroj je lokalizován do českého jazyka a jeho pouţití je velmi snadné. Obrázek 4 - nástroj HTTrack pro kopírování obsahu webových stránek zdroj: autor 39

40 K dispozici jsou filtry pro staţení pouze určitého obsahu (dle formátu soborů nebo dle řetězce obsaţeném v URL). Dále lze nastavit maximální hloubka procházení interního (pouze na dané doméně) a externího odkazu (pro staţení obsahu také z externích odkazů). Maximální hloubka stanovuje, do jaké úrovně bude staţení obsahu provedeno. Pro offline prohlíţení stránek zachovává nástroj původní strukturu odkazů a prohlíţení stránek je tedy identické jako v případě prohlíţení online verze webových stránek Website Ripper Copier Webové stránky: Website Ripper Copier je nástroj americké společnosti Tensons umoţňující kopírování webových stránek pro offline prohlíţení (s automaticky doplněnou strukturou odkazů), vytvoření přesné kopie webových stránek (nemusí být zachováno funkční offline prohlíţení), zjištění struktury odkazů webových stránek nebo vyhledání a staţení souborů z webových stránek. K dispozici je rozšiřující nastavení pro staţení pouze určitého obsahu dle nastavení filtrů. Filtry zahrnují výběr dle popisu (klíčová slova) nebo dle obsahu URL nebo dle formátu souborů. Nástroj nabízí také podporu pro stahování stránek vyţadujících autentizaci (pro tuto funkci je nutné zadání přihlašovacích údajů). K dispozici je vestavěný prohlíţeč staţených stránek. Website Ripper Copier je nabízen za cenu 39,95 USD, k dispozici je také trial verze zdarma. Obrázek 5 - pracovní plocha nástroje Website Ripper Copier zdroj: autor 40

41 5.3.3 Srovnání HTTrack Website Ripper Copier Licence GNU GPL Komerční software Cena $39,95 (k dispozici Trial verze Zdarma zdarma) OS Windows Linux/Unix/BSD Windows Dokumentace Ano Ano Offline Browser Ne Ne Přístup na stránky vyžadující autentizaci Ne Ano Filtrování dle přípony souborů Ano Ano Filtrování dle URL Ano Ano Filtrování dle části URL Ano Ano Vytvoření relativní struktury odkazů Ano Ano Možnost použití proxy Ano Ano Maximální hloubka hledání 15 od každého zdrojového 20 (interní) / 3 (externí) odkazu Maximální počet spojení 8 50 Přerušení stahování Ano Ano Tabulka 2 - srovnání nástrojů HTTrack a Website Ripper Copier zdroj: autor Z výše uvedené tabulky vyplývá, ţe srovnávané nástroje jsou ve většině funkcí a parametrů velmi podobné. Nástroj HTTrack je zdarma (pod licencí GNU GPL), zatímco Website Ripper Copier je placený nástroj v ceně 39,95 USD. V moţnostech filtrace stahovaného obsahu jsou oba nástroje srovnatelné. Website Ripper Copier nabízí oproti nástroji HTTrack především vestavěný prohlíţeč webových stránek a přístup na stránky vyţadující autentizaci. 41

42 5.4 Síťová infrastruktura Zjišťování údajů o síťové a technické infrastruktuře můţe poskytnout některé základní informace o společnosti, resp. internetové doméně. Mezi základní zjistitelné informace patří například Whois záznamy, tedy údaje o vlastníkovi internetové domény. Dalšími metodami jsou například zjišťování DNS záznamů či síťová enumerace. Tyto metody spadají do úvodní fáze penetračního testování a nazývá se Footprinting (nebyl nalezen ekvivalentní výraz v českém jazyce). Jde o techniky získávání a sběru základních informací o zkoumaném subjektu, jeho síťové infrastruktuře, počítačích a systémech, které se v určité síti nachází. Cílem této kapitoly (vzhledem k rozsahu této práce) není podrobně se věnovat teorii v oblasti sítí a síťových protokolů. Protoţe zjišťování těchto údajů je také součástí procesu OSINT, jsou zde tyto metody také uvedeny (nikoliv z hlediska teorie sítí, ale z hlediska praktického přínosu těchto informací pro oblast OSINT). V přípravné fázi penetračního testování, tedy ve fázi prvotního získávání informací, mohou být tyto metody pouţity pro vyhledávání zranitelností daných systémů. Předpokladem pro takovou činnosti je autorizace ze strany dané společnosti. V opačném případě by se v převáţné většině zemí světa jednalo o protizákonné jednání. Metody pro Footprinting: Základní vyhledávání informací pomocí vyhledávačů, Whois footprinting - vyhledávání Whois záznamů, DNS footprinting - DNS dotazování (DNS queries), Network footprinting - síťová enumerace (Network enumeration), SNMP dotazování, Identifikace operačního systému, Website footprinting, footprinting, Google Hacking. 42

43 5.4.1 DNS dotazování Definice: DNS (Domain Name System) je hierarchický systém doménových jmen, který je realizován servery DNS a protokolem stejného jména, kterým si vyměňují informace. Jeho hlavním úkolem a příčinou vzniku jsou vzájemné převody doménových jmen a IP adres uzlů sítě. [29] DNS neboli Domain Name System (DNS protokol je popsán v RFC a RFC a aktualizován v RFC a DNS záznamy obsahují tyto informace: A (IPv4 address record), AAAA (IPv6 address record), CNAME (canonical name record), MX (mail exchange record), NS (name server record), PTR (pointer record), SOA (start of authority record), SRV (Service records), RP (Responsible person), HINFO (Host information record) Whois záznamy Whois záznamy obsahují registrační údaje pro kaţdou existující doménu. Whois databáze jsou udrţovány v regionálních internetových registrech (Regional Internet Registry; zkráceně RIR) a obsahují také některé osobní a kontaktní údaje o vlastníkovi domény. Existuje několik regionálních internetových registrů: RIPE NCC, LACNIC, APNIC, ARIN, AfriNIC. Whois záznamy obsahují: jméno domény, kontaktní údaje drţitele domény, o adresa, telefonní číslo, údaje o technickém a administrativním správci domény, DNS záznamy, síťový rozsah. 2 RFC 882: 3 RFC 883: 4 RFC 1034: 5 RFC 1035: 43

44 5.4.3 Sam Spade Webové stránky: (v současné době jsou nefunkční) Sam Spade je nástroj, který vznikl v roce 1997 s cílem usnadnit zjišťování zdrojů spamových ů. Autorem tohoto nástroje je Steve Atkins. V současné době nejsou webové stránky projektu k dispozici. Testována byla verze Mezi hlavní funkce nástroje Sam Spade patří dotazování Ping, Traceroute, DNS dotazování, vyhledávání Whois záznamů, zjišťování rozsahu IP adres, detekce lokálního času nebo pro extrakci některých údajů ze zdrojového kódu stránek, např. ové adresy, hodnoty formulářů, odkazy na obrázky, interní a externí odkazy. Obrázek 6 - pracovní prostředí nástroje Sam Spade zdroj: autor 44

45 5.4.4 Knock Webové stránky: https://code.google.com/p/knock/ Knock je nástroj (resp. skript) napsaný v jazyce Python umoţňující skenování subdomén, zjišťování zónového transferu (Transfer zone) a Wildcard testování. Skenování subdomén Pro skenování subdomén je k dispozici interní slovník obsahující řádově stovky nejpouţívanějších názvů; pouţít lze také libovolný externí slovník. Zónový transfer Zónový transfer slouţí k přenesení obsahu všech DNS záznamů domény prostřednictvím TCP protokolu z jednoho DNS serveru na druhý a je pouţíván například pro přenos dat z primární na sekundární DNS server. Přenos všech záznamů je nazýván AXFR a je definován v RFC V případě AXFR dochází k přenosu všech záznamů v případě jakékoliv provedené změny. Druhý moţný postup je nazýván IXFR (incremental zone transfer), který je definován v RFC a probíhá inkrementálním způsobem, kdy dochází k přenosu pouze změněných údajů. Tímto způsobem je moţné získat některé neveřejné údaje, můţe se však jednat o porušení zákonů některých zemí Wildcard označuje záznam v zónovém souboru DNS, který akceptuje veškeré dotazy na neexistující subdomény v dané doméně po nahrazení zástupného znaku (např.: *.example.com). V případě nastavení tohoto záznamu by byl kaţdý dotaz na existenci subdomény vyhodnocen jako existující. Použití nástroje Knock Pouţití je velmi snadné. Nástroj se spustí v příkazové řádce a uţivatel jej spustí textovým příkazem (na výběr je skenování domén s vyuţitím interního či externího slovníku a několik dalších rozšiřujících parametrů): knock.py [url] skenování domén s vyuţitím interního slovníku knock.py [url] [slovník] skenování domén s vyuţitím externího slovníku 6 RFC 1035: 7 RFC 1995: 45

46 Příklad pouţití pro doménu s externím slovníkem slovnik.txt, který je umístěn ve stejné sloţce jako skript: knock.py bivs.cz slovnik.txt Rozšiřující parametry: -zt zjištění Zone Transfer -wc wildcard testování -dns překlad DNS jména -bw Bypass wildcard Srovnání Sam Spade je velmi starý nástroj (první verze vznikla jiţ v roce 1997) pro základní doménový footprinting (Whois, DNS, Traceroute, apod.). Shodné funkce, které tento nástroj nabízí, lze pouţít jednoduchými dotazy přímo z příkazové řádky nebo prostřednictvím mnoha webových sluţeb nebo prostřednictvím doplňků do prohlíţeče (jedná se o všeobecně známé sluţby). Výhodou tohoto nástroje je snadná obsluha a spojení několika základních funkcí pro zjišťování technických údajů o nějaké doméně do jednoho nástroje. Knock je jednoduchý jednoúčelový nástroj (resp. skript) napsaný v jazyce Python umoţňující skenování subdomén, zjišťování zónového transferu (Transfer zone) a Wildcard testování. Jeho pouţití je velmi snadné 46

47 5.5 Metadata Metadata jsou údaje uloţené v HTML souborech, v dokumentech či multimediálních souborech, která obsahují informace o vytvoření, zpracování a vlastnostech daného souboru. Specifickým případem pouţití metadat je formát Exif (Exchangeable image file format) vkládaný do fotografií při jejich pořízení (digitálním fotoaparátem, mobilním telefonem či jiným zařízením umoţňujícím pořízení fotografií). Hodnota metadat pro OSINT spočívá v moţnosti odhalit v dokumentech či fotografiích skryté informace obsahující osobní údaje, zjistit datum a čas vytvoření nebo upravení souboru či v případě fotografií informace o geografické poloze při pořízení. Metadata obsahující informace o IP adrese nebo o geografické poloze jsou také dostupné v případě vloţení příspěvků na některé sociální sítě (např. Twitter). Soubory neobsahují metada vţdy a je moţné je také manuálně odstranit. Naopak některé společnosti metadata cíleně vyuţívají pro další automatizované zpracování a kategorizaci firemních dokumentů. Jedná se o metodu, která je také běţně pouţívána při forenzní analýze obsahu PC. Typické údaje obsaţené v metadatech dokumentů: datum a čas vytvoření, datum a čas upravení, konkrétní verze SW, ve kterém byl soubor vytvořen či editován, informace o geografické poloze při vytvoření nebo úpravě, informace o autorovi, informace o autorovi poslední změny, informace o revizích, ové adresy, informace o tiskárně, na které byl dokument vytisknut, skrytý obsah. 47

48 Pro extrahování metadat z dokumentů byly testovány následující nástroje: Foca Free o nástroj pro automatizované extrahování metadat ze všech dokumentů na určité webové stránce, MetaGoofil o nástroj pro automatizované extrahování metadat ze všech dokumentů na určité webové stránce, resp. ve výsledcích vyhledávání na Google, EXIF Tool o nástroj pro zobrazení Exif dat z fotografií, Creepy Foca Free o nástroj pro extrahování údajů o geografické poloze z příspěvků a fotografií vloţených na sociální sítě a stránky pro sdílení fotografií. Webové stránky: Nástroj Foca Free vyvinula španělská společnost Informática64. Foca je ve verzi Free zdarma. Pro získání odkazu ke staţení je nutné na webové stránce projektu uvést e- mailovou adresu, na kterou je následně zaslán odkaz ke staţení nástroje. Existuje také verze Foca Pro, kterou lze získat po absolvování online semináře v ceně 100 EUR. Ve verzi Pro jsou k dispozici některé funkce navíc (automatické ukládání projektu, vyhledávání souborů zálohy na webových stránkách apod.). Nástroj Foca Free umoţňuje vyhledávání serverů, domén, URL a staţení všech dokumentů zveřejněných na určité doméně. Dále umoţňuje extrakci a analýzu metadat z nalezených dokumentů, directory listing či vyhledání nezabezpečených HTTP metod. Tento nástroj je pouţíván například v rámci penetračního testování. Z hlediska OSINT je nejvýznamnější funkcí moţnost extrakce metadata ze všech dokumentů na určité doméně. Z dokumentů jsou extrahována tato metadata: Uţivatelé (Users) uţivatelé, kteří vytvořili nebo upravili daný dokument, Sloţky (Folders) cesta ke sloţce, ve které byl na daném PC dokument uloţen, Tiskárny (Printers) tiskárny, na kterých byly dokumenty vytištěny, Software (Software) software, který byl pouţit k vytvoření dokumentů, y ( s) y uvedené v metadatech dokumentu, Operační systémy (Operating Systems) Operační systémy, ve kterých byly dokumenty vytvořeny, Hesla (Passwords), Servery (Servers). 48

49 K dispozici jsou tyto volitelné pluginy: Web fuzzer o umoţňuje slovníkové dotazování pro snadnější vyhledávání souborů a sloţek zaloţené na fuzzing technikách, SVN Extrator o plugin pro získání struktury souborů a sloţek ve sloţce souborů formátu.svn, MySQL Injection plugin o plugin umoţňující testování SQL Injection v MySQL databázích, IIS Short Name Extractor o získání struktury souborů ve sloţce webového serveru s podporou pro IIS 8.3 krátká jména, NTFS Based Server Enumerator o rekurzivní extrakce krátkých jmen IIS. Obsahuje také fuzzer pro jména, která nemohou být získána prostřednictvím zranitelnosti a mechanismus pro znovuvytvoření sloţek a souborů pomocí slovníků. Obrázek 7 - pracovní prostředí nástroje FOCA Free 3.2 zdroj: autor 49

50 5.5.2 Metagoofil Webové stránky: Metagoofil je nástroj, resp. skript v jazyce Python, určený pro vyhledávání a extrahování metadat z veřejně dostupných dokumentů (PDF, DOC, DOCX, XLS, XLSX, PPT, PPTX). Nástroj nejprve provede vyhledávání pomocí vyhledávače Google s cílem nalézt dokumenty (primárně je nástroj určen pro vyhledávání dokumentů patřících nějaké společnosti). Dokumenty jsou poté uloţeny na disk a jsou z nich extrahována metadata. Poté je vygenerován výstup obsahující uţivatelská jména, ové adresy, verze SW, názvy serverů a dalších PC. Nástroj dokonce umoţňuje zjištění MAC adresy z MS Office dokumentů) [30]. Výstup lze exportovat do HTML. Použití nástroje: Metagoofil.py d [doména] t [typ souboru] l Rozšiřující parametry: -d doména, v rámci které bude vyhledáváno -t typ souborů, které budou staţeny (pdf, doc, docx, xls, xlsx, ppt, pptx, odp, ods) -l limit výsledků vyhledávání (výchozí nastavení 200) -h práce s lokální sloţkou obsahující dokumenty ( yes pro umoţnění lokální analýzy) -n omezení počtu souborů, které budou staţeny -o sloţka, do které budou soubory uloţeny -f název souboru s výstupem (v HTML formátu) Příkaz pro staţení dokumentů formátu DOC, DOCX a PDF ze stránek dále nastavení limitu na 300 výsledků vyhledávání a na maximálně 100 staţených souborů. Výsledek bude uloţen v souboru bivs.html ve sloţce bivs : metagoofil.py -d bivs.cz -t doc,docx,pdf -l 300 -n 100 -o bivs f bivs.html 50

51 5.5.3 ExifTool Webové stránky: ExifTool je nástroj napsaný v jazyce Perl umoţňující zobrazit, zapisovat a editovat metadata širokého spektra formátů obrazových souborů. Podporuje následující formáty metadat: EXIF, GPS, IPTC, XMP, JFIF, GeoTIFF, ICC Profile, Photoshop IRB, FlashPix, AFCP a ID3). Nástroj v sobě obsahuje také databáze všech významných výrobců digitálních fotoaparátů pro přesnější detekci informací o původu pořízených souborů. ExifTool je dostupný jako skript nezávislý na platformě nebo jako spustitelná aplikace pro platformy Windows či Mac OS X. Na adrese je dostupná také online verze tohoto nástroje. Obrázek 8 - ukázka výstupu z online verze nástroje ExifTool obsahující informace o fotografii včetně GPS souřadnic místa pořízení zdroj: autor Obrázek 9 - zobrazení místa pořízení fotografie na Google Maps zdroj: autor 51

52 5.5.4 Creepy Webové stránky: Nástroj Creepy umoţňuje geolokaci uţivatelů majících profil na Twitter a Flickr. Před prvním pouţitím je nutné nástroj propojit s existujícím uţivatelským účtem na Twitter. Propojení proběhne potvrzením práv aplikace Creepy v uţivatelském profilu na Twitter, čímţ dojde k autorizaci a zprovoznění funkcí nástroje). Funkcionalita pro Flickr je k dispozici jiţ ve výchozím nastavení. Obrázek 10 - pracovní prostředí nástroje Creepy zdroj: autor Nástroj umoţňuje vyhledání uţivatelů dané sítě dle uţivatelského jména. Po výběru konkrétního uţivatele jsou extrahovány veškeré jeho příspěvky a fotografie, ze kterých jsou dále zjištěny údaje o lokalitě, ze které byly vloţeny. Výsledky jsou následně graficky zobrazeny na mapě. Někteří uţivatelé mají však ve svých profilech nastaveno omezení ukládání údajů o lokalitě vkládaných příspěvků nebo ze svých fotografií vymazávají Exif údaje. V takovém případě nelze uţivatele lokalizovat. 52

53 Pro vyhledávání na Twitteru je nutno zadat uţivatelské jméno, případně lze uţivatele dohledat přímo pomocí tohoto nástroje. Pro vyhledávání na Flickr je nutno zadat Flickr UserID (kód ve tvaru: ). Creepy umoţňuje vyhledávat uţivatele podle uţivatelského jména, následně doplnit výsledky vyhledávání o skutečné jméno uţivatele a přiřadit Flickr UserID. Případně lze pro dohledání Flickr UserID vyuţít některého specializovaného nástroje, například nástroj Idgettr, který je dostupný online na adrese: Obrázek 11 - výstup nástroje Creepy zdroj: autor 53

54 5.5.5 Srovnání Typ aplikace OS Foca Free Metagoofil ExifTool Creepy Skript Desktopová Skript v jazyce Perl / v jazyce aplikace desktopová aplikace Python Windows Nezávislé na platformě Skript nezávislý na platformě / Aplikace pro Windows a Mac OS Desktopová aplikace Windows Linux Cena Zdarma Zdarma Zdarma Zdarma Dokumentace Ne Ne Ano Ne Extrakce metadat z dokumentů Extrakce metadat z fotografií Extrakce metadat ze sociálních médií Ano Ano Ano Ne Ne Ne Ano Ano Ne Ne Ano (pouze manuálně) Tabulka 3 - obecné srovnání nástrojů Foca Free, Metagoofil, ExifTool a Creepy zdroj: autor Ano (automatizovaně) Všechny srovnávané nástroje slouţí k extrakci metadat z internetových zdrojů, přímé srovnání funkcí zmíněných nástrojů však není moţné, neboť se liší konkrétní zaměření a pouţití jednotlivých nástrojů. Všechny zmíněné nástroje jsou zdarma, pouze v případě nástroje Foca existuje také rozšířená verze Pro v ceně 100 EUR. Hlavní funkcí nástrojů Foca a Metagoofil je automatizované nalezení dokumentů na vybraných webových stránkách, jejich následné staţení a extrakce metadat z těchto dokumentů. Výhodou nástroje Foca je přívětivé grafické uţivatelské rozhraní a moţnosti vyuţití pluginů. Pro přesnější výsledky je vhodné pouţít pro extrahování oba zmíněné nástroje a výsledky následně kombinovat. Nástroj ExifTool slouţí k manuální extrakci metadat z velkého mnoţství souborů (které zahrnuje fotografie, kancelářské dokumenty i soubory archivů). Rozdílem oproti nástrojům Foca a Metagoofil je nutnost vybrat konkrétní soubor, nejde tedy o automatizovaný proces. Výhodou nástroje ExifTool je velmi široké spektrum souborových typů se kterými umí tento nástroj pracovat. 54

55 Nástroj Creepy slouţí k automatizovanému extrahování metadat (v tomto případě údajů o poloze) z příspěvků a fotografií na Twitter a Flickr. Pro fungování nástroje je nutné, aby daný uţivatel u svých příspěvků funkci zveřejňování informací o poloze nezakázal (nebo aby neodstranil metadata z vloţených fotografií). 55

56 5.6 Údaje o uživatelích Scythe: Account enumerator Webové stránky: https://github.com/chrisjohnriley/scythe Nástroj Scythe umoţňuje ověření existence registrovaných účtů dle uţivatelských jmen nebo ových adres (user enumeration). Nástroj je napsán v programovacím jazyce Python a obsahuje upravitelné moduly, jejichţ struktura je napsána v XML. Tento nástroj byl představen na konferenci BRUCON 2012 a jeho autorem je Chris John Riley. Zdrojový kód je volně dostupný na úloţišti Github. Přehled výchozích modulů dle kategorií: blogy, aukční a obchodní portály, vývojářské sluţby pro sdílení zdrojového kódu, diskusní fóra, online hry, sociální média, ové sluţby. Obrázek 12 - nástroj Scythe zpracovávající dotaz (v tomto případě "bivs") zdroj: autor 56

57 Použití nástroje Scythe Nástroj Scythe lze pouţívat jak pod platformou MS Windows, tak pod Linux, resp. jde o skript v jazyce Python nezávislý na platformě. V případě pouţití ve Windows je doporučena také instalace doplňku Colorama pro barevné zobrazení výstupu. Spuštění nástroje probíhá prostřednictvím příkazové řádky s následujícími moţnostmi: Parametry: výběr seznamu uţivatelů nebo uvedení konkrétního uţivatelského jména nebo e- mailu, výběr jednoho čí více modulů, případně výběr všech modulů z některé kategorie výběr počtu vláken (threads), nastavení doby čekání a počtu opakování pokusu v případě chybové hlášky, nastavení výstupu do konzole nebo do souboru, moţnost spuštění debugging módu. -a [soubor s uživatelskými jmény] -u [už. jméno] více jmen oddělit čárkou, bez mezer) -l zobrazení dostupných modulů -m [složka] vybraná sloţka s moduly -s [modul] výběr konkrétního modulu -c [kategorie] výběr pouze určité kategorie modulů -t [počet] maximální počet vláken -w [počet sekund] prodleva mezi jednotlivými pokusy -retrytime [počet sekund] počet opakovaných pokusů (mezi jednotlivými pokusy je vţdy dvojnásobně dlouhá prodleva) --summary zobrazení detailního výstupu před ukončením skriptu -o [název souboru]uloţení výstupu do souboru Příkaz pro ověření, zda jsou pod uţivatelskými jmény uloţenými v souboru jmena.txt registrovány profily na sociální síti Facebook: scythe.py s facebook.com a jmena.txt Vzorový modul v XML s metodou GET Níţe uvedený zdrojový kód v XML umoţňuje provedení dotazu metodou GET s dotazem na server ebay.com. Dotaz vyhledává existenci uţivatelského jména obsaţeného v následujícím URL na místě <ACCOUNT>: V případě, ţe odpověď serveru bude odkazovat slovní spojení ve tvaru Feedback score: uvedenou v <successmatch>, bude uţivatelské jméno vyhodnoceno jako existující. V případě, ţe se v odpovědi serveru objeví věta The User ID you entered was not found. uvedená v <negativematch>, bude uţivatelské jméno vyhodnoceno jako neexistující. 57

58 <module> <site> <name>ebay.com (Username)</name> <url><![cdata[http://www.ebay.com/usr/<account>]]></url> <method>get</method> <postparameters></postparameters> <headers>accept-language: en-gb</headers> <requestcookie>false</requestcookie> <requestcsrf>false</requestcsrf> <successmatch>feedback score:</successmatch> <negativematch>the User ID you entered was not found.</negativematch> <date>10/12/2012</date> <version>1</version> <author>jaime Filson aka WiK</author> <category>commerce</category> </site> </module> Vzorový modul v XML s metodou POST: V případě modulu obsahujícím metodu POST probíhá dotazování zasláním řetězce s parametry (v tomto případě přihlašovacími údaji) na URL daného serveru (v níţe uvedeném příkladu se jedná o Wordpres.com). Dojde k otestování přihlašovacích údajů dle definovaného uţivatelského jména a náhodného řetězce znaků místo hesla. V případě existence daného účtu se v odpovědi serveru objeví věta definovaná v <successmatch>: The password you entered for the or username. V případě neexistence je vrácena odpověď uvedená v <negativematch>: Invalid or username. V případě testování více uţivatelských jmen můţe dojít k vyvolání chybové hlášky, která je popsána v <errormatch>: You have exceeded the login limit. V takovém případě dojde k ukončení spojení a uvedení chybného pokusu v souboru výstupu. <module> <site> <name>wordpress.com</name> <url><![cdata[https://wordpress.com/wplogin.php]]></url> <method>post</method> <postparameters><![cdata[log=<account>&pwd=<random>&testcooki e=1&redirect_to=http%3a%2f%2fwordpress.com%2f&submit=]]></pos tparameters> <headers></headers> <requestcookie>false</requestcookie> <requestcsrf>false</requestcsrf> <successmatch>the password you entered for the or username</successmatch> 58

59 <negativematch>invalid or username</negativematch> <errormatch>you have exceeded the login limit</errormatch> <date>13/09/2012</date> <version>2</version> <author>cjr</author> <category>blogs</category> </site> </module> Obdobným způsobem lze poměrně jednoduchým způsobem definovat v XML další vlastní moduly. Pokud bychom například chtěli vytvořit modul s metodou GET, dotazující se na existenci profilu na české sociální síti Lide.cz Definice vlastního modulu v XML s metodou GET Tento modul jednoduchým způsobem ověří existenci uţivatelského profilu na sociální síti Lidé.cz (www.lide.cz). Profily na lide.cz jsou vţdy ve tvaru (přičemţ jmeno bude nahrazeno řetězcem <ACCOUNT> <url><![cdata[http://www.lide.cz/<account>]]></url> Při existenci profilu a zadání správné adresy se profil zobrazí. Je tedy nutné vybrat určitý řetězec, který je viditelný u všech profilů, ale není viditelný v případě neexistujícího profilu a ten označit tagem <successmatch>. V tomto případě by řetězec vypadal například takto: <successmatch>adresa profilu</successmatch> V případě neexistujícího uţivatelského jména se objeví jedna ze dvou moţných chybových hlášek: Hledaný uživatel xxx nebyl nalezen nebo Uživatel xxx nechodí na Lidé.cz. Kontrola existence účtu by tedy proběhla porovnáním obsahu stránky s řetězcem uvedeným v tagu <negativematch>: <negativematch>nebyl nalezen</negativematch> <negativematch>nechodí</negativematch> 59

60 5.6.2 The Harvester Webové stránky: The Harvester je nástroj napsaný v jazyce Python umoţňující vyhledávání ových adres nacházejících se na určité doméně. Tento nástroj dále umoţňuje vyhledání subdomén a virtuálních hostů pro určitou doménu. Vyhledávání probíhá pasivním nebo aktivním způsobem. Získávání ových adres probíhá vyhledáváním nad výsledky vyhledávání z různých (Google, Bing, Bing API, PGP key server, Linkedin, Google Profiles, People123, Jigsaw). Výstup je moţné zobrazit v konzoli nebo uloţit ve formátu XML či HTML. Nástroj The Harvester je součástí linuxové distribuce BackTrack. Příklad použití -d doména, v rámci které proběhne vyhledávání nebo název společnosti -b zdroje vyhledávání (google, bing, bingapi, pgp, linkedin, google-profiles, people123, jigsaw, all) -s vyhledávání aţ od určitého nalezeného výsledku (výchozí nastavení je 0) -v vyhledávání virtuálních hostů -f uloţení výsledků do HTML nebo XML souboru -n reverzní DNS dotaz na všechny nalezené rozsahy -c DNS dotazování na doménová jména hrubou silou -e uţití konkrétního DNS serveru -l omezení počtu výsledků, se kterými bude pracováno -h pouţití databáze Shodan pro dotazování na nalezené výsledky Příklad pro sběr ů na doméně v prvních 200 výsledcích vyhledávání ve všech zdrojích, které jsou k dispozici: theharvester.py d bivs.cz l 500 b all Obrázek 13 shrnutí výstupu nástroje The Harvester 2.2 pro y na doméně zdroj: autor 60

61 5.6.3 Web Data Extractor Webové stránky: Web Data Extractor je desktopový nástroj určený k nalezení, resp. extrahování kontaktních údajů z vybraných webových stránek. Vyhledávání funguje prostřednictvím vyhledávačů. Jiţ ve výchozím nastavení je k dispozici velké mnoţství vyhledávačů rozdělených do kategorií dle jednotlivých zemí. Uţivatel můţe jednoduše přidat další vyhledávače a rozšířit tím funkcionalitu nástroje. Lze také upravit některá pravidla pro rozpoznávání a extrahování obsahu (např. slova pouţívaná ve spojitosti s telefonním nebo faxovým číslem apod.). Nástroj Web Data Extractor obsahuje několik modulů, které umoţňují vyhledávání následujících informací: modul URL (pro získávání URL adresa), modul Meta Tag (získávání meta tagů ze zdrojového kódu webové stránky), modul Body (vyhledávání v textu v těle zdrojového kódu webové stránky), modul (vyhledávání ů), modul Phone/Fax (vyhledávání telefonních a faxových čísel). Nástroj Web Data Extractor existuje ve verzích 8.3 a Pro. Verze Pro nabízí navíc především zpracování neomezeného objemu dat a vylepšené rozpoznávání telefonních a faxových čísel. Cena nástroje Web Data Extractor 8.3 se liší dle zvolených modulů nástroje (URL, Meta Tag, Body Extractor, , Phone / Fax). Varianty obsahující pouze modul pro f-mail nebo moduly pro telefonní a faxová čísla stojí 89 USD; varianta obsahující modul pro extrakci Meta tagů a textu z těla webových stránek stojí 99 USD; varianta obsahující všechny moduly stojí 149 USD. Nástroj Web Data Extractor Pro 2.1 je k dispozici pouze v jedné variantě za cenu 199 USD. 61

62 5.6.4 Link Extractor Nástroj Extract Link, vyvinutý společností Spadix, vyhledává a extrahuje odkazy (HTTP, FTP, y, telefonní a faxová čísla) z libovolného lokálně uloţeného souboru (HTML, kancelářské dokumenty, EXE, archivy ZIP apod). Vhodné je pouţití s některým z nástrojů pro kopírování webových stránek. Link Extractor vyvinula společnost Spadix. K dispozici je trial verze zdarma, cena plné verze činí 49 USD. Jedná se o desktopovou aplikaci. Testována byla verze 4.0. Výstup je moţné uloţit do textového souboru nebo do tabulky v MS Excel. V této podobě jej následně lze naimportovat do některého databázového nástroje pro další zpracování. Obrázek 14 - pracovní prostředí nástroje Extract Link zdroj: autor 62

63 5.6.5 Zjištění IP uživatele Skype Skype slouţí k provozování internetové telefonie (VoIP) a videohovorů a Instant messaging včetně přenosu souborů. Jeho autory jsou Niklas Zennström a Janus Friis, tvůrci populárního softwaru Kazaa. Země původu je Estonsko. [31] V květnu 2011 byl Skype zakoupen společností Microsoft. [32] V dubnu 2012 zveřejnil uţivatel Pavel Zhovner na úloţišti Github nástroj a postup umoţňující zjištění IP adresy posledního připojení libovolného uţivatele komunikačního nástroje Skype. V dubnu 2012 byla také spuštěna webová aplikace umoţňující zjištění IP adresy uţivatelů prostřednictvím webového rozhraní. Pro zjištění IP adresy uţivatelů však bylo nutné pouţít neoficiální verzi Skype umoţňující spuštění ladícího módu. Protoţe takový zásah do zdrojového kódu programu porušuje licenční podmínky Skype (resp. vlastníka Skype společnosti Microsoft) byla tato upravená verze na výzvu společnosti Microsoft dne z webového úloţiště Github odstraněna. Z důvodu výše uvedeného porušování licenčních podmínek společnosti Microsoft není v této práci uveden odkaz na stránky původního projektu. Dle vyjádření společnosti Sophos je moţnost odhalení poslední známé IP adresy libovolného uţivatele známa společnosti Skype jiţ od listopadu [33] Zjištění IP adresy bylo umoţněno při otevření karty libovolného kontaktu, kdy se v komunikaci se serverem objevila i IP adresa uţivatele v případě ţe byl daný uţivatel právě online (nebo pokud byl přihlášen v poslední době, řádově několika dnech). V případě, ţe uţivatel nebyl delší dobu online, nebylo moţné zjistit poslední IP adresu. V případě, ţe byl uţivatel přihlášen na více zařízeních současně nebo na dvou různých IP adresách v krátkém časovém rozmezí, zobrazily se poslední dvě IP adresy. Záznamy o IP adresách byly uloţeny v logovacím souboru, který byl však velice obsáhlý a proto byl zveřejněn také skript v jazyce Perl umoţňující vyhledání konkrétního řetězce obsahujícího externí i interní IP adresu uţivatele v rámci logovacího souboru. V kombinaci s dohledáním informací o dané IP adrese (např. prostřednictvím lze získat informace o ISP, lokalitě (Země, Město) a interní IP adrese posledního připojení daného uţivatele. IP adresa můţe být pevná, přidělená danému počítači na stálo ze strany poskytovatele internetových sluţeb (ISP) nebo dynamická, která se v čase mění. 63

64 Ze získané IP adresy lze pomocí různých nástrojů zjistit některé údaje o jejím uţivateli (resp. o jeho počítači). Z IP adresy lze dále zjistit DNS jméno, lokalitu (země, kraj, město, PSČ), časové pásmo, údaje o poskytovateli internetové sluţby (ISP) pro danou IP adresu. Dále je moţno sledovat směrování, resp. trasu vedoucí od aktuálního počítače k počítači s danou IP adresou. Vyhledávání údajů o IP adrese lze provést pomocí k tomu určených nástrojů typu Whois (např. Whois.net nebo v databázích RIPE či APNIC) nebo prostřednictvím některých speciálních aplikací. Například program Avast Internet Security umoţňuje přehledné a graficky zpracované vyhledávání informací o IP adrese, včetně trasování. Existují moţnosti, jak svou reálnou IP adresu skrýt, ať uţ z důvodu prosté ochrany soukromí nebo z důvodu zakrytí nevhodné či nelegální činnosti na internetu. Mezi nejběţnější metody patří uţití sluţby TOR (The Onion Routing), anonymní šifrované VPN (Virtual Private Network), nebo připojení prostřednictvím anonymní proxy Srovnání Obecné srovnání Scythe The Harvester Web Data Extractor Link Extractor Typ aplikace OS Cena Dokumentace Skript (Python) Skript (Python) Desktopová aplikace Desktopová aplikace Nezávislé na OS Nezávislé na OS Windows Windows Zdarma Zdarma $89 až $199 (dle verze) Trial verze zdarma $49 Trial verze zdarma Ano (základní) Ne Ano Ne Tabulka 4 - obecné srovnání nástrojů Scythe, The Harvester, Web Data Extractor a Link Extractor zdroj: autor 64

65 V této kategorii nástrojů nelze přímým způsobem srovnat funkcionalitu, neboť kaţdý nástroj slouţí k odlišnému účelu nebo funguje na jiném principu. Nástroj Scythe umoţňuje zjistit existenci uţivatelských účtů a profilů dle zadaného uţivatelského jména nebo u. Jiţ ve výchozím nastavení je k dispozici velké mnoţství (převáţně zahraničních) sluţeb (sociální média, blogy, diskusní fóra, y apod.) v rámci kterých jsou uţivatelská jména vyhledávána. Uţivatel si můţe nadefinovat vlastní moduly a tím rozšířit funkcionalitu nástroje. Nástroj The Harvester umoţňuje získání seznamu ových adres na určité doméně. Vyhledávání funguje prostřednictvím extrakce údajů z výsledků vyhledávání v různých vyhledávačích. Web Data Extractor je desktopový nástroj určený k nalezení, resp. extrahování kontaktních údajů z vybraných webových stránek. Vyhledávání funguje prostřednictvím vyhledávačů rozdělených dle států jejich původu. Uţivatel můţe nadefinovat vyhledávání prostřednictvím dalších vyhledávačů. Ve funkci pro vyhledávání ů se jedná o konkurenta nástroje TheHarvester. Web Data Extractror nabízí moţnosti rozšířeného nastavení. Pro zjištění maximálního moţného počtu ů je vhodné pouţít oba zmíněné nástroje, neboť kaţdý pouţívá odlišné zdroje hledání a výsledky se tak mohou lišit. Link Extractor vyhledává a extrahuje odkazy (HTTP, FTP, y, telefonní a faxová čísla) z libovolného lokálně uloţeného souboru. Nástroj tedy neumoţňuje vyhledávání v online internetových zdrojích a je vhodný pro pouţití například s nástroji pro kopírování obsahu webových stránek (website mirroring). 65

66 5.7 Monitoring sociálních médií Sociální média (zejména Facebook, Twitter, Youtube, Google Plus) včetně takových typů médií jako jsou diskusní fóra či blogosféra patří mezi velmi významné zdroje informací, vzhledem k mnoţství údajů, příspěvků a komentářů, které na nich lidé sdílí. Sociální sítě zastávají stále významnější roli v oblasti OSINT, přesto, ţe cílené vytěţování údajů ze sociálních sítí můţe být v některých případech v rozporu s podmínkami provozovatelů těchto sluţeb. Vytěţování sociálních sítí však stojí v popředí zájmu mnoha firem, zejména z důvodu získávání údajů pro marketingové účely a z důvodu monitorování příspěvků na určité téma (např. nový produkt). V této souvislosti je také pouţívána analýza sentimentu, nicméně přes mnoho pokusů o kvalitní analyzování sentimentu není tato metoda v současnosti spolehlivá a má spíše orientační charakter. V českých podmínkách je v současné době s výraznou převahou nejčastěji pouţívanou sociální sítí Facebook. Jak je vidět na následujícím grafu Google Trends, získal Facebook převahu nad ostatními sítěmi aţ v průběhu roku 2009, kdy předběhl sítě Spoluzaci.cz, Libimseti.cz a Lide.cz. Pozici nejpouţívanější sociální sítě si od té doby s přehledem udrţel a návštěvnost zůstává od roku 2011 přibliţně na stejné úrovni. Zájem o ostatní zmíněné sociální sítě naopak od roku 2011 klesá. Zajímavostí je výrazný pokles zájmu o síť Spoluzaci.cz, coţ mimo jiné poukazuje na současný trend růstu věkového průměru uţivatelů sociálních sítí, především sítě Facebook (tito uţivatelé tedy nemají potřebu dále navštěvovat sít Spoluzaci.cz). S tím souvisí rostoucí význam sociálních sítí právě pro oblast vyhledávání informací, neboť uţívání těchto sítí jiţ není výsadou mládeţe. Do srovnání je zařazena také sluţba Youtube.com, která však není typickou sociální sítí, protoţe cíl návštěvy je zde primárně jiný. Přesto však lze i Youtube zařadit mezi určitý typ sociální sítě, vzhledem k existenci profilů a moţnosti komunikace a další interakce mezi jednotlivými uţivateli. Z grafu je patrná vysoká obliba této sluţby v ČR. Obrázek 15 - srovnání návštěvnosti sociálních sítí prostřednictvím Google Trends zdroj: autor 66

67 Dle studie Centra Simona Wiesenthala vzrostlo v roce 2009 o 20 % uţívání sociálních sítí jako Facebook, Twitter a YouTube pro účely extremistických a teroristických skupin a organizací. [34] Nástroje a metody umoţňující monitorování sociálních médií lze roztřídit do několika kategorií: Integrovaná možnost vyhledávání Většina sociálních sítí umoţňuje (i kdyţ jen v omezené míře) vyhledávání uţivatelů a příspěvků. Nejedná se však o systematické vyhledávání, které by umoţnilo automatizovaný plošný sběr údajů a informací pro další zpracování. V případě hledání konkrétní informace ale můţe být tento způsob dostačující. V některých případech (např. na síti Facebook) můţe naduţívání integrovaného vyhledávání vést k dočasnému pozastavení této moţnosti. API rozhraní jednotlivých sociálních sítí API (Application Programming Interface) označuje rozhraní pro vyuţití dané sluţby v jiném prostředí a pouţívá se pro integraci s dalšími nástroji. Některé sociální sítě nabízí vlastní API, které lze vyuţít i pro vyhledávání obsahu těchto sítí. Existující API pro integraci se sociálními sítěmi: Facebook Open Graph API, Google Custom Search API, Twitter API, Google+ API. Komerční služby pro monitorování sociálních médií Jde o nástroje, které agregují příspěvky ze sociálních médií a umoţňují sledování určitého tématu, nejčastěji se zaměřením na monitorování povědomí o určité společnosti nebo produktu. Pro monitorování českých a slovenských sociálních médií jsou v ČR dostupné například tyto sluţby: Klábosení, BuzzBoot, Ataxo Social Insider. 67

68 Webové nástroje pro monitorování sociálních sítí v reálném čase Jedná se o nástroje umoţňující vyhledávání ve více sociálních médiích současně: Social Mention: Addictiomatic: Whos Talkin: Kurrently: Uvrx: Veooz: (www.socialmention.com), (www.addictomatic.com), (www.whostalkin.com), (www.kurrently.com), (www.uvrx.com), (www.veooz.com). Webové nástroje pro průběžné monitorování médií a sociálních médií Jedná se o nástroje umoţňující kromě vyhledávání v reálném čase také vyhledávání v určitém časovém úseku v minulosti. Nabízejí také větší mnoţství zdrojů (nejen sociální média, ale také příspěvky z vybraných médií a blogosféry). Tyto nástroje také umoţňují tvorbu sofistikovanějších dotazů neţ pouhé zadání klíčového slova či fráze. SiloBreaker: (www.silobreaker.com), Recorded Future: (www.recordedfuture.com). Desktopové aplikace pro monitorování sociálních médií Nástroje slouţící k monitorování sociálních médií, extrahování příspěvků a jejich kategorizaci dle klíčových slov a jejich vah. Ukládání příspěvků probíhá v rámci lokální databáze. Spicy Mango: (www.code.google.com/p/spicymango) 68

69 5.7.1 Recorded Future Webové stránky: https://www.recordedfuture.com/ Nástroj Recorded Future extrahuje informace z více neţ otevřených internetových zdrojů. Pomocí nástroje je moţné vyhledávání a grafická vizualizace získaných informací. U příspěvků je aplikována analýza sentimentu. Z příspěvků jsou také extrahovány některé entity, jejichţ vzájemné vztahy lze zobrazit prostřednictvím síťového grafu. Nástroj dále umoţňuje prediktivní analýzu, na základě které jsou odhaleny trendy moţného budoucího vývoje událostí. Mezi zákazníky pouţívající tento nástroj patří dle firemního profilu na Linkedin například některé vládní organizaci či vůdčí společnosti v oblasti finančních trhů a dalších významných komerčních společností. Do vývoje nástroje investovala například společnost Google nebo CIA. [35] Pro pouţití nástroje zdarma je nutná registrace. Při registraci je zvolena primární oblast zájmu pro uţívání nástroje. K dispozici je také placená verze Professional Edition v ceně 1599 USD/rok. Verze Proffesional Edition nabízí pokročilé moţnosti analýzy událostí, entit, lokalit a časových období. Dále je umoţněno selektivní sdílení a export do PNG, PDF,PPT,HTML a CSV souborů. Za cenu 9000 USD/měsíc je k dispozici vývojářská varianta Developer Edition umoţňující neomezený přístup k datům prostřednictvím API a integraci sluţby do jiného nástroje. Obrázek 16 - pracovní prostředí nástroje Recorded Future (časová osa) zdroj: autor 69

70 Pracovní plocha nástroje obsahuje 3 sekce: Gallery V sekci Gallery je zobrazena nabídka výstupů od ostatních uţivatelů na základě zvolené oblasti zájmu. My Work Vlastní pracovní prostředí pro tvorbu a procházení vlastních výstupů. Tato sekce obsahuje také moţnost sdílení výstupů s dalšími uţivateli. Analyze Sekce pro analýzu umoţňuje práci se získanými daty a tvorbu vlastních vizualizací a reportů. Report zahrnuje souhrn analytického pohledu, anotací a komentářů. Obrázek 17 - pracovní prostředí nástroje Recorded Future (geografické zobrazení) zdroj: autor 70

71 5.7.2 SiloBreaker Webové stránky: Silobreaker je společnost, která vznikla v roce 2005 a zaměřuje se na vývoj technologie a produktů pro agregování, analyzování a kontextualizaci informací. Silobreaker provádí extrakci informací z velkého mnoţství otevřených internetových zdrojů a jejich následnou sémantickou analýzu. V nalezených datech lze dále vyhledávat, filtrovat je a dále analyzovat. Agregovány jsou jak tradiční internetové zdroje, tak sociální média. Kromě internetových zdrojů lze do nástroje importovat také vlastní data. Extrahování entit je zaměřeno na osoby, společnosti, události a místa. Nástroj také umoţňuje odhalení trendů v rámci aktuálních zpráv. Dashboard uţivatele lze sdílet s ostatními uţivateli. Nástroj umoţňuje zasílání upozornění na významné události e- mailem, exportování výstupů do aplikací třetích stran nebo tvorbu RSS kanálů. Nástroj Silobreaker je nabízen ve verzi Premium v ceně 299 USD / měsíc. Variantu Silobreaker Premium lze vyzkoušet v trial verzi zdarma po zaregistrování uţivatelské účtu. Existuje také odlehčená varianta Silobreaker News Search, která byla spuštěna v roce 2008 a je nabízena zdarma, nicméně má pouze omezenou funkcionalitu oproti verzi Premium. Obrázek 18 - schéma postupu zpracování informací v nástroji Silobreaker zdroj: 71

72 5.7.3 Spicy Mango Webové stránky: Nástroj Spicy Mango slouţí k monitorování sociálních médií, extrahování příspěvků a jejich kategorizaci dle klíčových slov a jejich vah. Ve výchozím nastavení je k dispozici monitorování Facebooku, Twitteru, RSS kanálů, IRC kanálů a ze schránky na Gmail. Je moţné nainstalovat a přidat další vlastní moduly a tím ještě zvýšit pouţitelnost tohoto nástroje. Nástroj vyvinul Chris Centore a představil jej na konferenci DerbyCon Aktuálně je k dispozici beta verze, kterou lze zdarma stáhnout na webových stránkách projektu. Princip fungování tohoto nástroje je poměrně jednoduchý data jsou v nastavitelných časových intervalech a v určeném počtu vláken extrahována z vybraných informačních zdrojů a ukládána do lokální databáze. Extrahovány jsou všechny příspěvky obsahující klíčové slovo (nebo více slov) definované v konfiguračním souboru. Pro třídění příspěvků lze vyuţít systém rozdělení příspěvků do několika kategorií dle významnosti. Ze všech nalezených příspěvků jsou vybrány takové, které navíc obsahují některá z dalších zvolených klíčových slov mající nadefinovanou váhu. Hodnoty vah se sčítají a na základě celkové váhy jsou příspěvky tříděny na události s vysokou, střední a nízkou prioritou. Zobrazení příspěvků a jejich rozdělení do kategorií dle významnosti je moţné prostřednictvím webového rozhraní běţícím na lokálním serveru. Obrázek 19 - Dashboard nástroje SpicyMango zdroj: autor 72

73 Obrázek 20 - panel zobrazující průběžné výstupy v nástroji Spicy Mango zdroj: autor Srovnání Nástroje Recorded Future a Silobreaker mají velmi podobné zaměření i funkce. Mezi hlavní funkce obou srovnávaných nástrojů patří automatizovaný sběr velkého mnoţství otevřených internetových zdrojů (které zahrnují nejen sociální média, ale také klasické zpravodajské servery). Nad nalezenými daty probíhá analýza, která zahrnuje automatické rozpoznání entit a grafické znázornění výsledků. Nástroj Recorded Future i Silobreaker umoţňují zobrazení nalezených příspěvků a témat na časové ose, na mapě, jako síťový graf extrahovaných entit. Zásadnější rozdíl mezi oběma nástroji tedy spočívá v rozdílných informačních zdrojích, které jsou pouţity (v obou případech jde řádově o stovky tisíc zdrojů). Obě společnosti také pouţívají vlastní systém a algoritmy pro zpracování a analýzu textu. Kombinace rozdílných informačních zdrojů a odlišných algoritmů pro jejich zpracování můţe tedy vést k rozdílným výsledkům při pouţití obou nástrojů. Nástroj Spicy Mango je oproti výše uvedeným nástrojům velmi jednoduchý. Umoţnuje vyhledávání pouze v několika informačních zdrojích (Twitter, Facebook, IRC kanály, RSS kanály nebo ová schránka na Gmail). Výhodou je snadná instalace a jednoduchá obsluha nástroje. Při zvolení vhodné kombinace klíčových slov a jejich vah umoţňuje také jednoduchou kategorizaci nalezených příspěvků dle jejich významnosti. Jedná se o velmi jednoduchý, ale silný nástroj pro monitorování sociálních sítí v reálném čase, například při monitorování určité aktuální události. 73

74 5.8 Komplexní nástroje pro OSINT Paterva Maltego Webové stránky: Paterva Maltego je účinný komplexní nástroj pro oblast Open Source Intelligence a forenzní analýzy. Umoţňuje získávání informací a jejich následnou prezentaci v přehledné grafické podobě. Společnost Paterva je soukromá společnost se sídlem v Jihoafrické republice zaloţená v roce Produkt Maltego byl zprovozněn v květnu Testována byla verze Maltego Radium ve variantě Commercial Edition. Aplikace je zaloţena na platformě Java a je k dispozici pro operační systémy Windows, Linux a Mac OS. Nástroj je k dispozici ve variantě Community Edition s omezenou funkcionalitou zdarma nebo ve verzi Commercial Edition v ceně 650 USD/rok. Paterva Maltego umoţňuje vyuţití přednastavených transformací pro získávání dat či tvorbu vlastních, tzv. lokálních transformací (Local Transformation) nezávislých na základním serveru Maltego. Pro jejich tvorbu je doporučen programovací jazyk Python. Od verze s kódovým označením Maltego Radium je k dispozici nová funkce Machine umoţňující automatické spuštění několika navazujících transformací. Maltego umoţňuje vyhledávat a analyzovat vztahy mezi těmito entitami: osoby, skupiny osob (sociální sítě), společnosti, organizace, webové stránky, síťová a internetová infrastruktura, o domény, o DNS jména, o Netblocks, o IP adresy, fráze, dokumenty a soubory. V současné verzi je do základní funkcionality začleněno i vyhledávání v rámci sociálních sítí Twitter, MySpace a Flickr a dále v příspěvcích vloţených na Pastebin. Tento nástroj se tedy hodí pro grafickou analýzu vztahu jednotlivých uţivatelů sociálních sítí a umoţňuje vytvořit mapu těchto vztahů v několika různých pohledech. V minulosti bylo moţno analyzovat i síť Facebook, ale vzhledem k podmínkám uţívání této sítě, které takové 74

75 jednání nepovolují, byla tato funkce odstraněna. Stále je ale tato funkce předpřipravena a program obsahuje příslušné ikony v základní paletě nástrojů. Maltego je také velmi vhodným nástrojem pro grafickou analýzu síťové infrastruktury. V rámci neoficiálního rozšíření s názvem Sploitego lze tento nástroj vyuţít také jako grafickou platformu pro penetrační testování. Obrázek 21 - pracovní plocha nástroje Paterva Maltego zdroj: autor 75

76 5.8.2 Netglub Webové stránky: Netglub je freewarový nástroj umoţňující získávání informací a jejich následnou prezentaci v přehledné grafické podobě, podobně jako komerční nástroj Paterva Maltego. Právě nástrojem Paterva Maltego je Netglub výrazně inspirován a představuje vzhledem i funkcionalitou odlehčenou verzi Maltega. Netglub byl vytvořen v roce 2010 a od té doby nebyl dále vyvíjen. Testována byla verze Netglub 1.0. Nástroj Netglub je k dispozici pouze pro Linux. Instalace je poměrně náročná, vyţaduje instalaci několika knihoven a dále pak instalaci Master a Slave modulů Netglub. Funkcionalita nástroje Netglub je zaměřena především na mapování a grafické znázornění síťové infrastruktury a dále na vyhledávání osob, ů a frází na internetu. Výstupem je grafické znázornění nalezených údajů. Další transformace lze vytvořit v jazyce Python či PHP a následně implementovat do nástroje Netglub. Výchozí transformace nástroje Netglub: Síťová infrastruktura DNS jména, domény, IP adresy, IP podsítě, MX záznamy, NS záznamy, URL, Osobní údaje ová adresa, osoba, fráze. 76

77 Obrázek 22 - pracovní prostředí nástroje Netglub zdroj: autor Srovnání Obecné srovnání Cena OS Instalace Možnost přizpůsobení Dokumentace Technická podpora Uživatelské rozhraní v češtině Export výsledků Paterva Maltego $650 / 1. rok $320 / každý další rok Windows, Mac OS X, Linux Ano Ano Ano Ano Ne Ano Netglub Zdarma Linux Ano Ano Ne Ne Ne Ano Tabulka 5 - obecné srovnání nástrojů Paterva Maltego a Neglub zdroj: autor Nástroj Netglub je odlehčenou kopií nástroje Paterva Maltego. Oba nástroje na první pohled nabízí velmi podobné pracovní prostředí. Oba nástroje také nabízí sadu výchozích transformací nebo moţnost pouţití vlastních transformací a propojení s existujícími API dalších sluţeb. Výhodou nástroje Neglub je distribuce zdarma, nevýhodou je pak poměrně náročná instalace (k dispozici je verze pouze pro OS Linux). Netglub nemá k dispozici dokumentaci, pouze základní informace na webových stránkách projektu. Netglub neposkytuje support a nebyla zatím vydána ţádná aktualizace. Jedná se o vhodnou volbu pro vývojáře, kdy je moţno vyuţít otevřeného zdrojového kódu pro vytvoření vlastních rozšíření tohoto nástroje. 77

78 Nástroj Paterva Maltego je komerční nástroj v ceně 650 USD/rok. Jedná se v současnosti o jeden z nejoblíbenějších nástrojů pro pouţití v oblasti OSINT. Maltego je dostupné pro OS Windows, Mac OS X a Linux. Instalace nástroje je velmi snadná. Nástroj nabízí ve výchozím nastavení více transformací neţ Netglub (ale oba nástroje umoţňují vytvořit vlastní transformace). Pouţití nástroje Maltego je oproti Netglub komfortnější. Nástroj Maltego je společností často aktualizován a stále jsou vyvíjeny nové funkce. 78

79 5.9 Pokročilá analýza textu Copernic Summarizer Webové stránky: Copernic Summarizer slouţí ke shrnutí textu, tedy k jeho automatizovanému zkrácení a k detekci významných částí daného textu. Nástroj umoţňuje extrahování textů z webové stránky nebo z importovaného dokumentu. Ze získaného textu jsou pomocí technologie WebEssence automaticky odstraněny nerelevantní části (jako například text v navigačním panelu stránky, reklamní texty apod.). Nástroj pracuje s texty v anglickém, německém francouzském a španělském jazyce. Na základě četnosti jsou definována nejvýznamnější klíčová slova v daném textu, dále uţivatel vybere rozsah zkráceného textu (v rozmezí 5 % aţ 50 % původní délky textu nebo 100 aţ 1000 slov). Nástroj nenabízí moţnosti textového editoru, takţe výsledky shrnutého textu nelze dále upravovat. Výstup lze exportovat do souboru ve formátu HTML, XML, DOC nebo TXT. Součástí nástroje je také doplněk Copernic LiveSummarizer umoţňující práci s textem přímo v okně prohlíţeče Internet Explorer. Plná verze Copernic Summarizer je nabízena za cenu 29 USD. K dispozici je také trial verze zdarma. Obrázek 23 - pracovní plocha nástroje Copernic Summarizer zdroj: autor 79

80 5.9.2 Tovek Tools Webové stránky: Tovek Tools je desktopová aplikace pro vyhledávání a analýzu dat vyvinutá českou společností Tovek, s.r.o. Tato aplikace je zaměřena především na zpracování velkého objemu nestrukturovaných dat z různých informačních zdrojů. Jde o specializovaný produkt pro profesionální pouţití a jde o komplexní řešení práce s informacemi a jejich analýzou. Tomu odpovídá i vysoká cena produktu a jeho implementace (konkrétní cenu společnost Tovek na svých webových stránkách veřejně neudává). V současné době je k dispozici verze 6.4. Tento nástroj byl testován v době psaní bakalářské práce, na kterou tato diplomová práce navazuje. Společností Tovek byla tehdy zapůjčena časově omezená licence produktu Tovek Tools Analyst Pack ve verzi Jedná se o velmi silný produkt zejména pro oblast CI. Typickými uţivateli Tovek Tools z komerčního sektoru jsou finanční, auditorské a konzultační instituce a společnosti, výrobní a obchodní firmy či média. Ve státní správě a samosprávě je produkt uţíván především policií, armádou, zpravodajskými sluţbami nebo ministerstvy. Vzhledem k vysoké náročnosti práce s Tovek Tools nabízí společnost Tovek ke svým produktům rozsáhlou produktovou dokumentaci a nabízí moţnost školení. K dispozici je také technická podpora. Z výše uvedeného vyplývá zařazení pro vyuţití vyhledávání informací o osobách. Takovýto komplexní produkt je vhodný například pro vyhledávání informací, souvislostí a vztahů o veřejně známých osobnostech, při napojení Tovek Tools na některou mediální databázi (např. Anopress). Další moţností vyuţití je sofistikovaná analýza rozsáhlých databází, připojených k Tovek Tools prostřednictvím ODBC zdroje. Případně by produkt mohl být pouţit pro analýzu souboru poštovním sloţek ve formátu.pst vyexportovaném z aplikace MS Outlook. Obecně ale Tovek Tools neřeší původ informačních zdrojů, pouze umoţňuje následnou práci s předem připojenými zdroji. 80

81 Varianty produktu Tovek Tools Standardně se produkt Tovek Tools dodává ve dvou variantách Tovek Tools Search Pack a Tovek Tools Analyst Pack, zahrnujících následující aplikace: Tovek Tools Search Pack Index Manager, o umoţňuje připojení informačních zdrojů a jejich následnou ruční či automatickou indexaci, Tovek Agent, o aplikace k vyhledávání dokumentů dle zadaného dotazu. Tovek Tools Analyst Pack Index Manager, Tovek Agent, InfoRating, o umoţňuje kontextovou analýzu dokumentů; výsledek je zobrazen pomocí kontextové matice, diagramu vazeb nebo pomocí grafu, Fulltext Plug-in pro Analyst s Notebook, o napojení na informační zdroje prostřednictvím Tovek Tools a následnou práci s nimi v prostředí Analyst s Notebook, Query Editor, o nástroj k vytváření sloţitějších dotazů ve formě hierarchické struktury pro velmi přesnou formulaci vyhledávacího dotazu, Harvester, o umoţňuje analýzu dokumentů a výběr relevantních slov a jejich vztahů za pouţití statistických metod. Obrázek 24 - Tovek Tools Harvester zdroj: autor 81

82 5.9.3 Cogito semantic technology Webové stránky: Cogito semantic technology je patentovaná technologie vyvinutá italskou společností Expert System S.p.A., která vznikla v roce 1989 a je jedním z předních společností v oblasti vývoje sémantické analýzy a dalších pokročilých metod pro zpracování textu. Produkty společnosti Expert System jsou uţívány v komerční i vládní sféře. Všechny produkty společnost Expert System jsou zaloţeny na zmíněné technologii Cogito semantic technology a jsou zaměřeny především na následující oblasti: analýza rozsáhlých dat přeměna nestrukturovaných dat na strukturovaná rozpoznávání entit v libovolném typu textu automatické pochopení významu slov v souladu s kontextem identifikace skrytých vztahů mezi entitami Produktové portfolio společnosti zahrnuje celkem 7 typů produktů: Cogito intelligence platform o přístup ke strategickým informacím v reálném čase Cogito search explore engine o vyhledávání, analýza a korelace informací Cogito categorizer o kategorizování velkého objemu dokumentů Cogito discover o extrakce dat a metadat z nestrukturovaného textu Cogito semantic tagger o Aplikování sémantiky v Microsoft SharePoint pro efektivnější spolupráci a sdílení informací Cogito answers o sémantická technologie aplikovaná pro péči o zákazníky Cogito studio o vývoj customizovaných sémantických aplikací 82

83 Obrázek 25 - transformace nestrukturovaných dat na strukturovaná pomocí technologie Cogito zdroj: 83

84 5.9.4 Basis Technology Webové stránky: Basis Technology je americká společnost, která vznikla v roce 1995 a zabývá se vývojem nástrojů pro analýzu textů a zpracování velkého objemu dat, monitorování sociálních médií nebo pro forenzní analýzu digitálních dokumentů. Mezi zákazníky patří přes 60 vládních organizací a přes 200 komerčních společností z celého světa. Nástroje společnosti Basis Technology umoţňují velmi pokročilou analýzu textu, která je zaloţena na vlastní platformě Rosette Linguistics Platform. Tato platforma slouţí k transformaci nestrukturovaný text do strukturované podoby a umoţňuje automaticky rozpoznat pouţitý jazyk a kódování, transformovat text do formátu pro další zpracování, provedení lingvistické analýzy, extrahování entit (např. osob, míst a organizací), indexování jmen v odlišných formách hláskování a v různých jazycích a překlad cizích jmen do anglického jazyka. Obrázek 26 - schéma procesu zpracování textu pomocí Rosette Linguistics Platform zdroj: 84

85 5.9.5 Srovnání Nástroj Copernic Summarizer nelze srovnávat s ostatními zmíněnými nástroji, jedná se o nástroj, který se věnuje pouze velmi základní analýze textu a jde o jednoúčelově zaměřený nástroj k automatické sumarizaci textu. Ostatní zmíněné nástroje naopak představují vrchol v oblasti komerčních nástrojů pro pokročilou analýzu textu. Sadu nástrojů Tovek Tools je nutné napojit na kolekce dat, ze kterých nástroj dále provádí hledání a analýzu. Můţe se jednat například o napojení na mediální databázi Anopress nebo o databází připojenou prostřednictvím ODBC. Nástroj Tovek Tools. Nástroj však není primárně určen pro vyhledávání informací z online zdrojů, coţ je také základní rozdíl oproti dalším zmíněným nástrojům. Nástroje pouţívající technologie Cogito semantic technology a nástroje společnosti Basis Technology mají stejné zaměření. Jejich hlavním cílem je automatizovaný sběr velkého mnoţství informačních zdrojů v mnoha různých světových jazycích a následně automatizovaný proces porozumění textu, tedy přesněji rozpoznání významu jednotlivých slov s ohledem na jejich kontext. Oba nástroje také umoţňují automatickou extrakci entit a jejich grafické znázornění. U obou nástrojů je moţná integrace s dalšími informačními systémy nebo aplikacemi. Ceny obou nástrojů jsou velmi vysoké (ale neveřejné). Kvalitu obou uvedených řešení dokazuje fakt, ţe mezi klienty obou firem patří velké mnoţství subjektů z komerční i vládní sféry. 85

86 5.10 Vizuální analýza dat Paterva CaseFile Webové stránky: Paterva CaseFile je desktopová aplikace slouţící k vizuální analýze dat a tvorbě síťových grafů. Jde o nástroj velmi podobný nástroji Paterva Maltego, ale bez moţnosti provádět transformace. Nenabízí tedy moţnost vyhledávání a získávání informací, ale je zaměřen na jejich grafické zpracování a grafickou analýzu. CaseFile slouţí také jako nástroj k odhalení vztahů a vazeb mezi různými typy získaných informací. Jiţ ve výchozím nastavení je k dispozici rozsáhlá databáze ikon, případně lze do programu importovat ikony vlastní. Nástroj je nabízen ve variantě Community Edition zdarma nebo ve verzi Commercial Edition v ceně 200 USD/rok. Obrázek 27 - pracovní plocha nástroje Paterva CaseFile zdroj: autor 86

PRODUKTY. Tovek Tools

PRODUKTY. Tovek Tools jsou desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních zdrojů.

Více

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje

Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje jsou souborem klientských desktopových aplikací určených k indexování dat, vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci s velkým objemem textových

Více

Big data ukážou mapu, TOVEK řekne kudy jít

Big data ukážou mapu, TOVEK řekne kudy jít Řešení pro Competitive Intelligence Big data ukážou mapu, TOVEK řekne kudy jít Tomáš Vejlupek President Tovek 6.11.2015, VŠE Praha TOVEK, spol. s r.o. Výsledek zpracování BIG DATA Jaké cesty k cíli mohu

Více

Tovek Server. Tovek Server nabízí následující základní a servisní funkce: Bezpečnost Statistiky Locale

Tovek Server. Tovek Server nabízí následující základní a servisní funkce: Bezpečnost Statistiky Locale je serverová aplikace určená pro efektivní zpracování velkého objemu sdílených nestrukturovaných dat. Umožňuje automaticky indexovat data z různých informačních zdrojů, intuitivně vyhledávat informace,

Více

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem

Více

7. SEO Nástroje pro analýzu úspěšnosti. Web pro kodéry (Petr Kosnar, ČVUT, FJFI, KFE, PINF 2008)

7. SEO Nástroje pro analýzu úspěšnosti. Web pro kodéry (Petr Kosnar, ČVUT, FJFI, KFE, PINF 2008) 7. SEO Nástroje pro analýzu úspěšnosti Web pro kodéry (Petr Kosnar, ČVUT, Obsah Terminologie Fáze SEO Strategie SEO Key Performance Indicator Analýza klíčových slov AdWords Google Analytics Google Webmaster

Více

Znalostní systém nad ontologií ve formátu Topic Maps

Znalostní systém nad ontologií ve formátu Topic Maps Znalostní systém nad ontologií ve formátu Topic Maps Ladislav Buřita, Petr Do ladislav.burita@unob.cz; petr.do@unob.cz Univerzita obrany, Fakulta vojenských technologií Kounicova 65, 662 10 Brno Abstrakt:

Více

FlowMon Vaše síť pod kontrolou

FlowMon Vaše síť pod kontrolou FlowMon Vaše síť pod kontrolou Kompletní řešení pro monitorování a bezpečnost počítačových sítí Michal Bohátka bohatka@invea.com Představení společnosti Český výrobce, univerzitní spin-off Založena 2007

Více

PŘÍLOHA C Požadavky na Dokumentaci

PŘÍLOHA C Požadavky na Dokumentaci PŘÍLOHA C Požadavky na Dokumentaci Příloha C Požadavky na Dokumentaci Stránka 1 z 5 1. Obecné požadavky Dodavatel dokumentaci zpracuje a bude dokumentaci v celém rozsahu průběžně aktualizovat při každé

Více

č. 4/8 - Elektronická podpora výuky a vědeckého působení v oblasti práva a bezpečnosti

č. 4/8 - Elektronická podpora výuky a vědeckého působení v oblasti práva a bezpečnosti Elektronický časopis Právo-Bezpečnost-Informace" ISSN 2336-3657 Anotace: Příspěvek čtenáři poskytuje úvodní seznámení s výstupem dílčího výzkumného projektu č. 4/8 - Elektronická podpora výuky a vědeckého

Více

Začínáme s Tovek Tools

Začínáme s Tovek Tools NAJÍT POCHOPIT VYUŽÍT Úvodní seznámení s produktem Tovek Tools JAK SI TOVEK TOOLS NAINSTALUJI?... 2 JAK SI PŘIPOJÍM INFORMAČNÍ ZDROJE, VE KTERÝCH CHCI VYHLEDÁVAT?... 2 JAK MOHU VYHLEDÁVAT V INFORMAČNÍCH

Více

Informace a znalosti v organizaci

Informace a znalosti v organizaci Informace a znalosti v organizaci Vladimíra Zádová Postavení informací a znalostí z hlediska úspěšnosti firmy Vnitřní faktory Rámec 7S faktorů úspěchu firmy [ Mc Kinsey ] Struktura Strategie Systémy Spolupracovníci

Více

SCOPUS a WEB OF SCIENCE

SCOPUS a WEB OF SCIENCE SCOPUS a WEB OF SCIENCE 7. února 2012 Osnova 1. Typy ve vyhledávání v databázi SCOPUS 2. Typy ve vyhledávání v databázi Web of Science 3. Nástroje pro vyhledávání v jednom vyhledávacím prostředí: Metavyhledávače

Více

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR

Microsoft SharePoint Portal Server 2003. Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Microsoft SharePoint Portal Server 2003 Zvýšená týmová produktivita a úspora času při správě dokumentů ve společnosti Makro Cash & Carry ČR Přehled Země: Česká republika Odvětví: Velkoobchod Profil zákazníka

Více

Nástroj pro monitorování a analýzu českého internetu a sociálních médií

Nástroj pro monitorování a analýzu českého internetu a sociálních médií Nástroj pro monitorování a analýzu českého internetu a sociálních médií SOCIAL INSIDER VLASTNOSTI Zachycuje data z Facebooku, Twitteru, Youtube, Google+, stejně jako z tisíců českých a slovenských blogů

Více

j4bporadce.cz prezentace služby

j4bporadce.cz prezentace služby j4bporadce.cz prezentace služby GRANT ADVISOR, spol. s.r.o. Specializovaná společnost pracující v oboru dotačního poradenství - soustředíme se na: monitoring veřejné podpory a provoz informačních produktů

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

Využití informačních technologií v cestovním ruchu P1

Využití informačních technologií v cestovním ruchu P1 Využití informačních technologií v cestovním ruchu P1 Pavel Petr Petr.USII@upce.cz 1 Obsah kurzu Princip vyhledávání Definování vyhledávacích požadavků Vyhledávací nástroje Zdroje informací Nástroje pro

Více

Leady & MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK

Leady & MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK Integrace Microsoft Dynamics CRM s aplikacemi Leady a MERK Strana 1 z 12 Obsah 1. Leady... 3 a. Shrnutí... 3 b. Popis modulu... 3 c. Technické podrobnosti o modulu... 5 2. MERK... 6 a. Shrnutí... 6 b.

Více

Aktivity NBÚ při zajišťování kybernetické bezpečnosti

Aktivity NBÚ při zajišťování kybernetické bezpečnosti Aktivity NBÚ při zajišťování kybernetické bezpečnosti Jaroslav Šmíd Tel.: 420 257 283 333 e-mail: J.Smid@nbu.cz 10.4.2013 1 Zákon o kybernetické bezpečnosti Kritická informační infrastruktura 10.4.2013

Více

STAŇTE SE INFOBROKEREM. Nabídka platformy Tovek pro poskytování individualizovaných informačních služeb prostřednictvím členů ČKDS

STAŇTE SE INFOBROKEREM. Nabídka platformy Tovek pro poskytování individualizovaných informačních služeb prostřednictvím členů ČKDS STAŇTE SE INFOBROKEREM Nabídka platformy Tovek pro poskytování individualizovaných informačních služeb prostřednictvím členů ČKDS Tomáš Vejlupek Naďa Weiserová vejlupek@wellpeg.cz weiserova@tovek.cz AGENDA

Více

JUDr. Štěpán Kalamár, Ph.D. Policejní akademie ČR Praha

JUDr. Štěpán Kalamár, Ph.D. Policejní akademie ČR Praha JUDr. Štěpán Kalamár, Ph.D. Policejní akademie ČR Praha JUDr. Štěpán Kalamár, Ph.D. Katedra managementu a informatiky Fakulta bezpečnostního managementu PA ČR v Praze Na katedře managementu a informatiky

Více

Monitorování datových sítí: Dnes

Monitorování datových sítí: Dnes Monitorování datových sítí: Dnes FlowMon Friday, 29.5.2015 Petr Špringl springl@invea.com Obsah Monitorování datových toků = Flow monitoring Flow monitoring a bezpečnost sítě = Network Behavior Analysis

Více

Kde hledat odborné články?

Kde hledat odborné články? Kde hledat odborné články? Martina Machátová E-mail: machat@mzk.cz Tel.: 541 646 170 Poslední aktualizace: 8. června 2015 The Free Library http://www.thefreelibrary.com/ Obsahuje skoro 25 milionů článků

Více

V čem nám pomáhá datový sklad. Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina

V čem nám pomáhá datový sklad. Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina V čem nám pomáhá datový sklad Ing. Dana Buřičová Odbor analýz a podpory řízení KrÚ Kraje Vysočina Obsah prezentace Odpovědi na otázky k tématu proč to všechno děláme a čemu nám to je? jak to děláme? co

Více

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc.

Big Data a oficiální statistika. Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Big Data a oficiální statistika Unicorn College Open 24. dubna 2015 Doc. Ing. Marie Bohatá, CSc. Obsah příspěvku Charakteristiky Big Data Výzvy a úskalí z perspektivy statistiky Výzvy z perspektivy computing

Více

Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci. Jiří JANOŠEC Technologické centrum AV ČR

Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci. Jiří JANOŠEC Technologické centrum AV ČR Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci Jiří JANOŠEC Technologické centrum AV ČR Technologické centrum AV ČR Sdružení právnických osob založeno v roce 1994 Oddělení TC AV

Více

KYBERNETICKÁ BEZPEČNOST V ARMÁDĚ ČR

KYBERNETICKÁ BEZPEČNOST V ARMÁDĚ ČR KYBERNETICKÁ BEZPEČNOST V ARMÁDĚ ČR mjr. Ing. Milan Jirsa, Ph.D. milan.jirsa@unob.cz Univerzita obrany Brno Fakulta vojenských technologií 4. 2. 2014, Cyber Security 2014 Stručný přehled důležitých událostí

Více

DATABÁZE DODAVATELŮ V OBLASTI ČISTÉ MOBILITY

DATABÁZE DODAVATELŮ V OBLASTI ČISTÉ MOBILITY DATABÁZE DODAVATELŮ V OBLASTI ČISTÉ MOBILITY FUTURE AGE, o.s. 20.09. 2012 CÍLE PROJEKTU DATABÁZE POSKYTOVAT AKTUÁLNÍ NABÍDKU VOZIDEL S ALTERNATIVNÍMI POHONY VČETNĚ POTŘEBNÉ INFRASTRUKTURY, KTERÉ LZE NAKOUPIT

Více

Jak lze zefektivnit monitoring médií

Jak lze zefektivnit monitoring médií Jak lze zefektivnit monitoring médií Pavel Maška www.anopress.cz www.facebook.com/anopress Anopress IT, a.s působí v ČR od roku 1997 jako dodavatel profesionálního monitoringu médií a mediálních analýz.

Více

WEBFILTR živě. přímo na svém počítači. Vyzkoušejte KERNUN CLEAR WEB. Připojte se přes veřejně dostupnou WiFi síť KERNUN.

WEBFILTR živě. přímo na svém počítači. Vyzkoušejte KERNUN CLEAR WEB. Připojte se přes veřejně dostupnou WiFi síť KERNUN. WEBFILTR živě Vyzkoušejte KERNUN CLEAR WEB přímo na svém počítači KERNUN Připojeno Připojte se přes veřejně dostupnou WiFi síť KERNUN WEBFILTR živě KERNUN CLEAR WEB Karol Kubanda, TNS / IT Infrastructure

Více

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1

Obsah ČÁST I JAK SE UCHÁZET O ZÁKAZNÍKY NA WEBU KAPITOLA 1 Obsah O autorech 11 Poděkování 13 Předmluva 15 Úvod 17 Proč byste se měli přečíst tuto knihu 17 Co tato kniha obsahuje 18 Jak používat tuto knihu 19 Zpětná vazba od čtenářů 20 Errata 20 ČÁST I JAK SE UCHÁZET

Více

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha

Identifikace. Jiří Jelínek. Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha Identifikace tématických sociálních sítí Katedra managementu informací Fakulta managementu J. Hradec Vysoká škola ekonomická Praha 2 Obsah prezentace Cíl Fáze řešení a navržené postupy Prototyp a výsledky

Více

DAN EST FIN FRA IR NEM NIZ POR RAK RUM SLO SWE VB CZ 0% 0% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

DAN EST FIN FRA IR NEM NIZ POR RAK RUM SLO SWE VB CZ 0% 0% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% PROJEKT ROZVOJE PORTÁLU BROŽURA PŘINÁŠÍ DÍLČÍ VÝSLEDKY STUDIÍ ZAMĚŘENÝCH NA ROZVOJ PORTÁLU BUSINESSINFO.CZ V LETECH 2010 2013. STUDIE OBSAHUJÍ DATA PLATNÁ K 1. 3. 2010 B e n c h m a r k i n g a n a l ý

Více

Monitoring hlasu zákazníka Význam sociálních médií pro Competitive Intelligence

Monitoring hlasu zákazníka Význam sociálních médií pro Competitive Intelligence Monitoring hlasu zákazníka Význam sociálních médií pro Competitive Intelligence Ing. Tomáš Vejlupek, prezident Tovek, člen SCIP Odborný seminář Jak využít sociální sítě pro zvyšování konkurenceschopnosti

Více

České internetové medicínské zdroje v Národní lékařské knihovně

České internetové medicínské zdroje v Národní lékařské knihovně České internetové medicínské zdroje v Národní lékařské knihovně Kateřina Štěchovská Národní lékařská knihovna, Praha stechovs@nlk.cz INFORUM 2005: 11. konference o profesionálních informačních zdrojích

Více

Portál IT komunity v ČR Kamil Matoušek, Jiří Kubalík ČVUT Praha

Portál IT komunity v ČR Kamil Matoušek, Jiří Kubalík ČVUT Praha Portál IT komunity v ČR Kamil Matoušek, Jiří Kubalík ČVUT Praha Projekt SoSIReČR SoSIReČR = Sociální síť informatiků v regionech České republiky Projekt je hrazen z rozpočtu Evropského sociálního fondu

Více

Nápověda 360 Search. Co je 360 Search? Tipy pro vyhledávání

Nápověda 360 Search. Co je 360 Search? Tipy pro vyhledávání 1 z 5 Nápověda 360 Search Co je 360 Search? 360 Search je metavyhledávač, který slouží k paralelnímu prohledávání všech dostupných informačních zdrojů prostřednictvím jednotného rozhraní. Nástroj 360 Search

Více

24.6.2005. Nejnavštěvovanější server českého internetu

24.6.2005. Nejnavštěvovanější server českého internetu Nejnavštěvovanější server českého internetu 24.6.2005 Co je Seznam.cz Od roku 1996 nejnavštěvovanější server českého internetu Služeb Seznamu využívá každý čtvrtý Čech Týdně oslovuje 70 % uživatelů internetu

Více

11.9.2010. X. mezinárodní konference o katastru nemovitostí, Karlovy Vary hotel Thermal

11.9.2010. X. mezinárodní konference o katastru nemovitostí, Karlovy Vary hotel Thermal Geoportál ČÚZK -data a služby resortu na internetu Petr Dvořáček Zeměměřický úřad 1 Obsah prezentace Úvod důvody pro geoportálové řešení, historie Základní funkce a vstupní rozhraní Geoportálu Popis aplikací

Více

Bezpečnostní témata spojená se Zákonem o kybernetické bezpečnosti

Bezpečnostní témata spojená se Zákonem o kybernetické bezpečnosti Bezpečnostní témata spojená se Zákonem o kybernetické bezpečnosti Ing. Jiří Slabý, Ph.D. Business Solution Architect IBM 1 2014 IBM Corporation Zákon je zákon Národní bezpečnostní úřad vypracoval k návrhu

Více

Internet zdroj informací

Internet zdroj informací Internet zdroj informací vybírání a hodnocení kvality internetových zdrojů Jitka Stejskalová Ústav vědeckých informací 1. LF UK Úvod internet jako zdroj informací Mgr. Jitka Krajíčková - prezentace Základy

Více

Osnova studie proveditelnosti pro projekt zakládání a rozvoje klastrů

Osnova studie proveditelnosti pro projekt zakládání a rozvoje klastrů Osnova studie proveditelnosti pro projekt zakládání a rozvoje klastrů V rámci tohoto dokumentu se předpokládá využití informací a dat, zjištěných v rámci projektu Vyhledávání vhodných firem pro klastry

Více

Google AdWords Google Analytics

Google AdWords Google Analytics Google AdWords Google Analytics Tento studijní materiál byl vytvořen s podporou projektu FRVŠ 1030/2012 s názvem Multimediální studijní opora pro výuku předmětu Elektronický obchod". Obsah Google AdWords

Více

Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci. Jiří JANOŠEC Technologické centrum AV ČR

Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci. Jiří JANOŠEC Technologické centrum AV ČR Možnosti pro vyhledávání inovací a partnerů pro zahraniční spolupráci Jiří JANOŠEC Technologické centrum AV ČR Technologické centrum AV ČR Sdružení právnických osob založeno v roce 1994 Oddělení TC AV

Více

Informatizace společnosti Petra Štogrová Jedličková

Informatizace společnosti Petra Štogrová Jedličková Informatizace společnosti Petra Štogrová Jedličková Program 1. Seznámení 2. Podstata změny 3. Aktuální trendy 1. Big Data 2. Sociální média 3. Elektronický obchod a PR 4. Mobilní inteligence 5. Geolokace

Více

Vyhledávání na Internetu

Vyhledávání na Internetu Tento materiál byl napsán za využití učebních materiálů ke Kurzu práce s informacemi (KPI11) vyučovaném v roce 2007 na Masarykově univerzitě. Autory kurzu jsou: PhDr. Petr Škyřík, Mgr. Petra Šedinová,

Více

Po ukončení tohoto kurzu budete schopni:

Po ukončení tohoto kurzu budete schopni: PRÁCE S INTERNETEM A KOMUNIKACE Hana Rohrová, Roman Rohr Cíle kurzu Po ukončení tohoto kurzu budete schopni: porozumět základním pojmům spojeným s používáním Internetu, dodržovat bezpečnostní opatření

Více

Forenzní analýza jako doplněk SIEMu. Jiří Slabý 31.3.2015 Policejní akademie ČR, Praha

Forenzní analýza jako doplněk SIEMu. Jiří Slabý 31.3.2015 Policejní akademie ČR, Praha Forenzní analýza jako doplněk SIEMu Jiří Slabý 31.3.2015 Policejní akademie ČR, Praha Běžné problémy při zavádění forenzní analýzy Omezený počet zkušených pracovníků Další nástroj bez pokročilé integrace

Více

Olga Rudikova 2. ročník APIN

Olga Rudikova 2. ročník APIN Olga Rudikova 2. ročník APIN Redakční (publikační) systém neboli CMS - content management system (systém pro správu obsahu) je software zajišťující správu dokumentů, nejčastěji webového obsahu. (webová

Více

Možnosti využití ve školství

Možnosti využití ve školství Možnosti využití ve školství V předmětu ICT v edukačním procesu, moderní didaktické teorie se jedná pouze o stručný úvod do problematiky. Jaké jsou v současnosti používané metody elektronické komunikace

Více

Bezpečnost sítí, Firewally, Wifi. Ing. Pavel Píše

Bezpečnost sítí, Firewally, Wifi. Ing. Pavel Píše Bezpečnost sítí, Firewally, Wifi Ing. Pavel Píše Útoky na síť Z Internetu Ze strany interní sítě Základní typy síťových útoků Útoky na bezpečnost sítě Útoky na propustnost sítě (šířka pásma, záplavové

Více

InternetovéTechnologie

InternetovéTechnologie 7 InternetovéTechnologie vyhledávání na internetu Ing. Michal Radecký, Ph.D. www.cs.vsb.cz/radecky Vyhledávání a vyhledávače - Jediný možný způsob, jak získat obecný přístup k informacím na Internetu -

Více

Akreditace cenových kalkulaček

Akreditace cenových kalkulaček Akreditace cenových kalkulaček Obsah 1 ÚVOD... 3 2 ROZSAH SROVNÁVANÝCH SLUŽEB... 3 3 AKREDITAČNÍ KRITÉRIA PRO HODNOCENÍ CENOVÉ KALKULAČKY... 4 4 POSTUP PŘI AKREDITACI... 5 2 1 Úvod Úkolem Českého telekomunikačního

Více

VYHLEDÁVÁNÍ V NOVÉM PROSTŘEDÍ MEDVIK : ZÁKLADNÍ HLEDÁNÍ. Adéla Jarolímková Národní lékařská knihovna, referát metodiky a vzdělávání

VYHLEDÁVÁNÍ V NOVÉM PROSTŘEDÍ MEDVIK : ZÁKLADNÍ HLEDÁNÍ. Adéla Jarolímková Národní lékařská knihovna, referát metodiky a vzdělávání VYHLEDÁVÁNÍ V NOVÉM PROSTŘEDÍ MEDVIK : ZÁKLADNÍ HLEDÁNÍ Adéla Jarolímková Národní lékařská knihovna, referát metodiky a vzdělávání Proč nové rozhraní? Integrace zdrojů katalogy, BMČ, autority, MeSH Přizpůsobení

Více

Penetrační test & bezpečnostní audit: Co mají společného? V čem se liší?

Penetrační test & bezpečnostní audit: Co mají společného? V čem se liší? Penetrační test & bezpečnostní audit: Co mají společného? V čem se liší? Karel Miko, CISA (miko@dcit.cz) DCIT, s.r.o (www.dcit.cz) Nadpis Penetrační test i bezpečnostní audit hodnotí bezpečnost předmětu

Více

Využití sociálních sítí pro komunikaci s absolventy a profesní uplatnění absolventů Petr Macek Workshop KA05, Olomouc, 12. 5. 2015

Využití sociálních sítí pro komunikaci s absolventy a profesní uplatnění absolventů Petr Macek Workshop KA05, Olomouc, 12. 5. 2015 Využití sociálních sítí pro komunikaci s absolventy a profesní uplatnění absolventů Petr Macek Workshop KA05, Olomouc, 12. 5. 2015 www.kredo.reformy-msmt.cz Agenda Účel sociálních sítí pro marketing Sociální

Více

Dalibor Kačmář 21. 9. 2015

Dalibor Kačmář 21. 9. 2015 Dalibor Kačmář 21. 9. 2015 200+ 75%+ $500B $3.5M Průměrný počet dní, které útočník stráví v síti oběti, než je detekován všech průniků do sítí se stalo díky úniku přihlašovacích údajů celková odhadovaná

Více

Obranné zpravodajství Vlivové zpravodajství

Obranné zpravodajství Vlivové zpravodajství Vlivové zpravodajství Elicitace Business Intelligence- Vladimíra Zádová, KIN, EF, TUL 1 CI Směry CI Ofenzivní (aktivní) zpravodajství Obranné Vlivové Jsou ve vzájemných vztazích Business Intelligence-

Více

Marketingové využití internetu

Marketingové využití internetu Marketingové využití internetu Obsah dnešní přednášky Internet, web 2.0 Dlouhý chvost, reputační systémy Využití internetu pro marketingové účely Webové prohlížeče a optimalizace stránek Typy reklamy Facebook

Více

Registrační číslo projektu: Škola adresa: Šablona: Ověření ve výuce Pořadové číslo hodiny: Třída: Předmět: Název: Sociální sítě Anotace:

Registrační číslo projektu: Škola adresa: Šablona: Ověření ve výuce Pořadové číslo hodiny: Třída: Předmět: Název: Sociální sítě Anotace: Registrační číslo projektu: CZ.1.07/1.4.00/21.3712 Škola adresa: Základní škola T. G. Masaryka Ivančice, Na Brněnce 1, okres Brno-venkov, příspěvková organizace Na Brněnce 1, Ivančice, okres Brno-venkov

Více

Vyhledávání v citační databázi Web of Science (WOS)

Vyhledávání v citační databázi Web of Science (WOS) Vyhledávání v citační databázi Web of Science (WOS) Petr Boldiš Stanislava Kohoutová Česká zemědělská univerzita v Praze Studijní a informační centrum 2004 Tento materiál byl vytvořen v rámci grantu FRVŠ

Více

VY_32_INOVACE_IKTO2_0260 PCH

VY_32_INOVACE_IKTO2_0260 PCH VY_32_INOVACE_IKTO2_0260 PCH VÝUKOVÝ MATERIÁL V RÁMCI PROJEKTU OPVK 1.5 PENÍZE STŘEDNÍM ŠKOLÁM ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0883 NÁZEV PROJEKTU: ROZVOJ VZDĚLANOSTI ČÍSLO ŠABLONY: III/2 DATUM VYTVOŘENÍ:

Více

Otevřený přístup (Open Access) v Akademii věd ČR

Otevřený přístup (Open Access) v Akademii věd ČR Otevřený přístup (Open Access) v Akademii věd ČR Iva Burešová buresova@knav.cz Úvodní část tohoto článku čtenáře stručně seznamuje s Politikou otevřeného přístupu Akademie věd České republiky (AV ČR),

Více

Pravidelné aktivity na internetu I. ZÁKLAD: Respondenti 10+ využívající internet, n=6536 (fáze 1), n=6594 (fáze 2), n=2153 (fáze 3), n=2237 (fáze 4)

Pravidelné aktivity na internetu I. ZÁKLAD: Respondenti 10+ využívající internet, n=6536 (fáze 1), n=6594 (fáze 2), n=2153 (fáze 3), n=2237 (fáze 4) Tisková zpráva PRAHA, 4/12/2009 Multimediální trendy na internetu sílí Na internetu nejvýznamněji roste podíl uživatelů, kteří se pravidelně věnují multimediálním aktivitám. Největší nárůsty byly pozorovány

Více

Organizace ATEM - Ateliér ekologických modelů Název textu Vyhodnocení informačních zdrojů o kvalitě ovzduší v Praze BK12 - Informatika, osvěta a

Organizace ATEM - Ateliér ekologických modelů Název textu Vyhodnocení informačních zdrojů o kvalitě ovzduší v Praze BK12 - Informatika, osvěta a Autor Bc. Radek Jareš Organizace ATEM - Ateliér ekologických modelů Název textu Vyhodnocení informačních zdrojů o kvalitě ovzduší v Praze Blok BK12 - Informatika, osvěta a práce s veřejností Datum Červenec

Více

Bankovní institut vysoká škola, a.s. Praha Karlovy Vary Písek Teplice Břeclav

Bankovní institut vysoká škola, a.s. Praha Karlovy Vary Písek Teplice Břeclav Bankovní institut vysoká škola, a.s. Kdo jsme? První soukromá vysoká škola Atraktivní studijní obory Univerzitní informační systém Skvělé zázemí a nejnovější technika Moderní bezbariérová budova Jsme součástí

Více

Hardening ICT platforem: teorie nebo praxe. Pavel Hejduk ČEZ ICT Services, a. s.

Hardening ICT platforem: teorie nebo praxe. Pavel Hejduk ČEZ ICT Services, a. s. Hardening ICT platforem: teorie nebo praxe Pavel Hejduk ČEZ ICT Services, a. s. Agenda ICT prostředí ČEZ ICT Services a. s. Hardening ICT platforem - definice Obvyklý přístup a jeho omezení zhodnocení

Více

Evaluace přenosu znalostí v kyberprostoru

Evaluace přenosu znalostí v kyberprostoru Evaluace přenosu znalostí v kyberprostoru problematika monitorování, analýzy dat a hodnocení výsledků přenosu znalostí s ohledem na prostupnost virtuálních světů a reality Konference IKI ~ 20. ledna 2009

Více

Přínosy spolupráce interního a externího auditu

Přínosy spolupráce interního a externího auditu Přínosy spolupráce interního a externího auditu Konference ČIA 14. 5. 2015 Libuše Müllerová KA ČR 2014 1 Přínosy spolupráce interního a externího auditu Obsah: Srovnání interního a externího auditu ISA

Více

CO DĚLAT, ABY BYLA DATA V DOKTORSKÝCH DISERTACÍCH ZNOVU VYUŽITELNÁ PRO VÝZKUM? Joachim Schöpfel Hélène Prost Cécile Malleret

CO DĚLAT, ABY BYLA DATA V DOKTORSKÝCH DISERTACÍCH ZNOVU VYUŽITELNÁ PRO VÝZKUM? Joachim Schöpfel Hélène Prost Cécile Malleret Prezentace je dostupná pod licencí Creative Commons, licence: CC-BY-SA-4.0 (http://creativecommons.org/licenses/by-sa/4.0/ ), via http://invenio.nusl.cz/record/200846 CO DĚLAT, ABY BYLA DATA V DOKTORSKÝCH

Více

Maturitní projekt do IVT Pavel Doleček

Maturitní projekt do IVT Pavel Doleček Maturitní projekt do IVT Pavel Doleček CO FILMBOOK JE Filmbook je uzavřená webová aplikace pro celkovou správu informací a dat souvisejících se sledováním filmů. Primárně je zaměřen na uchovávání a spravování

Více

MAPOVÉ PRODUKTY A SLUŽBY GEOPORTÁLU ČÚZK, CO NABÍZEJÍ STÁTNÍ SPRÁVĚ A SAMOSPRÁVĚ

MAPOVÉ PRODUKTY A SLUŽBY GEOPORTÁLU ČÚZK, CO NABÍZEJÍ STÁTNÍ SPRÁVĚ A SAMOSPRÁVĚ MAPOVÉ PRODUKTY A SLUŽBY GEOPORTÁLU ČÚZK, CO NABÍZEJÍ STÁTNÍ SPRÁVĚ A SAMOSPRÁVĚ Ing. Danuše Svobodová, Ing. Petr Dvořáček Zeměměřický úřad 1 Obsah prezentace Geportál ČÚZK stručný přehled možností, jež

Více

Šedá literatura jako zdroj odborných informací

Šedá literatura jako zdroj odborných informací Šedá literatura jako zdroj odborných informací Mgr. Petr Novák Státní technická knihovna p.novak@stk.cz 22. ledna 2008 IKI 2008, areál UK, Praha - Jinonice Proč se zabývat šedou literaturou? není běžně

Více

Informační centrum školy jako nezastupitelná podpora výuky. Jana Nejezchlebová Moravská zemská knihovna

Informační centrum školy jako nezastupitelná podpora výuky. Jana Nejezchlebová Moravská zemská knihovna Informační centrum školy jako nezastupitelná podpora výuky Jana Nejezchlebová Moravská zemská knihovna Obsah prezentace Úvod Rámcové vzdělávací programy Vzdělávací oblasti a jejich výstupy Role knihovníka

Více

5.3.1. Informatika pro 2. stupeň

5.3.1. Informatika pro 2. stupeň 5.3.1. Informatika pro 2. stupeň Charakteristika vzdělávací oblasti Vzdělávací oblast Informační a komunikační technologie umožňuje všem žákům dosáhnout základní úrovně informační gramotnosti - získat

Více

SíťIT: Portál na podporu sociální sítě informatiků v ČR http://www.sitit.cz/

SíťIT: Portál na podporu sociální sítě informatiků v ČR http://www.sitit.cz/ SíťIT: Portál na podporu sociální sítě informatiků v ČR http://www.sitit.cz/ Projekt SoSIReČR SoSIReČR = Sociální síť informatiků v regionech České republiky Projekt je hrazen z rozpočtu Evropského sociálního

Více

Oborová brána TECH tech.jib.cz

Oborová brána TECH tech.jib.cz Oborová brána TECH tech.jib.cz Seminář Okna oborů dokořán! Proč a jak využívat oborové brány & jak dál v CPK? Praha, NTK 2.12.2014 PhDr. Lenka Hvězdová Příběh oborové brány TECH, tech.jib.cz - * 2008,

Více

Koncept. Centrálního monitoringu a IP správy sítě

Koncept. Centrálního monitoringu a IP správy sítě Koncept Centrálního monitoringu a IP správy sítě Koncept Centrálního monitoringu a IP správy sítě Společnost Novicom, společně se svým partnerem, společností INVEA-TECH, nabízí unikátní koncept Centralizovaného

Více

Sledování výkonu aplikací?

Sledování výkonu aplikací? Sledování výkonu aplikací? FlowMon APM Pavel Minařík minarik@invea.com Problémy s výkonností aplikací Je příčina problému v síti nebo v aplikaci? Jedná se o pomalou odezvu aplikačního nebo databázového

Více

OBSAHOVÁ STRÁNKA DP, BP

OBSAHOVÁ STRÁNKA DP, BP OBSAHOVÁ STRÁNKA DP, BP Obsahová stránka BP i DP se řídí: 1. Směrnicí rektora č. 9/2007 Úprava, odevzdávání a zveřejňování vysokoškolských kvalifikačních prací na VUT v Brně 2. Směrnicí děkana č. 2/2007

Více

Komunikační plán projektu ReStEP pro cílové skupiny (mimo veřejnou správu)

Komunikační plán projektu ReStEP pro cílové skupiny (mimo veřejnou správu) Komunikační plán projektu ReStEP pro cílové skupiny (mimo veřejnou správu) Regional Sustainable Energy Policy based on the Interactive Map of Sources (ReStEP) (LIFE10 ENV/CZ/000649) Praha, červen 2013

Více

Centrální řízení webového provozu Bezpečný přístup na internet Ochrana interní sítě a efektivita zdrojů Detailní reporting a řízení procesů

Centrální řízení webového provozu Bezpečný přístup na internet Ochrana interní sítě a efektivita zdrojů Detailní reporting a řízení procesů Máte svůj webový provoz pod kontrolou? Centrální řízení webového provozu Bezpečný přístup na internet Ochrana interní sítě a efektivita zdrojů Detailní reporting a řízení procesů Proč filtrovat přístup

Více

Projekt zaměřený na vybudování sociální sítě informatiků (ve smyslu sociálního webu) ve všech regionech ČR jako základny pro partnerství a spolupráci.

Projekt zaměřený na vybudování sociální sítě informatiků (ve smyslu sociálního webu) ve všech regionech ČR jako základny pro partnerství a spolupráci. Projekt zaměřený na vybudování sociální sítě informatiků (ve smyslu sociálního webu) ve všech regionech ČR jako základny pro partnerství a spolupráci. Více na portálu projektu: http://www.sosirecr.cz/index.php

Více

Vyhledávání nebo nalezení informací

Vyhledávání nebo nalezení informací Vyhledávání nebo nalezení informací Vilém Sklenák sklenak@vse.cz Vysoká škola ekonomická, fakulta informatiky a statistiky, katedra informačního a znalostního inženýrství Inforum2012, 23. 5. 2012 Vilém

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Portál sociální sítě informatiků a jeho strukturované profily znalostí

Portál sociální sítě informatiků a jeho strukturované profily znalostí Portál sociální sítě informatiků a jeho strukturované profily znalostí Kamil Matoušek, Jiří Kubalík, Martin Nečaský 12. června 2012 Hovory s informatiky, 12. června 2012, 1 Portál Síť IT Vyhledávání výzkumných

Více

FlowMon 8.0. Představení novinek v řešení FlowMon. Petr Špringl, Jan Pazdera {springl pazdera}@invea.com

FlowMon 8.0. Představení novinek v řešení FlowMon. Petr Špringl, Jan Pazdera {springl pazdera}@invea.com FlowMon 8.0 Představení novinek v řešení FlowMon Petr Špringl, Jan Pazdera {springl pazdera}@invea.com Přehled řešení FlowMon FlowMon Monitorování datových toků Bezpečnost (NBA) Záznam komunikace v plném

Více

Podpora zkvalitnění vyhledávání informací. SeminářInformačnívzděláváníuživatelůve veřejných knihovnách Hradec Králové12. 13. 4.

Podpora zkvalitnění vyhledávání informací. SeminářInformačnívzděláváníuživatelůve veřejných knihovnách Hradec Králové12. 13. 4. Informačnízdroje Podpora zkvalitnění vyhledávání informací Pojmy IVU Informačnígramotnost (IG), angl. Information Literacy Následující kompetence jedince: Poznat, kdy je informace potřebná, Vyhledat informaci,

Více

PROPOJENÍ VĚDY, VÝZKUMU, VZDĚLÁVÁNÍ A PODNIKOVÉ PRAXE. PhDr. Dana Pokorná, Ph.D. Mgr. Jiřina Sojková, Státní zámek Sychrov, 21. 23. 5.

PROPOJENÍ VĚDY, VÝZKUMU, VZDĚLÁVÁNÍ A PODNIKOVÉ PRAXE. PhDr. Dana Pokorná, Ph.D. Mgr. Jiřina Sojková, Státní zámek Sychrov, 21. 23. 5. PROPOJENÍ VĚDY, VÝZKUMU, VZDĚLÁVÁNÍ A PODNIKOVÉ PRAXE PhDr. Dana Pokorná, Ph.D. Mgr. Jiřina Sojková, Státní zámek Sychrov, 21. 23. 5. 2012 APSYS Aplikovatelný systém dalšího vzdělávání pracovníků ve vědě

Více

Experimentální systém pro WEB IR

Experimentální systém pro WEB IR Experimentální systém pro WEB IR Jiří Vraný Školitel: Doc. RNDr. Pavel Satrapa PhD. Problematika disertační práce velmi stručný úvod WEB IR information retrieval from WWW, vyhledávání na webu Vzhledem

Více

Ministudie: Content marketing v B2B v ČR a USA, 2013 Téma na přání účastníků B2B monitoru

Ministudie: Content marketing v B2B v ČR a USA, 2013 Téma na přání účastníků B2B monitoru Ministudie: Content marketing v B2B v ČR a USA, 2013 Téma na přání účastníků B2B monitoru B-inside s.r.o. Šmeralova 12, 170 00 Praha Vavrečkova 5262, 760 01 Zlín IČ: 24790648 DIČ: CZ24790648 Telefon: +420

Více

Adresa redakce: Palackého náměstí 320, 284 01 Kutná Hora (budova bývalé České pojišťovny, druhé patro).

Adresa redakce: Palackého náměstí 320, 284 01 Kutná Hora (budova bývalé České pojišťovny, druhé patro). Tradiční zpravodajský server z Kutnohorska zprávy sport galerie Redakce Adresa redakce: Palackého náměstí 320, 284 01 Kutná Hora (budova bývalé České pojišťovny, druhé patro). Šéfredaktor zpravodajství:

Více

NEWTON Technologies a.s. Jaroslava Schmidtová Project manager

NEWTON Technologies a.s. Jaroslava Schmidtová Project manager NEWTON Technologies a.s. Jaroslava Schmidtová Project manager NEWTON Technologies a.s. Budoucnost tvoříme hlasem Jaroslava Schmidtová Project manager NEWTON Technologies, a.s. je česká společnost (založená

Více

Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací

Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací Transformace dílčích datových zdrojů na jednotnou datovou platformu kontaminovaných míst, analýza potřeb uživatelů a vývoj aplikací Jiří Šíma, AQUATEST a.s. Zpracovatelé a součinnost AQUATEST a.s. ARCDATA

Více

Využití sociálních sítí v náboru zaměstnanců

Využití sociálních sítí v náboru zaměstnanců Využití sociálních sítí v náboru zaměstnanců 500 HR MINUTES KONFERENCE O MODERNÍCH TRENDECH V HR 13. března 2013 Hana Velíšková, KPMG KPMG Česká republika Od roku 1990 760 zaměstnanců 27 partnerů Druhý

Více

Bibliografické databáze technických norem a standardů. Školení 12. února 2015 Martina Machátová

Bibliografické databáze technických norem a standardů. Školení 12. února 2015 Martina Machátová Bibliografické databáze technických norem a standardů Školení 12. února 2015 Martina Machátová Normy a standardy v knihovnách ČR - 1 Moravská zemská knihovna v Brně Uchovává československé a české normy

Více

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka

Více

Monitoring eroze zemědělské půdy

Monitoring eroze zemědělské půdy Monitoring eroze zemědělské půdy Ing. Jiří Kapička, Mgr. Daniel Žížala, Ing. Ivan Novotný Monitoring eroze zemědělské půdy (http://me.vumop.cz) vznikl jako společný projekt Státního pozemkového úřadu (SPÚ),

Více