Přednáška 4 Zvětšování velikosti částic, granulace

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 4 Zvětšování velikosti částic, granulace"

Transkript

1 Přednáška 4 Zvětšování velikosti částic, granulace Snímek 2: Proč zvyšovat velikost částic Zvětšování velikosti částic je ve farmaceutickém průmyslu často využívanou operací. Zvětšením velikosti částic se umožní využití prachového podílu, který by jinak byl velmi náchylný k segregaci, omezí se prašnost, obvykle se zlepší tokové vlastnosti. Aglomerační procesy zpravidla vedou kromě zvětšení částic ke zúžení distribuce velikosti, což sníží variabilitu sypné hustoty, a tak usnadní tabletování a objemové odměřování jednotek. U směsí je průvodním jevem aglomerace fixace homogenity na takové úrovni, na jaké je při vstupu do aglomeračního procesu. Snímek 3: Zvýšení velikosti částic Nejčastější operací vedoucí k řízené aglomeraci je granulace. Vlhká granulace (v mixérech) vede k hutným granulím, granule z fluidní granulace mají nižší hustotu. U obou z nich se částice spojují za přítomnosti kapaliny. Kompaktace (suchá granulace) využívá ke spojení částic vysoký tlak na podobném principu jako tabletace. K vlhké granulaci mají blízko extrudační a peletizační procesy, které také zpravidla vycházejí z vlhké směsi. Snímek 4: Síly mezi částicemi Pro zvětšování velikosti částic je nezbytné jejich spojování aglomerace. Ta je možná díky přitažlivým silám mezi částicemi. Van der Waalsovy interakce mezi pevnými částicemi jsou nejslabší přitažlivé síly mezi molekulami (E ~ 0.1 ev). Silnější jsou tyto interakce mezi adsorbovanými vrstvami kapaliny, jelikož kapalina snadno může měnit tvar, filmy se mohou dostat do větší blízkosti a spojení má větší energii. Kapalinové můstky jsou již makroskopické síly a jejich podstatou je smáčení pevné částice kapalinou a povrchové napětí této kapaliny. Snímek 5: Síly mezi částicemi Elektrostatické síly vznikají přestupem elektronů mezi povrchy (třením), nevyžadují povrchový kontakt dlouhý dosah. Pevné můstky mohou vznikat nejčastěji z kapalinových můstků jejich vysušením. Krystalové můstky vznikají navlhčením, částečným rozpuštěním prášku a opětovým vysušením, Pojivové můstky vznikají vysušením roztoku pojiva. Snímek 6: Granulace Přínosy granulovaného produktu spočívají v tom, že neobsahuje prachové částice, má dobré tokové vlastnosti, dávkovatelnost, tabletovatelnost, dobrou rozpustnost. Snímek 7: Vlhká granulace: princip Vlhká granulace probíhá tak, že se prášková látka zvlhčí vlhčivem, nebo roztokem pojiva a mechanickým namáháním se promíchává, takže vznikají kapalinové můstky. Jejich charakter a proto i charakter vznikajících granulí se může v průběhu procesu měnit. Typicky dochází ke zhutňování granulí a jejiich vzájemnému spojování růstu. Snímek 8: Růst velikosti granulí Na obrázku je příklad vzorků granulátu odebíraného průběžně během granulace.

2 Snímek 9: Fáze procesu vlhké granulace Vlhká granulace má několik fází. Pre-homogenizace je počáteční suché předmíchání směsi prášků, poté následuje za pokračujícího míchání postřik roztokem pojiva (nebo postřik prášku obsahujícího pojivo rozpouštědlem (vlhčivem)). Poté dochází ke tvorbě granulí. Vlhké granule se suší a při sušení granulí se kapalinové můstky mění na pevné a vzniká stabilní produkt granulát. Snímek 10-11: Pojiva V praxi se používá řada pojiv (Binding agents, Granulating agents). Škrob (v množství 5 25 %) je historicky používané pojivo. Má nesnadné použití kvůli pomalé rozpustnosti. Častěji se používá předželovaný škrob (0,1 0,5 %), rozpustný ve studené vodě, takže je omezeně možno přimíchávat jej do prášku a pouze vlhčit. Další přírodní pojiva zahrnují arabskou gumu, kys. alginovou, algináty, želatinu, glukóza, apod. Moderní pojiva mohou být přimíchávaná do prášku. Každé má jisté výhody a nevýhody. Snímek 12: Volba pojiva Vlastnosti prášku a pojiva musí být kompatibilní. Je nutná dobrá smáčivost a rychlá penetrace roztoku do prášku. Také použité rozpouštědlo musí být kompatibilní s práškem. Množství pojiva zvyšuje snadnost granulace a pevnost granulí, může hydrofilizovat povrch hydrofóbního léčiva, ale má negativa v tom, že zhoršuje desintegraci finálních tablet a může zhoršovat disoluční charakteristiky. Snímek 13: Vazby v částicích granulátů Vazby v částicích granulátů zahrnují mezipovrchové síly v mobilním filmu kapaliny uvnitř granulí, kohezivní síly imobilního kapalného filmu mezi primárními částicemi (kapilární síly), pevné můstky po odpaření rozpouštědla. Snímek 14: Mechanismus vhlké granulace V mechanismu vlhké granulace rozpoznáváme několik pochodů. Nukleace je počáteční pochod, který spočívá v tom, že kapka vlhčiva dopadne na práškové lože a vsákne se do něj, obalí částice kapalným filmem a pomocí tohoto filmu a kapilárních sil, drží tento shluk částic (nukleum) pohromadě. Mechanickým působením se částice v nukleu dostávají blíže k sobě, což způsobí, že vlhčivo je vymačkáváno na povrch. Vlhký povrch je pak přístupný pro spojování granulí, obalování granulí práškem (vrstvení) nebo přenos částí granulí mezi sebou. Pokud je mechanické namáhání příliš velké, dochází k oděru a rozpadu granulí. Snímek 15: Smáčení a nukleace Smáčení a rovnoměrnost rozdělení vlhčiva do prášku ovlivňuje velikost a počet vznikajících nukleí a následně tak ovlivňuje tvorbu a velikost granulí. Rovnoměrná distribuce vlhčiva přispívá k rovnoměrnosti velikosti granulí (úzké distribuci VČ). Smáčení lze charakterizovat rychlostí penetrace, která se měří buď Washburnovým testem, nebo měřením doby penetrace. Washburnův test měří základní parametry kapaliny a prášku (povrchové napětí, porozitu, kontaktní úhel, viskozitu, velikost kapek), z nichž se provede výpočet rychlosti

3 vsakování (experimentálně náročné). Jednodušší je měření penetrační doby, tedy stanovení doby vsakování kapky o známé velikosti do definovaného lože. Snímek 16: Postřik prášku Způsob a intenzita postřiku práškového lože ovlivňuje to, jakým způsobem budou kapky vlhčiva dopadat na práškové lože. Kapky mohou dopadat odděleně a potom produkují velký počet malých nukleí rovnoměrné velikosti. Dopadají-li kapky hustěji vedle sebe, mohou se překrývat a vzniká tak širší distribuce obecně větších kapek, které dávají vzniknout menšímu počtu větších, méně rovnoměrně distribuovaných nukleí. Účinnost sprejování závisí na zařízení. Charakter sprejového toku nezávislý na celkové velikosti procesu je možno vyjádřit bezrozměrným faktorem sprejového toku, který je poměrem objemového průtoku vlhčiva do postřiku a teoretické rychlosti jakou může lože přijímat kapky, aby se ještě nepřekrývaly. Tato teoretická rychlost ve jmenovateli zlomku je dána rychlostí, kterou povrch lože pod tryskou ubíhá, šířkou trysky (tedy šířkou postřikovaného pásu) a výškou kapky na loži reprezentovanou jejím průměrem. Ideální je nízký bezrozměrný faktor sprejového toku, který odpovídá vyšší pravděpodobnosti odděleného dopadu. Snímek 17: Režimy nukleace Režim nukleace závisí jak na způsobu postřiku, tak i na rychlosti vsakování vlhčiva. Tyto dva faktory je možné obecně charakterizovat faktorem sprejového toku a dobou permeace. Kapkově řízený nukleační režim lze nalézt v oblasti nízkého sprejového faktoru a rychlého vsakování /krátká doba permeace). Tento nukleační režim vede k nejužší distribuci velikosti nukleí, která jsou relativně nejmenší a je jich nejvíce. Jestliže se u materiálu s krátkou dobou permeace zvyšuje faktor sprejového toku, distribuce velikosti nukleí se rozšiřuje směrem k větším nukleím. V extrémním případě velmi vysokého sprejového toku dojde k tzv. hrudkování (Caking), tedy tvorbě velkých volných nukleí vzniklých z mnoha kapek. V oblasti pomalé permeace se nachází mechanický disperzní režim, v němž je velikost nukleí řízená parametry míchadel a míchání. Distribuce velikosti nukleí je nezávislá na faktoru sprejového toku, nuklea však bývají větší a mají méně rovnoměrnou distribuci velikosti. Snímek 18: Ideální podmínky smáčení Z výše uvedeného vyplývá, že pro granulaci, která má produkovat pokud možno uniformní částice je výhodný kapkově řízený nukleační režim, tedy režim s nízkým faktorem sprejového toku a krátkou dobou penetrace, kdy kapka dopadne na povrch prášku aniž by potkala jinou kapku, vytvoří jádro nové granule a dostatečná rychlost vsakování způsobí, že kapka se vstřebá dříve než se dané místo opět dostane pod trysku. Snímek 19: Vliv množství pojiva na aglomeraci Podle množství kapaliny mohou aglomeráty vytvářet různé typy kapalinových můstků. Kyvadlové můstky vytvářejí adhezní síly způsobené povrchovým napětím kapaliny, mají typický tvar kapalinového spojení a jsou navzájem dobře oddělené. Lanovité můstky obsahují více kapaliny, takže kromě ztluštění spojek jsou již zaplněny některé mezičásticové prostory.

4 Kapilární spojení vzniká po zaplnění vnitřních mezičásticových prostor kapalinou, kapaliny však není dost na to, aby vystoupila vně aglomerátu. kapilární sání dovnitř částice udržuje aglomerát pohromadě a kapalinu uvnitř. Další zvýšení vede ke vzniku kapky suspenze. Rozhraní g-l je již mimo úzký mezičásticový prostor, kapilární jevy se proto již neuplatňují, a tak pevnost aglomerátu prudce klesá. Snímek 20: Soudržné síly mezi částicemi Obrázek znázorňuje závislost pevnosti aglomerátu v závislosti na množství kapaliny. Ačkoliv lanovité a kapilární aglomeráty jsou pevnější (pevnost vůči fragmentaci) jsou snáze deformovatelné, než aglomeráty s kyvadlovými můstky. Je to dáno vyšším množstvím kapaliny, takže mezičásticové vzdálenosti se mohou více prodloužit, aniž by došlo k fragmentaci. Snímek 21: Zhutňování a růst granulí Zhutnění a růst granulí je zodpovědné na zvětšení velikosti aglomerátů nad rámec původních nukleí a za zvýšení jejich hustoty. Nejdůležitějším pochodem je Spojování (koalescence) granulé, které je rychlé a nepotřebuje přítomnost výchozí granuloviny. Vrstvení spočívá v obalování granule dosud nezgranulovaným materiálem. Přenos oděru představuje výměnu povrchových vrstev mezi dvěma granulemi. Snímek 22: Systémy s vysokou a nízkou deformabilitou Kvůli popisu koalescence je důležité rozlišit mezi systémy s vysokou a nízkou deformabilitou. Deformovatelnost materiálu může ovlivňovat i vlastnosti finálního produktu. Snímek 23: Srážka granulí a koalescence Ke koalescenci může dojít při srážce dvou aglomerátů, pokud je alespoň jeden na povrchu vlhký (má zde na obr. Znázorněnou vrstvičku kapaliny). Ke srážce navíc musí dojít přiměřenou rychlostí. Rychlost musí být alespoň taková, aby došlo k přiblížení částic do takové míry, aby se dotkly povrchy kapalných filmů (koalescence prvního typu). Když rychlost srážky roste, může dokonce dojít i k přiblížení tuhých jader aglomerátů. Tato se od sebe do určité míry snaží odrazit. Ke koalescenci (2. Typu) však přesto ještě může dojít, pokud se zbytková kinetická energie částic po odrazu dokáže spotřebovat na tření ve spojeném kapalném filmu. Snímek 24: Koalescence v nedeformujících systémech To, zda v systému dojde ke koalescenci záleží na relaci mezi kinetickou energií kolidujících částic a míře v jaké se tato energie dokáže při srážce a třením v kapalném filmu disipovat. V nedeformujících systémech je tuto relaci možno vyjádřit jako podíl kinetické energie kolidujících částic a Stokesovy třecí síly, kterou působí kapalina na pohybující se částici. Poměr se nazývá Stokesovo číslo. Snímek 25: Koalescence v nedeformujících systémech Koalescence I. typu může nastat, je-li na povrchu kapalný film. Stokesovo číslo je parametrem rozhodujícím mezi koalescencí II. Typu nebo odrazem částic. Má-li St nízkou hodnotu energie srážky se dissipuje v kapalném filmu na povrchu a dochází ke koalescenci II. Typu. Má-li vysokou hodnotu, je energie srážky je příliš vysoká a ke koalescenci II. typu nedochází.

5 Snímek 26: Režimy koalescence v nedeformujících systémech V granulátoru nejsou všechny granule stejně velké a je zde určitá distribuce velikostí částic. Proto je zde i distribuce Stokesových čísel pro různě velké granule. Podle St rozlišujeme tři režimy růstu aglomerátů. Neinerciální (nesetrvačný) režim nastává pro relativně malé granule, kdy St je nízké pro malé i velké (relativně) částice, takže téměř všechny srážky vedou ke koalescenci. Proto je tento režim necitlivý na malé změny viskozity, velikosti částic, rychlosti. Inerciální (setrvačný) je přechodový a St je pro některé částice podkritické a pro jiné nadkritické. Pouze některé srážky vedou ke koalescenci a systém je proto velmi citlivý na změnu parametrů ovlivňujících St. Rychlost koalescence je citlivá na malé změny viskozity, velikosti částic, rychlosti. Obalovací režim nastává když St je pro polovinu částic nadkritické. Koalescence částic s podkritickým St je vyvážena rozpadem částic s nadkritickým St a k růstu granulí dochází pouze vrstvením. Snímek 27: Vliv deformovatelnosti granulí Průběh růstu granulí závisí do značné míry na jejich deformaci při procesu. V systémech s vysokou mírou deformace dochází při kolescenci zároveň k deformaci a tedy i zhutnění gnanulí. Při uvedeném zhutnění se vymáčkne kapalina z póru na povrch nově vzniklé granule, který se udržuje trvale vlhký a je proto ihned přístupný pro další koalescenci. Takové systémy proto vykazují ustálený růst, kdy velikost granulí roste v určitém rozmezí s časem lineárně. Rychlost růstu závisí na množství vlhčiva a s jeho rostoucím množstvím se zvyšuje. V systémech s malou mírou deformace musí nově vzniklá granule podstoupit ještě několik dalších srážek (které nevedou k další koalescenci), aby se zdeformovala natolik, že dojde k vymáčknutí kapaliny na povrch granule. Teprve poté je dostupná pro koalescenci. Růst granulí proto vykazuje charakteristické indukční chování dané periodou prakticky konstantní velikosti, v níž probíhá zhutňování, následovanou prudkou koalescencí zhutněných granulí. Snímek 28: Deformační chování Je nutné poznamenat, že deformační chování není pouze vlastností materiálu. Jedná se vždy o relaci mezi mírou namáhání granulí a jejich pevností. Je určené poměrem energie udílené míchadlem k dynamické pevnosti granule a označuje se jako Stokesovo deformační číslo (je to něco trochu jiného než Stokesovo číslo, zde se deformuje celá granule, ne jen povrchový kapalný film) Snímek 29: Mapa růstu granulí Režim růstu granulí je určen jednak mírou deformačního chování (charakterizované Stokesovým deformačním číslem) a také vlhkostí granuloviny dané stupněm nasycení pórů. Příliš vysoká míra deformace zabraňuje nukleaci, vede k drobení granulí a u velmi vlhké směsi vytvoří homogenní pasu nebo suspenzi.při nižší hodnotě Stdef dochází u suššího granulátu k nukleaci, při vyšší míře nasycení pórů kapalinou se podle hodnoty Stdef vyskytuje buď ustálený nebo indukční růst. U velmi vlhkého granulátu nastává velmi rychlý růst, který může vést k přegranulování celé směsi. Snímek 30: Procesy vlhké granulace Procesy vlhké granulace se provozují buď v mechanických nebo fluidních mísičích. Mechanické mísiče mohou být vysokosmykové (typicky s míchadlem v nádobě) nebo nízkosmykové (s rotujícím bubnem nebo jinak tvarovanou nádobou). Fluidní granulace probíhá ve fluidní vrstvě. V uvedené řadě klesá mechanické namáhání granulí a tím také jejich hutnost.

6 Snímek 31: Vysokosmykové promíchávané granulátory Vysokosmykové granulátory mají podobu míchané nádoby. Typické je použití velkých pomaloběžných míchadel se svislou hřídelí, méně časté je horizontální uspořádání se šnekovým míchadlem. Snímek 32: Nízkosmykové promíchávané granulátory Nízkosmykové jsou charakteristické tím, že případná míchadla směs nehnětou, ale pouze volně promíchávají. Nejčastěji se jedná o rotující tvarovanou nádobu. Snímek 33: Fluidní granulace Fluidní granulace se provozuje jak ve vsádkovém, tak i kontinuálním uspořádání. Vsádkové fluidní granulátory jsou nádobami s přívodem fluidizačního média a horním postřikem nebo spodním postřikem. Velmi často se jedná o tzv. one-pot zařízení, které pracuje napřed jako fluidní granulátor a poté jako fluidní sušárna, což je ekonomicky výhodné. Snímek 34: Fluidní granulace Kontinuální fluidní granulátory jsou také s horním postřikem nebo se spodním postřikem. Zde je prouděním plynu nejen vytvářena fluidní vrstva, ale také zajištěn pomalý posun z jednoho konce granulátoru na druhý v koncové části zařízení funguje jako fluidní sušárna a ze zařízení vystupuje hotový suchý granulát. Snímek 35: Porovnání granulátů Vlhká granulace (vysokosmyková) a fluidní granulace produkují granule různých vlastností, procesy tedy nejsou zaměnitelné. Nízkosmyková granulace se tak často nepoužívá, jelikož produkt je podobný fluidnímu a fluidní granulaci se ve farmaceutických aplikacích dává přednost. Granulát z vysokosmykové granulace je kompaktní, hutnější, méně hygroskopický a má širší distribuci velikosti granulí. Fluidní granulát má vynikající rozpustnost, nižší sypnou hustotu a úzkou distribuce velikosti granulí, kterou lze měnit nastavením parametrů fluidní vrstvy. Snímek 36: Granulátor Typický granulátor je tvořen válcovou nebo kónickou nádobou, v níž je směs promíchávána hlavním míchadlem (hnětačem). Hnětač má pomalé otáčky a sahá typicky přes celou šířku nádoby. Rozdrobňování velkých granulí a čištění hnětače obstarává sekací nůž. V horní části je umístěna postřiková tryska. Snímek 37: Vliv charakteru aglomerátů na proces Průběh granulace lze v provozu sledovat nejlépe podle příkonu hnětače potřebného k udržení konstantních otáček. Jakmile začne docházet k nukleaci směs začne klást větší odpor, který dále roste se zvětšujícími se granulemi a posunu k lanovitým a kapilárním aglomerátům. Pokud se stále přidává vlhčivo, potřebný příkon se sníží, jakmile se aglomeráty začnou stávat kapkovitými to je ale již nežádoucí stav. Snímek 38: Vliv množství pojiva na aglomeraci Mikriskopické snímky ukazují vliv textury granulí na množství přidaného vlhčiva. Poměr L/S představuje poměr mezi objemem vlhčiva a objemem pórů ve výchozí surovině.

7 Snímek 39: Řízení vlhké granulace Granulace v mísiči je proces, který se musí řídit. Má totiž dynamický průběh, granule postupně rostou a granulaci je třeba ukončit ve stavu, kdy je již většina prášku zgranulována, ale granule ještě nejsou příliš velké. Cílem je tedy dosažení optimálního zgranulování směsi, přičemž je třeba zabránit přegranulování směsi. Hlavním ukazatelem pro monitorování je příkon hlavního míchadla, který má však pouze relativní vypovídací hodnotu. Proces je ovlivněn vlastnostmi materiálu a množstvím přidaného vlhčiva a je na tyto vlastnosti citlivý. Snímky 40-41: Kritické parametry procesu Důležitým parametrem pro udržení procesu pod kontrolou je množství vlhčiva. Ovlivňuje výrazně rychlost granulace, velikost a strukturu granulí a k jeho optimalizaci je zpravidla nutné experimentální studium (poloprovoz, laboratoř). Přenos výsledků na jiný materiál je možný do jisté míry, pokud je materiál podobný pomocí vlhčení do konstantního bezrozměrného stupně zvlhčení. Geometrie granulátoru má vliv na jeho funkci a proto není úplně snadné přenést granulační proces mezi granulátory různých výrobců (různého tvaru) Vlastnosti prášku ovlivňují chování při granulaci. Zásadní je velikost a tvar částic, které ovlivňují porozitu lože. Vliv frekvence sekacího nože je malý, má spíše čistící než zdrobňovací funkci. Rostoucí frekvence otáčení hnětače vede ke snižování podílu hrudek (extrémně velkých granulí), růstu střední velikosti granulí (s výjimkou hrudek), postupné vymizení jemných částic Snímek 42: Vliv frekvence otáčení hnětače Různě velké aparáty (i geometricky podobné) se mohou za stejných podmínek chovat různě. Při přenosu technologie z laboratoře do provozu je třeba provést přenos měřítka. Nejjednodušší pravidlo pro přenos měřítka je zachování shodné obvodové rychlosti hnětače (vlivy ostatních parametrů se zanedbávají). Snímek 43-44: Podobnost granulačních procesů Podobnost aparátů je možné řešit podrobněji rozměrovou analýzou. Nejprve sestavíme seznam všech veličin, které považujeme za významné a vyjádříme jejich rozměr ΔP čistý příkon hnětače, W, kg.m 2.s -3 D průměr hnětače, m N frekvence otáčení hnětače, s -1 h výška vrstvy prášku / granulí, m r sypná hustota granulí, kg.m -3 η dynamická viskozita granuloviny, Pa.s, kg.m -1.s -1 g gravitační zrychlení, m.s -2 Spočítáme základní veličiny, které se v těchto rozměrech vyskytují. Zde to jsou hmotnost, délka, čas Podle Buckinghamova teorému je podobnost procesu nutné definovat tolika bezrozměrnými kritérii, kolik je veličin kolik je základních veličin. Podobnost granulátorů lze tedy hodnotit podle 7 3 = 4

8 bezrozměrných kritérií. Tato kritéria mohou být definována různě, ale tradičně je to následující sada Newtonovo příkonové číslo, Reynoldsovo číslo, Froudovo číslo, Geometrické číslo. Granulátory sse budou chovat podobně, budou-li mít stejné hodnoty těchto kritérií. Teorii podobnosti lze využít typicky k tomu, že ze v laboratoři zoptimalizují parametry procesu na malém granulátoru. Pro něj je možné spočítat hodnoty všech kritérií podobnosti. Chceme-li, aby se velký provozní granulátor choval podobně, musí mít stejné hodnoty kritérií. Z nich je potom možné spočítat vhodné parametry provozu velkého granulátoru. Snímek 45: Mechanistické modely granulace a jiných operací s práškovými materiály Chování granulátorů je možné popisovat i mechanistickými modely. Tyto modely vypadají podobně jako modely jiných operací zahrnujících částice. Existují dva hlavní přístupy. Monte-Carlo modely popisují detailně mechaniku chování každé jednotlivé částice. Chhování části je řízeno pravděpodobností výskytu jevů. Tyto modely jsou vzhledem k velkému množství částic extrémně náročné na výpočetní výkon Modely kontinua jsou založeny na bilanci populací. Hmota je rozdělena do malého počtu populací (velikostních tříd) a vlastnosti částic v populaci jsou charakterizovány statisticky např. průměrnou vlastností nebo hustotou rozdělení vlastnosti. Rozložení např hmotnosti nebo energie mezi jednotlivé velikostní třídy je možné bilancovat na základě středních hodnot.

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity Proč zvyšovat velikost části Úrava velikosti části - vlhká granulae - fluidní granulae» Omezení rašnosti, rahového odílu» Zlešení tokovýh vlastností» Úrava syné hmotnosti» Zlešení tabletovatelnosti» Fixae

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

SPOJOVÁNÍ AGLOMERACE

SPOJOVÁNÍ AGLOMERACE SPOJOVÁNÍ AGLOMERACE Aglomerace je opakem rozpojování. Jejím účelem je spojovat malé částice do větších elementů granulí nebo tablet. Tímto způsobem se eliminují některé vlastnosti příliš jemnozrných látek

Více

Granulace je založena na tom, že se mezi částicemi tuhého materiálu vytvoří více-méně pevné vazby. Vazby mezi částicemi mohou vzniknout

Granulace je založena na tom, že se mezi částicemi tuhého materiálu vytvoří více-méně pevné vazby. Vazby mezi částicemi mohou vzniknout 6. GRANULACE Často je třeba upravit velikost částic práškových materiálů tak, aby se a) omezil rozprach a tím byla snížena ztráta materiálu a omezeno znečištění prostředí, b) zlepšily se tokové, manipulační

Více

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti Skladování sypkých látek Sypké hmoty Doprava, skladování, klasifikace» V kontejnerech» men objemy» zpracování a logistika na úrovni malých šarží» dlouhodoběj skladování» V zásobnících (silech)» velké objemy

Více

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících Skladování sypkých látek Sypké hmoty Doprava a skladování» V kontejnerech» menší objemy» zpracování a logistika na úrovni malých šarží» dlouhodobější skladování» V zásobnících (silech)» velké objemy (např.

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Tavení skel proces na míru?

Tavení skel proces na míru? Laboratoř anorganických materiálů Společné pracoviště Ústavu anorganické chemie AVČR, v.v.i a Vysoké školy chemicko-technologick technologické v Praze Technická 5, 166 28 Praha 6, Česká Republika Tavení

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup 3. FILTRACE Filtrace je jednou ze základních technologických operací, je to jedna ze základních jednotkových operací. Touto operací se oddělují pevné částice od tekutiny ( směs tekutiny a pevných částic

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Pevná fáze ve farmacii

Pevná fáze ve farmacii Úvod - Jaké jsou hlavní technologické operace při výrobě léčivých přípravků? - Co je to API, excipient, léčivý přípravek, enkapsulace? - Proč se provádí mokrá granulace? - Jaké hlavní normy se vztahují

Více

Míchání. P 0,t = Po ρ f 3 d 5 (2)

Míchání. P 0,t = Po ρ f 3 d 5 (2) Míchání Úvod: Mícháním se urychluje dosažení koncentrační a teplotní homogenity, které podstatně ovlivňují průběh tepelných a difuzních operací, reakcí v reaktorech a bezpečnost chemických provozů, která

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2009-2010 Výroba a kontrola kvality pevných lékových forem Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Z{mostný,

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) F Imobilizace na alumosilikátové materiály Vedoucí práce: Ing. Eliška Leitmannová, Ph.D. Umístění práce: laboratoř F07, F08 1 Úvod Imobilizace aktivních

Více

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv:

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv: Návody k speciálním praktickým cvičením z farmaceutické technologie doc. RNDr. Milan Řehula, CSc. a kolektiv Autorský kolektiv: doc. RNDr. Milan Řehula, CSc. Mgr. Pavel Berka doc. RNDr. Milan Dittrich,

Více

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU Znázornění odporů způsobujících snižování průtoku permeátu nástřik porézní membrána Druhy odporů R p blokování pórů R p R a R m R a R m R g R cp adsorbce membrána

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Základy chemických technologií

Základy chemických technologií 8. Přednáška Extrakce Sušení Extrakce extrakce kapalina kapalina rovnováha kapalina kapalina pro dvousložkové systémy jednostupňová extrakce, opakovaná extrakce procesní zařízení extrakce kapalina pevná

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách hořlavinou v tuhých zbytcích nedokonalost spalování tuhých a kapalných paliv

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA

BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA FUNKCE ŠLACH A VAZŮ Šlachy: spojují sval a kost přenos svalové síly na kost nebo chrupavku uložení elastické energie Vazy: spojují kosti stabilizace kloubu vymezení

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

BIOMECHANIKA SPORTU ODRAZ

BIOMECHANIKA SPORTU ODRAZ BIOMECHANIKA SPORTU ODRAZ Co je to odraz? Základní činnost, bez které by nemohly být realizovány běžné lokomoční aktivity (opakované odrazy při chůzi, běhu) Komplex multi kloubních akcí, při kterém spolupůsobí

Více

MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ

MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ Účel míchání: intenzifikace procesů v míchané vsádce (přenos tepla a hmoty) příprava směsí požadovaných vlastností (suspenze, emulze) Způsoby míchání: mechanické míchání hydraulické

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

BARVENÍ BETONU. Copyright 2015 - Ing. Jan Vetchý www.mct.cz

BARVENÍ BETONU. Copyright 2015 - Ing. Jan Vetchý www.mct.cz Tuto stránku jsem zařadil do mých internetových stránek z důvodů stálých problémů s barvením betonových výrobků, které jsou ve většině případů způsobeny nesprávnými technologickými kroky při barvení betonové

Více

2. Popis směsi aktivního gumového prachu s termoplastem

2. Popis směsi aktivního gumového prachu s termoplastem Nový produkt pro zvýšení životnosti a odolnosti asfaltů proti působícím podmínkám okolního prostředí. 1. Úvod Únava způsobená zátěží a vznik trhlin je společně s teplotním vlivem jeden z nejvýznamnějších

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 3. část ODSTRANĚNÍ SO 2 A HCl ZE SPALIN Zpracoval: Tým autorů EVECO Brno, s.r.o. ODSTRANĚNÍ SO 2 A HCl ZE SPALIN Množství SO 2, HCl,

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

II. TABLETY TABULETTAE

II. TABLETY TABULETTAE II. TABLETY TABULETTAE Definice tuhé mechanicky pevné přípravky jedna nebo více léčivých látek určeny k perorálnímu podávání polykají se celé žvýkají rozpouštějí nebo dispergují ve vodě ponechají se rozpouštět

Více

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní). CHROMATOGRAFIE ÚOD Existují různé chromatografické metody, viz rozdělení metod níže. Společný rys chromatografických dělení: vzorek jako směs látek - složek se dělí na jednotlivé složky působením dvou

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

CHEMICKÝ PRŮMYSL MOKRÁ GRANULACE PŘI VÝROBĚ. ZDENĚK BĚLOHLAV a, LUCIE BŘENKOVÁ a, PETR DURDIL b, JIŘÍ HANIKA c, PAVEL. LEHOCKÝ b.

CHEMICKÝ PRŮMYSL MOKRÁ GRANULACE PŘI VÝROBĚ. ZDENĚK BĚLOHLAV a, LUCIE BŘENKOVÁ a, PETR DURDIL b, JIŘÍ HANIKA c, PAVEL. LEHOCKÝ b. Chem. Listy 98, 116 1152 (2) CHEMICKÝ PRŮMYSL MOKRÁ GRANULACE PŘI VÝROBĚ LÉČIV ZDENĚK BĚLOHLAV a, LUCIE BŘENKOVÁ a, PETR DURDIL b, JIŘÍ HANIKA c, PAVEL ŘÁPEK b, VÁCLAV TOMÁŠEK b a MIKULÁŠ LEHOCKÝ b a Vysoká

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Název: Nenewtonovská kapalina

Název: Nenewtonovská kapalina Název: Nenewtonovská kapalina Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, biologie, fyzika Ročník: 5. Tématický celek:

Více

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem.

VY_32_INOVACE_C 08 19. hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem. Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Doprava materiálu je změna jeho místa a manipulace s materiálem je změna jeho polohy v daném místě.

Doprava materiálu je změna jeho místa a manipulace s materiálem je změna jeho polohy v daném místě. T.5 Manipulace s materiálem a manipulační technika 5.1. Doprava materiálu je změna jeho místa a manipulace s materiálem je změna jeho polohy v daném místě. V souladu se zaužívanou praxí však budeme pod

Více

277 905 ČESKÁ REPUBLIKA

277 905 ČESKÁ REPUBLIKA PATENTOVÝ SPIS (11) Číslo dokumentu: 277 905 ČESKÁ REPUBLIKA (19) Щ 8 Щ (21) Číslo přihlášky: 1619-90 (22) Přihlášeno: 02. 04. 90 (40) Zveřejněno: 18. 03. 92 (47) Uděleno: 28. 04. 93 (24) Oznámeno udělení

Více

Zkušenosti zkušební laboratoře ITC v oblasti zkoušení komponentů pro automobilový průmysl

Zkušenosti zkušební laboratoře ITC v oblasti zkoušení komponentů pro automobilový průmysl Zkušenosti zkušební laboratoře ITC v oblasti zkoušení komponentů pro automobilový průmysl 1. Úvod Naše laboratoř ITC divize 4 MESIT QM má dlouholetou tradici ve zkoušení komponentů pro leteckou techniku.

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Pracovní postupy Cemix Provádění hliněných malt a omítek

Pracovní postupy Cemix Provádění hliněných malt a omítek Pracovní postupy Cemix Provádění hliněných malt a omítek Pracovní postupy Cemix - Provádění hliněných malt a omítek Obsah 1 Použití... 3 2 Skladba systému... 3 3 Postup provádění... 3 3.1 Zdění... 3 3.2

Více

(75)!ng. PETR KUBÍČEK, CSc., a ing. JARMILA KUBÍČKOVA, OSTRAVA

(75)!ng. PETR KUBÍČEK, CSc., a ing. JARMILA KUBÍČKOVA, OSTRAVA ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A (19) (11) (bi) (22) Přihlášeno 30 10 74 (21) (PV 7386-74] (51) Int. Ol.* B 03 B 13/06 (40) Zveřejněno 28 04 78 ÚŘAD PRO VYNÁLEZY A OBJEVY (45) Vydáno 15 02

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

1.1.1 Hodnocení plechů s povlaky [13, 23]

1.1.1 Hodnocení plechů s povlaky [13, 23] 1.1.1 Hodnocení plechů s povlaky [13, 23] Hodnocení povlakovaných plechů musí být komplexní a k určování vlastností základního materiálu přistupuje ještě hodnocení vlastností povlaku v závislosti na jeho

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Manganový zeolit MZ 10

Manganový zeolit MZ 10 Manganový zeolit MZ 10 SPECIFIKACE POPIS PRODUKTU PUROLITE MZ 10 je manganový zeolit, oxidační a filtrační prostředek, který je připraven z glaukonitu, přírodního produktu, lépe známého jako greensand.

Více

Poškození strojních součástí

Poškození strojních součástí Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

12. SUŠENÍ. Obr. 12.1 Kapilární elevace

12. SUŠENÍ. Obr. 12.1 Kapilární elevace 12. SUŠENÍ Při sušení odstraňujeme z tuhého u zadrženou kapalinu, většinou vodu. Odstranění kapaliny z tuhé fáze může být realizováno mechanicky (filtrací, lisováním, odstředěním), fyzikálně-chemicky (adsorpcí

Více

www.pkrealizace.cz PK REALIZACE s.r.o., Zvolská 789/11, 142 00 Praha 4- Kamýk

www.pkrealizace.cz PK REALIZACE s.r.o., Zvolská 789/11, 142 00 Praha 4- Kamýk PK REALIZACE s.r.o., Zvolská 789/11, 142 00 Praha 4- Kamýk Krátce o Nanoprotech výrobcích: Nanoprotech spreje fungují na bázi nejnovějších nanotechnologií. Vyžadují minimální přípravu povrchu. Lehce pronikají

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08 ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 262470 (И) (Bl) (22) přihláženo 25 04 87 (21) PV 2926-87.V (SI) Int Cl* G 21 G 4/08 ÚFTAD PRO VYNÁLEZY A OBJEVY (40)

Více

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech 1 Princip Principem zkoušky je stanovení vodného výluhu při různých přídavcích kyseliny dusičné nebo hydroxidu sodného a následné

Více

Používání energie v prádelnách

Používání energie v prádelnách Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie v prádelnách Modul 5 Energie v prádelnách Kapitola 2 Používání energie 1

Více

Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Experimentální hodnocení bezpečnosti mobilní fotbalové brány ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Více

Křehké porušení a zlomy. Ondrej Lexa, 2010

Křehké porušení a zlomy. Ondrej Lexa, 2010 Křehké porušení a zlomy Ondrej Lexa, 2010 Odpověď na působení napětí Reologie 2 Křehká deformace Obálky porušení Tenzní versus střižné fraktury Co je křehká deformace? pevné látky se skládají z atomů propojených

Více

Filtrace 18.9.2008 1

Filtrace 18.9.2008 1 Výpočtový ý seminář z Procesního inženýrství podzim 2008 Filtrace 18.9.2008 1 Tématické okruhy principy a instrumentace bilance filtru kalolis filtrace za konstantní rychlosti filtrace za konstantního

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

MUKOADHEZIVNÍ ORÁLNÍ FILMY

MUKOADHEZIVNÍ ORÁLNÍ FILMY Návod na cvičení pro skupinu č. 1 MUKOADHEZIVNÍ ORÁLNÍ FILMY Cílem praktické části cvičení je příprava a hodnocení dvou druhů MOF: MOF-A: 4 % sodná sůl karboxymethylcelulosy (NaCMC), 3 % glycerol, ad 100

Více

Prů r v ů od o c d e e T -ex e kur u z r í Pe P t e r t a a M e M n e y n ja j r a ov o á 18.12.2010

Prů r v ů od o c d e e T -ex e kur u z r í Pe P t e r t a a M e M n e y n ja j r a ov o á 18.12.2010 Průvodce T-exkurzí Petra Menyjarová 18.12.2010 Krátce o T-exkurzích T-exkurze je součástí projektu Vzdělání a rozvoj talentované mládeže JMK. Jsou určeny pro studenty středních škol se zájmem o přírodní

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD Jméno: Obor: Datum provedení: TEORETICKÝ ÚVOD Jednou ze základních operací v biochemické laboratoři je vážení. Ve většině případů právě přesnost a správnost navažovaného množství látky má vliv na výsledek

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_12_PŘÍPRAVA DŘEVA 3_T1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

SOUVISLOST MEZI TEPLOTOU A VIBRACEMI V DIAGNOSTICE ROTAČNÍCH STROJŮ

SOUVISLOST MEZI TEPLOTOU A VIBRACEMI V DIAGNOSTICE ROTAČNÍCH STROJŮ SOUVISLOST MEZI TEPLOTOU A VIBRACEMI V DIAGNOSTICE ROTAČNÍCH STROJŮ Ing. Mečislav HUDECZEK, Ph.D. Ing. Lucie GABRHELOVÁ Ing. Jaroslav BRYCHCY, Ph.D. HUDECZEK SERVICE, s. r. o., Albrechtice 1. ÚVOD Provoz

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více