Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE

Rozměr: px
Začít zobrazení ze stránky:

Download "Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE"

Transkript

1 SPÍNANÉ ZDROJE Problematika spínaných zdrojů Popularita spínaných zdrojů v poslední době velmi roste a stávají se převažující skupinou zdrojů na trhu. Umožňují vytvářet kompaktní přístroje s malou hmotností a objemem a s velkou účinností. Praktický návrh spínaných zdrojů je však mnohem komplikovanější, než u zdrojů lineárních a náročnost na výběr součástek jejich návrh dále komplikuje. Porovnání s lineárními regulátory. Nejvyšší výhodou spínaných zdrojů je jejich vysoká účinnost a to zejména v případech omezeného výkonu, dodávaného z baterií, dále jejich váha a rozměry. Přes komplikace návrhu procento spínaných zdrojů stále roste a dnes se dá odhadnout, že jejich nasazení je zajímavé u všech zdrojů již okolo výkonu 20 [W]. Výhodou spínaných zdrojů, vyplývající z vysokého pracovního kmitočtu je snadná filtrovatelnost zbytků střídavé složky. Tato vlastnost se však uplatní až při podstatně vyšších kmitočtech, než je kmitočet sítě a proto spínané zdroje s tyristory, pracující právě na kmitočtech 50 [Hz], či o něco málo vyšších jsou dnes již nepoužívají. Nicméně nevýhodou spínaných zdrojů právě z hlediska jejich vysoké pracovní frekvence je vyšší cena jednotlivých součástek, které musí na takto vysokých kmitočtech spolehlivě pracovat (mezní kmitočty tranzistorů a diod, rozptylové kapacity transformátorů a stejnosměrné odpory elektrolytických kondenzátorů). Právě s postupně klesající cenou těchto součástek klesá i výkonová hranice efektivního využití spínaných zdrojů. Srovnání spínaných stabilizátorů s lineárními je přehledně uvedeno v tabulce l. Účinnost spínaných zdrojů se běžně pohybuje v rozmezí od 70 [%] do 80 [%] a to i v případě velmi špatných spínaných zdrojů od 60 [%] do 65 [%]. Obdobné lineární stabilizátory podobných parametrů by stěží mohly dosáhnout účinnosti lepší než 50 [%], obvykle se jejich účinnost pohybuje okolo 30 [%]. Podstatné zlepšení účinnosti se dosahuje v okolí pracovních kmitočtů 20 [khz], avšak dnešní součástky umožňují i konstrukci spínaných zdrojů, které pracují na kmitočtech 100 [khz] až l [MHz] s účinností až 8x lepší, než jejich obdobná lineární zapojení s podobnými vlastnostmi. Další parametry mohou být přinejmenším porovnatelné. Tabulka 7.1 Porovnání lineárních a spínaných zdrojů parametr spínaný zdroj lineární zdroj účinnost 75 [%] 30 [%] velikost 0,2 [W/cm 3 ] 0,05 [W/cm 3 ] váha 100 [W/kg] 20 [W/kg] výstupní zvlnění 50 [mv] 5[mV] šumové napětí 200 [mv] 50 [mv] odezva na skok 1 [ms] 20[jis] doba náběhu 20 [ms] 2[ms] cena přibližně konstantní roste s výkonem S rostoucím kmitočtem (a tedy rostoucí kvalitou) součástek se dále poměr parametrů mění ve prospěch spínaných zdrojů. Základní zapojení Spínaný zdroj se skládá z několika základních částí, znázorněných na obr.7.1. Ne vždy obsahuje všechny (výstupní filtr) a často obsahuje i některé navíc (vstupní usměrňovač). Podmínkou činnosti spínaného zdroje je stejnosměrné vstupní napětí, pokud možno co nejvíce zbavené střídavé složky, která vzhledem ke svému nízkému kmitočtu (50 [Hz]) snadno prochází celým filtrem až na jeho výstup. Jsou tedy dvě základní možnosti, buď je vstupní napětí stejnosměrné a s obvykle velmi malým vnitřním odporem a pak náročnost na vstupní filtr není vysoká, nebo v druhém případě je vstupní napětí střídavé a po jeho usměrnění vstupním usměrňovačem je potřeba důkladně vyhladit jeho zbytkové zvlnění vstupním filtrem. Oba tyto prvky, jak usměrňovač, tak vstupní filtr musí být dostatečně účinné na síťovém kmitočtu 50 [Hz], což vede Strana 1/6

2 na užití prakticky libovolných usměrňovačích diod (vhodných parametrů) ale na značné nároky na filtrační člen (RC,LC), který i na takto nízkém kmitočtu musí být dostatečně účinný. Obr.7.1 Blokové schéma spínaného zdroje Abychom mohli vstupní napětí transformovat, je nutné jej převést na střídavý tvar, což se ve spínaném zdroji provádí pomocí vysokofrekvenčních spínacích tranzistorů, které při kmitočtech 20 [khz] až l [MHz] vytvoří střídavý obdélníkový průběh. Vlastní transformace velikosti napětí probíhá buď na indukčnosti, nebo na transformátoru. Výstupní střídavé napětí je nutno usměrnit a opětně vyfiltrovat obsah jeho střídavé složky. Přitom naopak vzhledem ke vstupním obvodům jsou vysoké požadavky kladeny na diody, které musí vykazovat usměrňovači efekt na pracovním kmitočtu (malá kapacita přechodu, malá spínací a zejména vypínací doba). Na výstupní filtr již zdaleka nejsou kladeny takové požadavky protože pracuje na vysokém kmitočtu a jeho filtrační účinky na tomto kmitočtu jsou vynikající. Všechny spínané zdroje jsou řízeny zpětnou vazbou, která snímá velikost výstupního (výstupních) napětí, případně výstupního (nebo i vstupního) proudu a pomocí řídící logiky řídí spínání spínacích tranzistorů. Principiální funkční zapojení spínaných zdrojů lze tedy rozdělit do několika skupin: a) obvody bez indukčnosti, založené na násobení napětí pomocí usměrňovačů. Toto střídavé napětí se vyrábí spínáním a rozpínáním tranzistorů, principiálně se jedná o řízené astabilní klopné obvody. b) obvody snižující napětí, kdy indukčnost je zapojena do série se spínacím prvkem, obr.7.2. Indukčnost je zde zapojena jako část integračního LC článku. Výstupní kondenzátor C je dobíjen proudem I 1 a na kondenzátoru po sepnutí spínače S roste napětí a to tím pomaleji, čím je větší kapacita C a indukčnost L. Obr.7.2 Snižování napětí Po rozepnutí spínače S se snaží indukčnost L udržet směr a velikost svého proudu. Energie, akumulovaná během první etapy (v době sepnutého spínače S) se mění na dobíječi proud I 2 kondenzátoru C. Aby však proud I 2 mohl v tomto obvodu protékat, je třeba dosud popsané součástky doplnit diodou D, uzavírající proudový obvod proudu I 2. Z daného popisu principu činnosti tohoto obvodu plyne, že během první části (sepnut S) napětí na výstupu roste, kdežto během druhé části (spínač S rozepnut) výstupní napětí klesá. Je-li však spínání a rozpínání spínače S dostatečně rychlé, je výstupní zvlnění napětí U out o stejném kmitočtu a dobře je možno je filtrovat. Dále z uvedeného plyne, že výstupní napětí U out může být maximálně tak veliké, jako je napětí vstupní U in. Budeme-li prodlužovat dobu t 1; kdy je S sepnut, výstupní napětí poroste stejně jako v případě, kdy budeme dobu t 2 zkracovat. Chceme-li výstupní napětí snížit, pak snížíme dobu t 1, případně zvýšíme dobu t 2. Princip najdeme pod označením Step-Down nebo BUCK. Strana 2/6

3 Regulace obou dob t 1 a t 2 může být prováděna dvěma zásadně jinými způsoby: A/ jedna z dob (ať již t, nebo t 2 ) je konstantní a mění se doba druhá - to vede na systém s proměnnou frekvencí, což je z řady důvodů nevýhodné, jak bude ukázáno dále B/ součet obou dob je konstantní, tj. t 1 + t 2 = T = l / f = konst. K regulaci dochází tak, že při poklesu např. doby t 1 o stejnou část naroste doba t 2. Tento princip má celou řadu výhod a v součesné době jeho využívání převládá. Oba uvedené principy však mohou být užity i u dalších zapojení. c) obvody zvyšující napětí - na obr.7.3 je ukázáno další zapojení stejných stavebních prvků spínaného zdroje, tentokráte je indukčnost opět v sérii, ale spínač je paralelně na zem. Během doby t 1 (sepnutý spínač S) se výstupní kondenzátor vybíjí do záleže a aby se nevybíjel i přes sepnutý spínač S, je oddělen diodou D, která je při sepnutém spínači S polarizována v závěrném směru a nevede. Ze zdroje stejnosměrného napětí U IN teče proud I 1 přes indukčnost L a spínač S a energie se akumuluje v magnetickém poli indukčnosti o velikosti A = l / 2. L. I 2, proud Ij indukčnosti narůstá až do okamžiku, kdy je spínač S rozepnut. V tomto okamžiku indukčnost chce opět udržet směr a velikost proudu I, a vzniká na ní indukované napětí: U ind = - L. dl / dt. Obr.7.3 Zvyšování napětí Toto napětí se sčítá s napětím napájecího zdroje U IN a obě tato napětí v sérii prohánějí proud I 2 do výstupního kondenzátoru C (a zatěžovacího odporu, je-li připojen). Protože velikost indukovaného napětí U ind závisí na hodnotě indukčnosti cívky L, na velikosti původního proudu I 1 a na rychlosti rozepnutí spínače S (dt), pak toto napětí není amplitudově omezeno a může být teoreticky libovolně vysoké. Po sečtení s napětím U IN je tedy výstupní napětí U out vždy vyšší, jak U IN. Obvod se uvádí pod názvy Step-Up nebo také BOOST. Vliv dob sepnutí (t 1 ) a rozepnutí (t 2 ) u tohoto zapojení již není tak jednoznačný, jako u zapojení předcházejícího. S rostoucí dobou t 1 sice roste velikost proudu I, (a při dl / dt = konst. roste i velikost napětí U ind ), ale současně klesá i napětí U out dlouhým vybíjením kondenzátoru C. Naopak s rostoucí dobou t 2 je sice kondenzátor C déle dobíjen, ale pouze v tom případě, že velikost U IN + U ind je větší než U out + U F, kde U F je napětí na diodě v propustném směru, je-li vodivá. Tato podmínka nemusí být vždy splněna. Návrh spínaného zdroje tohoto typu je tedy značně komplikovanější. Je snadno patrné, že tento obvod nemůže být navržen tak, aby výstupní napětí bylo nižší, než napětí vstupní. d) obvod inverze napětí - schéma je na obr.7.4, kde je spínač S opět v sérii, ale paralelně je tentokráte cívka s indukčností L. V době t, (sepnutý spínač S) roste proud ze zdroje UIN přes spínač S a indukčnost L tak dlouho, jak dlouho je sepnut S. Obr.7.4 Inverze napětí Po rozepnutí spínače S má indukčnost snahu pokračovat ve směru a velikosti proudu I 1 proudem I 2, který se bude uzavírat přes nabíjený kondenzátor C a diodu D. Tím na kondenzátoru C poroste napětí, ale v polaritě plus dole, mínus nahoře. Výstupní napětí U out má tedy opačnou polaritu vzhledem ke společné svorce, než napětí vstupní U IN. Dioda D je polarizována tak, aby nedocházelo během doby t 1 k přebíjení kondenzátoru C na kladnou polaritu ze zdroje U IN. Doby spínání spínače S opět nejsou interpretovatelné jednoznačně. Strana 3/6

4 Při růstu doby t 1 (sepnutí S) sice roste velikost akumulované energie v magnetickém poli indukčnosti, ale o to více klesá výstupní napětí vybíjením kondenzátoru C do zátěže (na obr.7.4 nezakreslena). Z principu činnosti tohoto obvodu však vyplývá, že výstupní napětí U out může být jak menší, tak i větší, než napětí vstupní U IN. Pro všechny tyto typy obvodů je velmi nesnadné analyzovat jejich vlastnosti, ať již oblasti linearity a nelinearity regulace, ale také například odezvy na jednotkové skoky vstupního napětí, výstupního proudu apod. Budoucnost spínaných zdrojů Předpokládá se a to zejména v souvislosti se snižováním příkonů výpočetní techniky (notebooky) s nutným snižováním výkonů, pro které budou již spínané zdroje výhodné i ekonomicky. Současné bipolární tranzistory umožňují pracovat na spínacích frekvencích do 200 [khz] a FET tranzistory již do l [MHz]. S dalším rostoucím kmitočtem budou klesat zejména rozměry spínaných zdrojů a snadnost filtrace spínacích produktů. V současné době jsou zejména limitující omezené šumové poměry spínaných zdrojů, které jsou specifikovány řadou národních norem, které se liší. Směr řešení těchto problémů vede na neustále dokonalejší filtry, tedy opět na zvyšování frekvencí a kvality pasivních prvků. Obr.7.5 Synchronní usměrňovač V neposlední řadě se předpokládá vliv nových aplikačních zapojení, jako jsou např. synchronní usměrňovače, které začínají nahrazovat klasické, ale i Schottkyho diody. Jestliže při napájecích napětích okolo 5 [V] byly užívány diody s propustným (a tedy i ztrátovým) napětím 0,5 až l [V], pro systémy procesorů a pamětí s 'napájecím napětím 3,3 [V] je třeba hodnoty propustných napětí snižovat, aby neklesala energetická účinnost. Synchronní usměrňovače umí pracovat s propustným napětím 0,2 až 0,5[V]. Zapojení takového synchronního usměrňovače je na obr.7.5. Obsahuje tranzistor TMOS, jehož vodivý kanál N vzniká v případě, že řídicí elektroda G je kladně polarizována oproti substrátu, respektive emitoru (source) S, který je se substrátem spojen uvnitř tranzistoru. Obr.7.6 Rezonanční spínaný zdroj Kladné napětí pro elektrodu G získáváme z vinutí N2, které je nevýkonové oproti výkonovému vinutí N3. K sepnutí vlivem vzniku kanálu N dochází velmi rychle stejně jako k jeho zániku (doba závěrného zotavení je menší než 100 [ns]) a přitom při průchodu proudu je na tranzistoru mezi elektrodami S a D (na sepnutém kanále) úbytek napětí do 0,2 [V]. Současné TMOS tranzistory jsou schopny na rozepnutém kanále udržet napětí okolo 30 [V]. Jiné zajímavé zapojení spínaného zdroje vychází z jeho názvu SRPS = series resonant power supply, tj. výkonový zdroj na principu sériové rezonance. Jeho principiální zapojení je na obr.7.6. Síťové (střídavé) napětí se nejprve usměrní a běžným způsobem vyfiltruje. Dva spínací MOS tranzistory spolu se dvěma kondenzátory C, a C 2 tvoří tímto stejnosměrným napětím napájený můstek v jehož úhlopříčce se nalézá laděný sériový rezonanční obvod C 3 + L,. Indukčnost L 1 je tvořena primárním vinutím hlavního transformátoru. Ve správném pracovním Strana 4/6

5 režimu (na výstupu je požadované napětí) obvod PDM na svém výstupu budí pomocný transformátorek impulsy s opakovači frekvencí f 0. Další vinutí tohoto pomocného transformátoru zajišťují časovaná otvírání jednotlivých spínacích tranzistorů. Jakmile se však z nějakých důvodů změní na výstupu požadovaná hodnota napětí, např. směrem dolů (klesá), pak obvod PDM změní frekvenci tak, aby se pracovní kmitočet f přiblížil rezonančnímu kmitočtu f r obvodu C 3 + L 1. Tabulka 7.2 Vlastnosti SRPS vlastnost pracovní frekvence rozměry šumové poměry popis 0,5 až 1 [MHz] SINUS malé rozměry transformátoru jsou minimalizované spínáním v nule účinnost vysoká, obvykle nad 80 [%] poměr špičkového a pracovního proudu řízení obvodů vysoký vzhledem ke zpětnovazebnímu systému s vysokým zesílením pomocí běžných integrovaných typů VCO a PWM Tím rezonančním obvodem vzrůstá proud (klesá jeho impedance), do transformátoru se dostává více energie a výstupní napětí tím roste směrem k původní velikosti. Naopak při vzrůstu výstupního napětí (např. odlehčením zdroje odpojením části zátěže) výstupní frekvence PDM se od rezonanční frekvence f r vzdaluje a odpor rezonančního sériového obvodu C 3 + L, roste a tím klesá proud tímto obvodem a následkem i výstupní napětí. Vzhledem k tomu, že strmost boků rezonanční křivky je nesmírně vysoká, je tato regulace velmi citlivá i na malé změny výstupního napětí a samozřejmě i rychlá. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ Zapojení spínaných zdrojů jsou všeobecně komplikovaná a pro jejich znalost je nutno znát i vnitřní zapojení specializovaných integrovaných obvodů, které jsou v těchto zdrojích užívány. Nicméně odhlédneme-li od oblasti obvodů zpětnovazebních stabilizací, lze spínané zdroje rozdělit podle jejich zapojení a funkce do několika základních skupin. Jednotlivá zapojení se obvykle rozlišují podle způsobu přenosu energie z primárních obvodů do obvodů sekundárních: a) propustné zapojení (ozanačováno jako FORWARD) - je charakterizováno přímým přenosem energie přes transformátor, tj. teče-li proud primárním vinutím (v okamžiku sepnutí spínače), teče současně i sekundárním vinutím. Je to určeno vzájemnou polaritou primárního a sekundárního vinutí a polaritou výstupní diody. Obr.8. l Propustné zapojení tranzistor sepnut Strana 5/6

6 Obr.8.2 Propustné zapojení - rozepnutý tranzistor Tečka u jednotlivých vinutí označuje začátek vinutí. Bud jsou obě vinutí vinuta souhlasně a obě tečky jsou nahoře, pak kladné polaritě vstupního napětí transformátoru odpovídá kladná polarita výstupního napětí, nebo je jedna z teček dole a druhá nahoře - tím je označeno, že vinutí jsou vinuta opačně a tedy kladnému napětí na vstupu odpovídá záporné napětí na výstupu. Výstupní napětí může být opět jak vyšší, tak nižší, než napětí vstupní, ale vlivem převodního poměru transformátoru p při jiném rozsahu hodnot 6 než u zapojení invertujícího. b) akumulující zapojení (FLYBACK) -teče-li vstupním vinutím proud, je sekundární vinutí vzhledem k polaritě výstupní diody polarizováno tak, že proud neteče. Veškerá energie je uložena v magnetickém poli transformátoru a teprve po ukončení proudu primárním vinutím začíná protékat proud vinutím sekundárním, obr.8.3. Primární vinutí, na němž je napětí V lt je vinuto opačným směrem než vinutí sekundární s napětím U 2 (na obr.8.3 je polarita vstupního napětí U, vyznačena pro sepnutý tranzistor T a polarita výstupního napětí U 2 až pro rozepnutý tranzistor T - nejsou již rozkreslována dvě zapojení). I akumulující zapojení lze doplnit rekuperační diodou a rekuperačním vinutím, obr.8.4, ale jejich použití není u tohoto zapojení nezbytné, pouze zlepšuje účinnost využitím té části energie, která po rozepnutí tranzistoru je akumulována v magnetickém poli transformátoru a není z nějakých důvodů přenesena do výstupních obvodů (rychlá změna zatěžovacích poměrů). Proto teče-li proud primárním vinutím při sepnutí tranzistoru T, nemůže současně téci proud vinutím sekundárním - dioda je polarizována závěrně. Teprve při rozepnutí proudu I c, se naindukuje napětí U 2 v opačné polaritě, výstupní dioda je propustná a vinutím protéká proud. Obr.8.4 Rekuperační vinutí Tak se v sekundárním vinutí indukuje napětí U 2, které již je vhodné polarity pro průchod proudu usměrňovači diodou. c) dvojčinná zapojení (PUSH-PULL) - do primárního vinutí je spínán proud obou polarit pomocí dvou spínacích prvků, které pracují v inverzním zapojení. Obvykle i výstupní usměrňovače jsou dvoucestné, takže se vlastně jedná o dvojčinnou verzi propustného zapojení. V dnešní době je naprostá většina spínaných zdrojů tohoto principu, modifikovaného způsobem buzení primárního vinutí oběma spínači. Strana 6/6

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ LABORATORNÍ PULSNÍ ZDROJ S VÝSTUPNÍ LINEÁRNÍ STABILIZACÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ LABORATORNÍ PULSNÍ ZDROJ S VÝSTUPNÍ LINEÁRNÍ STABILIZACÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

1. Obecná struktura pohonu s napěťovým střídačem

1. Obecná struktura pohonu s napěťovým střídačem 1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:

Více

VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU

VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU Úvod: Čas ke studiu: Polovodičové součástky pro výkonovou elektroniku využívají stejné principy jako běžně používané polovodičové součástky

Více

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory K620ZENT Základy elektroniky Přednáška ř č. 6 Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory Bistabilní klopný obvod Po připojení ke zdroji napájecího napětí se obvod ustálí tak, že jeden

Více

8. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ

8. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Inovace výuky předmětu Robotika v lékařství

Inovace výuky předmětu Robotika v lékařství Přednáška 7 Inovace výuky předmětu Robotika v lékařství Senzory a aktuátory používané v robotických systémech. Regulace otáček stejnosměrných motorů (aktuátorů) Pro pohon jednotlivých os robota jsou často

Více

1. ÚVOD 2. PROPUSTNÝ MĚNIČ 2009/12 17. 3. 2009

1. ÚVOD 2. PROPUSTNÝ MĚNIČ 2009/12 17. 3. 2009 009/ 7. 3. 009 PROPSTNÝ MĚNIČ S TRANFORMÁTOREM A ŘÍDICÍM OBVODEM TOPSWITCH Ing. Petr Kejík Ústav radioelektroniky Vysoké učení technické v Brně Email: xkejik00@stud.feec.vutbr.cz Článek se zabývá návrhem

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ LABORATORNÍ PULSNÍ ZDROJ S VÝSTUPNÍ LINEÁRNÍ STABILIZACÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ LABORATORNÍ PULSNÍ ZDROJ S VÝSTUPNÍ LINEÁRNÍ STABILIZACÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Zdroj NTPI2EU ze setkání v ČB. Milan Horkel. Parametr Hodnota Poznámka. 50 x 72 x 28mm 50 x 35 x 28mm. Hmotnost 57g Zváženo včetně kabelu

Zdroj NTPI2EU ze setkání v ČB. Milan Horkel. Parametr Hodnota Poznámka. 50 x 72 x 28mm 50 x 35 x 28mm. Hmotnost 57g Zváženo včetně kabelu Zdroj NTPI2EU ze setkání v ČB Milan Horkel Na letošním tradičním setkání radioamatérů v Českých Budějovicích se objevilo větší množství stejných napájecích zdrojů. Tak jsem jeden rozlousknul, abych zjistil,

Více

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ

Více

3. D/A a A/D převodníky

3. D/A a A/D převodníky 3. D/A a A/D převodníky 3.1 D/A převodníky Digitálně/analogové (D/A) převodníky slouží k převodu číslicově vyjádřené hodnoty (např. v úrovních TTL) ve dvojkové soustavě na hodnotu nějaké analogové veličiny.

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA RENOVACE LABORATORNÍHO ZDROJE 40V/40A Petr Dašek BAKALÁŘSKÁ PRÁCE 2009 -3- Prohlašuji: Tuto práci jsem vypracoval samostatně. Použité literární prameny

Více

MĚNIČ Z 12 V DC NA 230 V AC S OCHRANAMI

MĚNIČ Z 12 V DC NA 230 V AC S OCHRANAMI VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Datum tvorby 15.6.2012

Datum tvorby 15.6.2012 Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_2.MA_01_Lineární prvky el_obvodů Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

Ele 1 RLC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických strojů

Ele 1 RLC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických strojů Předmět: očník: Vytvořil: Datum: ELEKTOTECHNIKA PVNÍ ZDENĚK KOVAL Název zpracovaného celku: 3. 0. 03 Ele LC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Katedra elektrotechniky a elektromechanických systémů Ing. Pavel Rydlo KROKOVÉ MOTORY A JEJICH ŘÍZENÍ Studijní texty

Více

8,1 [9] 8 287 [9] ± ± ± ± ± ± ± ± ±

8,1 [9] 8 287 [9] ± ± ± ± ± ± ± ± ± Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE

MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE Úloha č. 3 MĚŘÍ TRAZISTOROVÉHO ZSILOVAČ ÚOL MĚŘÍ:. Změřte a) charakteristiku I = f (I ) při U = konst. tranzistoru se společným emitorem a nakreslete její graf; b) zesilovací činitel β tranzistoru se společným

Více

snímače využívají trvalé nebo pružné deformace měřicích členů

snímače využívají trvalé nebo pružné deformace měřicích členů MĚŘENÍ SÍLY snímače využívají trvalé nebo pružné deformace měřicích členů a) Měřiče s trvalou deformací měřicích členů Jsou málo přesné Proto se používají především pro orientační měření tvářecích sil,

Více

Zesilovač. Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu. Princip zesilovače. Realizace zesilovačů

Zesilovač. Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu. Princip zesilovače. Realizace zesilovačů Zesilovač Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu Princip zesilovače Zesilovač je dvojbran který může současně zesilovat napětí i proud nebo pouze napětí

Více

Otázka č.4. Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace.

Otázka č.4. Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace. Otázka č.4 Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace. 1) Tyristor Schematická značka Struktura Tyristor má 3 PN přechody a 4 vrstvy. Jde o spínací

Více

Supertex MOSFET. Typy. MOSFET s vodivým kanálem. MOSFET s indukovaným kanálem N. Pro vypnutí je nutné záporné napětí V. napětí VGS zvýší vodivost

Supertex MOSFET. Typy. MOSFET s vodivým kanálem. MOSFET s indukovaným kanálem N. Pro vypnutí je nutné záporné napětí V. napětí VGS zvýší vodivost Supertex MOSFET Napěťové stabilizátory Budiče LED Vícekanálové budiče pro velké napětí Budiče elektroluminisenčních svítidel Ultrazvukové IO Speciální IO Supertex MOSFET Typy MOSFET s vodivým kanálem Normálně

Více

Stopař pro začátečníky

Stopař pro začátečníky Stopař pro začátečníky Miroslav Sámel Před nějakou dobou se na http://letsmakerobots.com/node/8396 objevilo zajímavé a jednoduché zapojení elektroniky sledovače čáry. Zejména začínající robotáři mají problémy

Více

1. IMPULSNÍ NAPÁJECÍ ZDROJE A STABILIZÁTORY

1. IMPULSNÍ NAPÁJECÍ ZDROJE A STABILIZÁTORY 1. IMPULSNÍ NAPÁJECÍ ZDROJE A STABILIZÁTORY 1.1 Úvod Úkolem této úlohy je seznámení se s principy, vlastnostmi a některými obvodovými realizacemi spínaných zdrojů. Pro získání teoretických znalostí k úloze

Více

1 Přesnost měření efektivní hodnoty různými typy přístrojů

1 Přesnost měření efektivní hodnoty různými typy přístrojů 1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky. Regulace jednofázového napěťového střídače

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky. Regulace jednofázového napěťového střídače ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE Regulace jednofázového napěťového střídače vedoucí práce: Ing. Vojtěch Blahník,

Více

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť

Více

OPERAČNÍ ZESILOVAČE. Teoretický základ

OPERAČNÍ ZESILOVAČE. Teoretický základ OPERAČNÍ ZESILOVAČE Teoretický základ Operační zesilovač (OZ) je polovodičová součástka, která je dnes základním stavebním prvkem obvodů zpracovávajících spojité analogové signály. Jedná se o elektronický

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:

Více

LOGIC. Stavebnice PROMOS Line 2. Technický manuál

LOGIC. Stavebnice PROMOS Line 2. Technický manuál ELSO, Jaselská 177 28000 KOLÍN, Z tel/fax +420-321-727753 http://www.elsaco.cz mail: elsaco@elsaco.cz Stavebnice PROMOS Line 2 LOGI Technický manuál 17. 04. 2014 2005 sdružení ELSO Účelová publikace ELSO

Více

8. Operaèní zesilovaèe

8. Operaèní zesilovaèe zl_e_new.qxd.4.005 0:34 StrÆnka 80 80 Elektronika souèástky a obvody, principy a pøíklady 8. Operaèní zesilovaèe Operaèní zesilovaèe jsou dnes nejvíce rozšíøenou skupinou analogových obvodù. Jedná se o

Více

VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory

VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

9. Kompenzace účiníku u spínaných zdrojů malých výkonů

9. Kompenzace účiníku u spínaných zdrojů malých výkonů Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš)

Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš) Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš) Řídicí systém obvykle komunikuje s řízenou technologií prostřednictvím snímačů a akčních členů.

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE (2.2, 2.3 a 2.4) Ing. Pavel VYLEGALA 2014 Kapacitní snímače Vyhodnocují kmity oscilačního obvodu RC. Vniknutím předmětu do elektrostatického pole kondenzátoru

Více

Stejnosměrné měniče. přednášky výkonová elektronika

Stejnosměrné měniče. přednášky výkonová elektronika přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a ovace výuky technických předmětů. Stejnosměrné měniče - charakteristika vstupní proud stejnosměrný, výstupní

Více

IGBT Insulated Gate Bipolar Transistor speciální polovodičová struktura IGBT se používá jako spínací tranzistor nejdůležitější součástka výkonové

IGBT Insulated Gate Bipolar Transistor speciální polovodičová struktura IGBT se používá jako spínací tranzistor nejdůležitější součástka výkonové IGBT Insulated Gate Bipolar Transistor speciální polovodičová struktura IGBT se používá jako spínací tranzistor nejdůležitější součástka výkonové elektroniky chová se jako bipolární tranzistor řízený unipolárním

Více

Střídavé měniče. Přednášky výkonová elektronika

Střídavé měniče. Přednášky výkonová elektronika Přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Vstupní a výstupní proud střídavý Rozdělení střídavých měničů f vst

Více

Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty

Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty stejnosměrného napětí U dav Užití v pohonech: řízení stejnosměrných

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Číslicový otáčkoměr TD 5.1 AS

Číslicový otáčkoměr TD 5.1 AS Číslicový otáčkoměr TD 5.1 AS Zjednodušená verze otáčkoměru řady TD 5.1 bez seriové komunikace, která obsahuje hlídání protáčení a s možností nastavení 4 mezí pro sepnutí relé. Určení - číslicový otáčkoměr

Více

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304

TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 Signal Mont s.r.o Hradec Králové T73304 List č.: 1 Výzkumný ústav železniční Praha Sdělovací a zabezpečovací dílny Hradec Králové TECHNICKÝ POPIS ZDROJŮ ŘADY EZ1 T 73304 JKPOV 404 229 733 041 Zpracoval:

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

5. 1. Násobička s rozdělením proudů (s proměnnou strmostí)

5. 1. Násobička s rozdělením proudů (s proměnnou strmostí) 5. Analogové násobičky Čas ke studiu: 5 minut íl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení analogových násobiček samostatně změřit zadanou úlohu Výklad Násobení, dělení

Více

Mechatronické systémy s krokovými motory

Mechatronické systémy s krokovými motory Mechatronické systémy s krokovými motory V současné technické praxi v oblasti řídicí, výpočetní a regulační techniky se nejvíce používají krokové a synchronní motorky malých výkonů. Nejvíce máme možnost

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu. [Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] 04.01.01 Na rezistoru je napětí 5 V a teče jím proud 25 ma. Rezistor má hodnotu. A) 100 ohmů B) 150 ohmů C) 200 ohmů 04.01.02 Na rezistoru

Více

VÝKON V HARMONICKÉM USTÁLENÉM STAVU

VÝKON V HARMONICKÉM USTÁLENÉM STAVU VÝKON V HARMONICKÉM USTÁLENÉM STAVU Základní představa: Rezistor: proud, procházející rezistorem, ho zahřívá, energie, dodaná rezistoru, se tak nevratně mění na teplo Kapacitor: pokud ke kondenzátoru připojíme

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

Kroužek elektroniky 2010-2011

Kroužek elektroniky 2010-2011 Dům dětí a mládeže Bílina Havířská 529/10 418 01 Bílina tel. 417 821 527 http://www.ddmbilina.cz e-mail: ddmbilina@seznam.cz Kroužek elektroniky 2010-2011 Dům dětí a mládeže Bílina 2010-2011 1 (pouze pro

Více

SPÍNANÝ LABORATORNÍ ZDROJ NAPĚTÍ

SPÍNANÝ LABORATORNÍ ZDROJ NAPĚTÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

AD1M14VE2. Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz. Speciální aplikace výkonové elektroniky + řízení pohonů

AD1M14VE2. Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz. Speciální aplikace výkonové elektroniky + řízení pohonů AD1M14VE2 Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz Obsah: Speciální aplikace výkonové elektroniky + řízení pohonů Harmonogram: 7+ soustředění Literatura: Skripta Výkonová elektronika

Více

Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00

Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00 Č e s k ý m e t r o l o g i c k ý i n s t i t u t Okružní 31, 638 00 Brno Č.j.: 0313/002/15/Pos. Vyřizuje: Ing. Miroslav Pospíšil Telefon: 545 555 135, -131 V E Ř E J N Á V Y H L Á Š K A Český metrologický

Více

3. Komutátorové motory na střídavý proud... 29 3.1. Rozdělení střídavých komutátorových motorů... 29 3.2. Konstrukce jednofázových komutátorových

3. Komutátorové motory na střídavý proud... 29 3.1. Rozdělení střídavých komutátorových motorů... 29 3.2. Konstrukce jednofázových komutátorových ELEKTRICKÁ ZAŘÍZENÍ 5 KOMUTÁTOROVÉ STROJE MĚNIČE JIŘÍ LIBRA UČEBNÍ TEXTY PRO VÝUKU ELEKTROTECHNICKÝCH OBORŮ 1 Obsah 1. Úvod k elektrickým strojům... 4 2. Stejnosměrné stroje... 5 2.1. Úvod ke stejnosměrným

Více

Řízené polovodičové součástky. Výkonová elektronika

Řízené polovodičové součástky. Výkonová elektronika Řízené polovodičové součástky Výkonová elektronika Polovodičové součástky s řízeným zapnutím řídící signál přivede spínač z blokovacího do propustného stavu do závěrného stavu jen vnější komutací (přerušením)

Více

Počítačové cvičení BNEZ 2. Snižující měnič

Počítačové cvičení BNEZ 2. Snižující měnič Počítačové cvičení BNEZ 2 Snižující měnič Úkol 1: Úkol 2: Úkol 3: Úkol 4: Úkol 5: Dle schématu na Obr. 2 zakreslete v programu OrCAD Capture obvod snižujícího DC-DC měniče. Měnič má mít následující parametry:

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ NIVEZITA V PLZNI FAKLTA ELEKTOTECHNICKÁ KATEDA ELEKTOENEGETIKY A EKOLOGIE DIPLOMOVÁ PÁCE Výkonový zesilovač s komplementárním diferenčním vstupem Michal Drnek 04 Výkonový zesilovač s komplementárním

Více

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu. ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

VÝKONOVÉ TRANZISTORY MOS

VÝKONOVÉ TRANZISTORY MOS VÝKONOVÉ TANZSTOY MOS Pro výkonové aplikace mají tranzistory MOS přednosti: - vysoká vstupní impedance, - vysoké výkonové zesílení, - napěťové řízení, - teplotní stabilita PNP FNKE TANZSTO MOS Prahové

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: T3.2.1 MĚŘENÍ NA UNIPOLÁRNÍCH TRANZISTORECH A IO Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod,

Více

Fázory, impedance a admitance

Fázory, impedance a admitance Fázory, impedance a admitance 1 Dva harmonické zdroje napětí s frekvencí jsou zapojeny sériově a S použitím fázorů vypočítejte časový průběh napětí mezi výstupními svorkami, jestliže = 30 sin(100¼t);u

Více

Flyback converter (Blokující měnič)

Flyback converter (Blokující měnič) Flyback converter (Blokující měnič) 1 Blokující měnič patří do rodiny měničů se spínaným primárním vinutím, což znamená, že výstup je od vstupu galvanicky oddělen. Blokující měniče se používají pro napájení

Více

NÁVRH DVOJITÉHO STABILIZOVANÉHO NAPÁJECÍHO ZDROJE

NÁVRH DVOJITÉHO STABILIZOVANÉHO NAPÁJECÍHO ZDROJE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Vlastnosti členů regulačních obvodů

Vlastnosti členů regulačních obvodů Vlastnosti členů regulačních obvodů Vlastnosti všech regulačních obvodů se projevuje na kvalitě regulace. Statické vlastnosti regulačních členů Statické vlastnosti vyjadřuje statická charakteristika. Je

Více

Měření kmitočtu a tvaru signálů pomocí osciloskopu

Měření kmitočtu a tvaru signálů pomocí osciloskopu Měření kmitočtu a tvaru signálů pomocí osciloskopu Osciloskop nebo také řidčeji oscilograf zobrazuje na stínítku obrazovky nebo LC displeji průběhy připojených elektrických signálů. Speciální konfigurace

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE Realizace a ověření unikátní topologie analogového vedoucí práce: Ing. Michal Kubík, Ph.D. 2013

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE. Řízení DC-DC konvertoru

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE. Řízení DC-DC konvertoru Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky BAKALÁŘSKÁ PRÁCE Řízení DC-DC konvertoru Plzeň, 213 Martin Langmajer P R O H L Á Š E N Í Předkládám tímto k posouzení a obhajobě

Více

HS-645MG ultra torque (přidáno 18.3.09)

HS-645MG ultra torque (přidáno 18.3.09) HS-645MG ultra torque (přidáno 18.3.09) (Servo zapůjčeno firmou Satria děkuji) Zdroj 5V metr kabelu ke konektoru na konektoru měření. Proud měřen proudovou sondou na + větvi. Řídící signál byl nastaven

Více

Zdroje napětí /Vlček/

Zdroje napětí /Vlček/ Zdroje napětí /Vlček/ Klasické napájecí zdroje Tyto zdroje nejprve transformují síťové napětí na potřebnou menší hodnotu. Dále jej usměrní, filtrují a stabilizují. Obrázek č. 1 Obrázek č. 1 a/ Blokové

Více

Jednoduché rezonanční obvody

Jednoduché rezonanční obvody Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako

Více

Aplikovaná elektronika pro aplikovanou fyziku

Aplikovaná elektronika pro aplikovanou fyziku Milan Vůjtek Aplikovaná elektronika pro aplikovanou fyziku Předkládaný text je určen k výuce studentů oboru Aplikovaná fyzika. Věnuje se primárně vlastnostem a aplikacím operačních zesilovačů, především

Více

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem.

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem. Petr Novotný Úloha č. 7 Operační zesilovač, jeho vlastnosti a využití Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem. Zapojení zesilovače s invertujícím

Více

15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH

15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH 15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH Rozdělení zesilovačů podle velikosti rozkmitu vstupního napětí, podle způsobu zapojení tranzistoru do obvodu, podle způsobu vazby na následující stupeň a podle

Více

MĚŘĚNÍ LOGICKÝCH ČÍSLICOVÝCH OBVODŮ TTL I

MĚŘĚNÍ LOGICKÝCH ČÍSLICOVÝCH OBVODŮ TTL I MĚŘĚNÍ LOGICKÝCH ČÍSLICOÝCH OBODŮ TTL I 1. Podle katalogu nakreslete vývody a vnitřní zapojení obvodu MH7400. Jde o čtveřici dvouvstupových hradel NND. 2. Z katalogu vypište mezní hodnoty a charakteristické

Více

[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače

[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače Teoretický úvod Audio technika obecně je obor, zabývající se zpracováním zvuku a je poměrně silně spjat s elektroakustikou. Elektroakustika do sebe zahrnuje především elektrotechnická zařízení od akusticko-elektrických

Více

Použití spínaných zdrojů z PC v dílenské praxi

Použití spínaných zdrojů z PC v dílenské praxi http://www.coptkm.cz/ Použití spínaných zdrojů z PC v dílenské praxi Naprostá většina napájecích zdrojů používaných ve výpočetní technice je dnes řešena jako spínané zdroje. Použití spínaných zdrojů umožňuje

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Odrušení plošných spoj Vlastnosti plošných spoj Odpor Kapacitu Induk nost mikropáskového vedení Vlivem vzájemné induk nosti a kapacity eslechy

Odrušení plošných spoj Vlastnosti plošných spoj Odpor Kapacitu Induk nost mikropáskového vedení Vlivem vzájemné induk nosti a kapacity eslechy Odrušení plošných spojů Ing. Jiří Vlček Tento text je určen pro výuku praxe na SPŠE. Doplňuje moji publikaci Základy elektrotechniky Elektrotechnologii. Vlastnosti plošných spojů Odpor R = ρ l/s = ρ l/t

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULISIM) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť

Více

Tranzistor polopatě. Tranzistor jako spínač

Tranzistor polopatě. Tranzistor jako spínač Tranzistor polopatě Ing. Jiří Bezstarosti Úlohou toho článku není vysvětlit fyzikální činnost tranzistoru, ale spíše naznačit způsoby jeho použití. Zároveň se tento článek bude snažit vysvětlit problematiku

Více

Neřízené polovodičové prvky

Neřízené polovodičové prvky Neřízené polovodičové prvky Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Neřízené polovodičové spínače neobsahují

Více

Krokové motory. Klady a zápory

Krokové motory. Klady a zápory Krokové motory Především je třeba si uvědomit, že pokud mluvíme o krokovém motoru, tak většinou myslíme krokový pohon. Znamená to, že se skládá s el. komutátoru, výkonového spínacího a napájecího prvku,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Hlídač plamene SP 1.4 S

Hlídač plamene SP 1.4 S Hlídač plamene SP 1.4 S Obsah: 1. Úvod 2. Technické údaje 3. Vnější návaznosti 4. Provoz 4.1 Způsob použití 4.2 Aplikace tubusu 4.3 Pokyny pro provoz 4.4 Bezpečnostní předpisy 4.5 Kontrola funkce 4.6 Zkušební

Více

Impulsní LC oscilátor

Impulsní LC oscilátor 1 Impulsní LC oscilátor Ing. Ladislav Kopecký, 2002 Upozornění: Tento článek předpokládá znalost práce Rezonanční obvod jako zdroj volné energie. Při praktických pokusech s elektrickou rezonancí jsem nejdříve

Více

Měnič pro obloukové svařování řízený signálovým procesorem

Měnič pro obloukové svařování řízený signálovým procesorem Měnič pro obloukové svařování řízený signálovým procesorem Ing. Petr Hapal Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav výkonové elektroniky, Technická 8, 612

Více