SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY
|
|
- Karla Králová
- před 9 lety
- Počet zobrazení:
Transkript
1 SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY V této úloze budou řešeny symetrické čtyřpóly jako frekvenční filtry. Bude představena jejich funkce na praktickém příkladu reproduktorů. Teoretický základ Pod pojmem čtyřpól rozumíme prvek složený z obecných impedancí, který do elektrického obvodu zapojujeme čtyřmi svorkami. Často je také nazýván dvojbranem a to za podmínky, že oběma vstupními svorkami teče stejný proud I a zároveň oběma výstupními svorkami teče také stejný proud I2 (viz obr. ). Podle teorie střídavých sítí pro symetrický čtyřpól platí: kde determinant soustavy je Δ = A 2 B C. U = A U 2 + B I 2 I = C U 2 + A I 2, I I 2 3 U 2 4 U 2 Obrázek : Čtyřpól neboli dvojbran. Symboly U, I značí vstupní napětí a proud a U2, I2 značí výstupní napětí a proud. Symetrické čtyřpóly se využívají jako filtry ve tvaru tzv. π-článků a T-článků znázorněných na obr. 2. Z Z 2 2 Z U U 2 Y Y U 2 Y U 2 2 Obrázek 2: Filtry jako π-články a T-články. Pro π-článek potom dle výše uvedených rovnic platí: A = + Z Y 2 B = Z
2 C = Y ( + Z Y). 4 Pro T-článek platí obdobně: A = + Z Y 4 B = Z ( + Z Y) 4 C = Y. Pokud zavedeme pojem tlumení jako β = 20log U a za předpokladu zanedbatelných U 2 ohmických odporů v článku, lze z uvedeného usoudit, že filtry zapojené jako π-články a T-články propouštějí pouze určitý rozsah frekvencí. Tento rozsah frekvencí odpovídá intervalu hodnot koeficientu A náležící do intervalu,. Hodnotám koeficientu A= a A=- odpovídají mezní frekvence, mezi nimiž nedochází k tlumení. Pro účely našeho měření budeme používat π-článek. Dolnofrekvenční propust β L 2 C 2 C f(hz) f f 2 Obrázek 3: Dolnofrekvenční propust. Filtr a průběh jeho tlumení β je znázorněn na obr. 3. Pro tento π-článek platí: Y = jωc, Z = jωl, A = 2 ω2 LC Pro A=+ dostaneme ω 2 = 0, f = 0Hz Pro A=- dostaneme ω 2 2 = 4 LC, f 2 = π LC Hz
3 Hornofrekvenční propust β C 2L 2L f(hz) f 2 f = Obrázek 4: Hornofrekvenční propust. Filtr a průběh jeho tlumení β je znázorněn na obr. 4. Pro tento π-článek platí: Z = j, Y =, A = ωc jωl 2 ω 2 LC Pro A=+ dostaneme ω 2 =, f = Pro A=- dostaneme ω 2 2 = Pásmová propust, f 4LC 2 = Hz 4π LC β L K 2 C 2 C f(hz) f f 2 Obrázek 5: Pásmová propust. Filtr a průběh jeho tlumení β je znázorněn na obr. 5. Pro tento π-článek platí: Z = jωl j, Y = jωc, A = + j (ωl ) jωc = ωk 2 ωk 2 ω2 LC + CK 2 Pro A=+ dostaneme ω 2 = LK, f = 2π LK Hz
4 Pro A=- dostaneme ω 2 2 = LK ( + 4K C ), f 2 = 2π LK ( + 4K C ) Hz Využití filtrů v praxi - reproduktorové soustavy Základním požadavkem na kvalitní reproduktorovou soustavu je co nejvěrohodnější přenesení zvuku, od nízkých tónů až po vysoké. Pro přenesení nízkých tónů jsou vhodné reproduktory s velkým průměrem membrán umožňující velký rozkmit membrán, kdežto pro vysoké tóny jsou vhodnější menší membrány s malým kmitacím rozsahem. Z uvedeného vyplývá, že pro sestavení kvalitní reproduktorové soustavy je nutno zařadit několik reproduktorů, které kvalitně přenášejí určitý rozsah frekvencí, tzv. pásmo (odtud dvoupásmová, třípásmová reproduktorová soustava). Pro rozdělení signálů podle frekvencí přicházejících do reproduktoru se využívá elektrických výhybek. Ty jsou tvořeny kondenzátory a cívkami tak, aby propouštěly pouze požadovaný rozsah frekvencí. Výhybka tedy v reproduktorové soustavě funguje jako hornofrekvenční a zároveň i dolnofrekvenční a pásmová propust, nebo také filtr. Nízké frekvence v rozsahu 20 Hz až 4 khz jsou přehrávány basovými reproduktory, střední tóny od 500 Hz do 4 khz přehrají menší středotónové reproduktory a vysoké frekvence od 3 khz výše vysokotónové reproduktory. Rozsah basových a středotónových reproduktorů se překrývá, protože v dvoupásmovém zapojení soustavy právě basový reproduktor nahradí středotónový. [db] 3 db A B C f d f h Obrázek 6: Zapojení třípásmové reproduktorové soustavy s výhybkami; A - basový, B - středotónový a C - vysokotónový reproduktor. Frekvence fd a fh určují dolní a horní dělící kmitočet. Program Zeitnitz Software Zeitnitz se používá k zobrazení a analýze zvukových vln. Data mohou být nahrávána buď přímo ze zvukové karty (s mikrofonovým vstupem) nebo ze zdroje jako je CD či Mediaplayer. Software získává vstupní data ze zvukové karty prostřednictvím
5 Windows rozhraní, tedy nekomunikuje přímo se zvukovou kartou. Proto pokud se objeví problém se zvukovou kartou, je třeba ho řešit na úrovni operačního systému. Uživatelské rozhraní je koncipováno podobně jako konvenční osciloskop s přídavnými rozhraními: XY display, frekvenční analýza a generátor signálu. Osciloskop V okně osciloskopu je možné nastavit tři základní funkce: amplituda, čas, trigger (viz obr. 7). Obrázek 7: Program Zeitnitz. Hodnoty amplitudy jsou uvedené v jednotkách na dílek. Nastavení času se vztahuje k celé zobrazené škále, nejde tedy o hodnotu na jednotku dílku jako je to u konvenčního osciloskopu. Trigger obsahuje základní funkce off, auto, normal a single. XY graf Signály ze dvou kanálů jsou zobrazeny proti sobě, čímž vzniknou tzv. Lissajousovy obrazce. Frekvenční analýza Okno frekvenční analýzy zobrazuje výsledky Fourierovy analýzy vybraného kanálu. Amplituda stejně jako frekvence může být zobrazena v logaritmické škále či v jednotkách db. Generátor signálu Dvoukanálový generátor signálu je integrován v programu. Generátor generuje signál ve tvaru sinus, obdélník, trojúhelník a pila s nastavitelnou amplitudou a frekvencí.
6 Zadání. Změřte hodnoty jednotlivých součástí všech filtrů pomocí RLC měřiče. 2. Pomocí naměřených hodnot vypočítejte teoretické mezní hodnoty f a f2. 3. Změřte frekvenční charakteristiku všech samostatných filtrů v zapojení dle obr. 8. Za filtr je zapojen zatěžovací odpor RZ, na kterém měříme výstupní napětí U2. Vstupní napětí U udržujeme během měření konstantní. filtr generátor funkcí V R Z V Obrázek 8: Schématické uspořádání přístrojů pro měření. Do grafu vyznačte závislost útlumu β na frekvenci. Do téhož grafu vyznačte průběh koeficientu A, pro který zvolte vhodné měřítko grafu tak, aby vynikl obor (-, +). Stupnici frekvence zobrazte v logaritmickém měřítku. 4. Změřte frekvenční charakteristiku samostatných filtrů a reproduktorové výhybky pomocí programu Zeitnitz (viz zapojení na obr. 9). Výsledky porovnejte s výsledky z úlohy č.3. výhybka výkonový zesilovač Použitá literatura Obrázek 9: Schématické zapojení reproduktorové výhybky pro měření frekvenční charakteristiky. - ONDRÁČEK, Zdeněk: Elektronika pro fyziky, Masarykova univerzita v Brně, Brno 998, ISBN SVOBODA, Ladislav; ŠTEFAN, Miloslav: Reproduktory a reproduktorové soustavy, SNTL - nakladatelství technické literatury, Praha 983, ŠAFER, Radim: Návrh reprosoustavy pro domácí poslech, Bakalářská práce, Vysoké učení technické v Brně, Brno ZEITNITZ, C.: Manual for the sound card oscilloscope V.4, 202. Dostupné online:
Měření vlastností střídavého zesilovače
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 7 Měření vlastností střídavého zesilovače Datum měření: 8. 11. 2011 Datum
NÍZKOFREKVENČNÍ ZESILOVAČ S OZ
NÍZKOFREKVENČNÍ ZESILOVAČ S OZ 204-4R. Navrhněte a sestavte neinvertující nf zesilovač s OZ : 74 CN, pro napěťový přenos a u 20 db (0 x zesílení) při napájecím napětí cc ± 5 V a zatěžovacím odporu R L
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_2.11_měření rekvence a áze Střední odborná škola a Střední odborné učiliště,
Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem.
Petr Novotný Úloha č. 7 Operační zesilovač, jeho vlastnosti a využití Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem. Zapojení zesilovače s invertujícím
napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól
. ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož
2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru
GENEÁTO PILOVITÉHO PŮBĚHU 303-4. Na nepájivém kontaktním poli sestavte obvod dle schématu na obr.. Hodnoty součástek a napájení zadá vyučující: =,7 kω, 3 = 3 = 0 kω, C = 00 nf, U CC = ± V. Změřte a nakreslete
7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici
7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici Problém A. Přímé změření vlnové délky zvuku ve vzduchu za normálního tlaku v Kundtově trubici pro pět různých frekvencí nízkofrekvenčního
17 Vlastnosti ručkových měřicích přístrojů
17 Vlastnosti ručkových měřicích přístrojů Ručkovými elektrickými přístroji se měří základní elektrické veličiny, většinou na principu silových účinků poli. ato pole jsou vytvářena buď přímo měřeným proudem,
3.4 Ověření Thomsonova vztahu sériový obvod RLC
3.4 Ověření Thomsonova vztahu sériový obvod RLC Online: http://www.sclpx.eu/lab3r.php?exp=9 Tímto experimentem ověřujeme známý vztah (3.4.1) pro frekvenci LC oscilátoru, který platí jak pro sériové, tak
Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač
Teoretický úvod Nízkofrekvenční zesilovač s OZ je poměrně jednoduchý elektronický obvod, který je tvořen několika základními prvky. Základní komponentou zesilovače je operační zesilovač v neinvertujícím
ZADÁNÍ: ÚVOD: Měření proveďte na osciloskopu Goldstar OS-9020P.
ZADÁNÍ: Měření proveďte na osciloskopu Goldstar OS-900P. 1) Pomocí vestavěného kalibrátoru zkontrolujte nastavení zesílení vertikálního zesilovače, eventuálně nastavte prvkem "Kalibrace citlivosti". Změřte
Vlny v trubici VUT FSI v Brně
Vlny v trubici VUT FSI v Brně Měření provedeno: Vedoucí práce: Měření provedli: Zpracoval: Úkol: Měřením rezonančních frekvencí podélného vlnění v trubici určit rychlost šíření zvuku ve vzduchu. Teoretická
[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače
Teoretický úvod Audio technika obecně je obor, zabývající se zpracováním zvuku a je poměrně silně spjat s elektroakustikou. Elektroakustika do sebe zahrnuje především elektrotechnická zařízení od akusticko-elektrických
VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory
Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Impulsní LC oscilátor
1 Impulsní LC oscilátor Ing. Ladislav Kopecký, 2002 Upozornění: Tento článek předpokládá znalost práce Rezonanční obvod jako zdroj volné energie. Při praktických pokusech s elektrickou rezonancí jsem nejdříve
Měření kmitočtu a tvaru signálů pomocí osciloskopu
Měření kmitočtu a tvaru signálů pomocí osciloskopu Osciloskop nebo také řidčeji oscilograf zobrazuje na stínítku obrazovky nebo LC displeji průběhy připojených elektrických signálů. Speciální konfigurace
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014
Rezonanční elektromotor
- 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší
3. Zesilovače. 3.0.1 Elektrický signál
3. Zesilovače V elektronice se velmi často setkáváme s nutností zesílit slabé elektrické signály tak, aby se zvětšila jejich amplituda-rozkmit a časový průběh se nezměnil. Zesilovače se používají ve všech
Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.
ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.
W1- Měření impedančního chování reálných elektronických součástek
Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu
Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Jednoduché rezonanční obvody
Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH
15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH Rozdělení zesilovačů podle velikosti rozkmitu vstupního napětí, podle způsobu zapojení tranzistoru do obvodu, podle způsobu vazby na následující stupeň a podle
SMĚŠOVAČ 104-4R 6.10. 13.10. 7
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy SMĚŠOVAČ 104-4R Zadání 1. Sestavte měřící obvod pro měření
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Univerzita Tomáše Bati ve Zlíně
Univerzita omáše Bati ve Zlíně LABORAORNÍ CVIČENÍ ELEKROECHNIKY A PRŮMYSLOVÉ ELEKRONIKY Název úlohy: Měření frekvence a fázového posuvu proměnných signálů Zpracovali: Petr Luzar, Josef Moravčík Skupina:
Robert Láníèek ELEKTRONIK obvody souèástky dìje V knize jsou probrány základní elektronické obvody Publikace je doplnìna velkým množstvím obrázkù a øadou názornì øešených pøíkladù Pøi øešení pøíkladù se
Měření na nízkofrekvenčním zesilovači. Schéma zapojení:
Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření
MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE
Úloha č. 3 MĚŘÍ TRAZISTOROVÉHO ZSILOVAČ ÚOL MĚŘÍ:. Změřte a) charakteristiku I = f (I ) při U = konst. tranzistoru se společným emitorem a nakreslete její graf; b) zesilovací činitel β tranzistoru se společným
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
Test. Kategorie Ž2. 4 Snímek z digitálního osciloskopu zobrazuje průběh sinusového signálu. Jaká je přibližná frekvence signálu? Uveďte výpočet.
Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2010 Test Kategorie Ž2 START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Vysílání DVB-T využívá: a) digitální
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník
Pracovní třídy zesilovačů
Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému
MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.
MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte
Podívejte se na časový průběh harmonického napětí
Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_29_Směšovač Název školy Střední
Zadávací dokumentace
Zadávací dokumentace pro zadávací řízení na veřejnou zakázku malého rozsahu zadávanou v souladu se Závaznými postupy pro zadávání zakázek z prostředků finanční podpory OP VK na dodávku Učební pomůcky pro
Tlumené kmitání tělesa zavěšeného na pružině
Tlumené kmitání tělesa zavěšeného na pružině Kmitavé pohyby jsou důležité pro celou fyziku a její aplikace, protože umožňují relativně jednoduše modelovat řadu fyzikálních dějů a jevů. V praxi ale na pohybující
Stavíme reproduktorové soustavy (I)
soustavy (I) Radioamatérské aktivity v oblasti spotøební èi zábavní elektroniky jsou ve znaèném útlumu. Je to zcela pochopitelné vzhledem k dostupnosti pøíslušného zboží v obchodní síti. Èasy stavby tunerù
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
6. Senzory elektrického proudu. Měření výkonu.
6. Senzory elektrického proudu. Měření výkonu. Úvod: Elektrický proud [A] je jedinou elektrickou veličinou v soustavě SI. Proud potřebujeme měřit při konstrukci, oživování a opravách elektronických zařízení.
Akustická měření - měření rychlosti zvuku
Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky
A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:
RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%
Interakce ve výuce základů elektrotechniky
Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky OBVODY RLC Číslo projektu
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!
MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící
I. STEJNOSMĚ RNÉ OBVODY
Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů
ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ
2. Určete komplexní impedanci dvojpólu, jeli dáno: S = 900 VA, P = 720 W a I = 20 A, z jakých prvků lze dvojpól sestavit?
Otázky a okruhy problematiky pro přípravu na státní závěrečnou zkoušku z oboru EAT v bakalářských programech strukturovaného studia na FEL ZČU v ak. r. 2013/14 Soubor obsahuje tématické okruhy, otázky
4 Blikání světelných zdrojů způsobené kolísáním napětí
4 Blikání světelných zdrojů způsobené kolísáním napětí Cíl: Cílem laboratorní úlohy je ověření vlivu rychlých změn efektivní hodnoty napětí na vyzařovaný světelný tok světelných zdrojů. 4.1 Úvod Světelný
Seznámení s přístroji, používanými při měření. Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice
Cvičení Seznámení s přístroji, používanými při měření Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice eaktance kapacitoru Integrační článek C - přenos - měření a simulace Derivační
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
1 Přesnost měření efektivní hodnoty různými typy přístrojů
1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů
TEPELNÉ ÚČINKY EL. PROUDU
Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č 1 EPELNÉ ÚČINKY EL POUDU Jméno(a): Jiří Paar, Zdeněk Nepraš Stanoviště: 6 Datum: 21 5 28 Úvod
Měření základních vlastností OZ
Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Jiří Paar, Zdeněk epraš (Dušan Pavlovič, Ondřej
Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory
K620ZENT Základy elektroniky Přednáška ř č. 6 Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory Bistabilní klopný obvod Po připojení ke zdroji napájecího napětí se obvod ustálí tak, že jeden
DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY. Digitální signál bude rekonstruován přijímačem a přiváděn do audio zesilovače.
DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY 104-4R Pomocí stavebnice Optel sestavte optický systém, který umožní přenos zvuku. Systém bude vysílat audio informaci prostřednictvím optického kabelu jako sekvenci
Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude:
Vzorkování Vzorkování je převodem spojitého signálu na diskrétní. Lze si ho představit jako násobení sledu diracových impulzů (impulzů jednotkové plochy a nulové délky) časovým průběhem vzorkovaného signálu.
Teorie elektronických
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 1 návod k měření Zpětná vazba a kompenzace Změřte modulovou kmitočtovou charakteristiku invertujícího zesilovače v zapojení s operačním zesilovačem
Síový analyzátor / rekordér pechodových jev
Technické údaje Síový analyzátor / rekordér pechodových jev Model PQ-Box 200 Detekce chyb Vyhodnocování kvality naptí podle norem EN50160 a IEC61000-2-2 (2-4) FFT analýza do 20 khz Naítání analýz, mení
ZRYCHLENÍ KMITAVÉHO POHYBU
Jaroslav Reichl, 011 ZRYCHLENÍ KMITAVÉHO POHYBU Pomůcky: tříosé čidlo zrychlení 3D-BTA (základní měření lze realizovat i s jednoosým čidlem zrychlení), optická závora VPG-BTD, větší lékovka (nebo nádobka
Rezonanční řízení krokového motoru polomost
Rezonanční řízení krokového motoru polomost Ing. Ladislav Kopecký V tomto článku popíšeme praktické zkušenosti s rezonančním řízením dvoufázového krokového motoru a naměřené výsledky porovnáme s výsledky
v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9
České vysoké učení technické v Praze Algoritmy pro měření zpoždění mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 31. března 23 Obsah 1 Zadání 1 2 Uvedení do problematiky měření zpoždění signálů 1
Elektromagnetický oscilátor
125 Pomůcky: Sytém ISES, moduly: ampérmetr, capacity-meter, kondenzátor na detičce, dvě cívky na uzavřeném jádře, zdroj elektrického napětí (např. PS 302A), ada rezitorů, přepínač, 7 pojovacích vodičů,
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULISIM) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
výkon střídavého proudu, kompenzace jalového výkonu
, výkon střídavého proudu, kompenzace jalového výkonu Návod do měření ng. Václav Kolář, Ph.D., Doc. ng. Vítězslav týskala, Ph.D., poslední úprava 0 íl měření: Praktické ověření vlastností reálných pasivních
10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
1.5 Operační zesilovače I.
.5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti
návrh, simulace a implementace
Konstrukce Telekomunikačních Zařízení Projekt 1 návrh, simulace a implementace analogových filtrů Ondřej Zub (ozub81@seznam.cz) 2. dubna 2005 Cílem projektu je seznámit se prakticky s programovatelnými
Návod k přípravku pro laboratorní cvičení v předmětu EO.
Měření na výkonovém zesilovači Návod k přípravku pro laboratorní cvičení v předmětu EO. Cílem měření je seznámit se s funkcí výkonového zesilovače, pracujícího ve třídě B, resp. AB. Hlavními úkoly jsou:
GENERÁTOR NEHARMONICKÝCH PRŮBĚHU 303-4R 9.2. 16.2. 8
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy GENERÁTOR NEHARMONICKÝCH PRŮBĚHU Číslo úlohy 303-4R Zadání 1. Dle
Netlumené kmitání tělesa zavěšeného na pružině
Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento
4.SCHÉMA ZAPOJENÍ. a U. kde a je zisk, U 2 je výstupní napětí zesilovače a U vst je vstupní napětí zesilovače. Zesilovač
RIEDL 4.EB 7 1/6 1.ZADÁNÍ a) Změřte frekvenční charakteristiku korekčního předzesilovače b) Znázorněte ji graficky na semiaritmický papír. Měření proveďte při souměrném napájení 1V v pásmu 10Hz až 100kHz,
Příspěvek k počítačové simulaci elektronických obvodů
Školská fyzika 2012/3 Experiment ve výuce fyziky Příspěvek k počítačové simulaci elektronických obvodů Petr Michalík 1, Fakulta pedagogická Západočeské univerzity v Plzni Článek uvádí na příkladech některá
Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání
Software pro zobrazení signálů ze zvukových karet Software for displaying signals from soundcards
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Studijní program: N2612 Elektrotechnika a informatika Studijní obor: Mechatronika Software pro zobrazení signálů
4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru
4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)
Základní experimenty akustiky
Základní experimenty akustiky Jakub Kákona, kaklik@mlab.cz Abstrakt Obsahem je popis několika metod pro měření rychlosti zvuku, rezonančních frekvencí, vlnové délky a shrnutí jejich výsledků. 1 Úvod 1.
Obvod střídavého proudu s kapacitou
Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná
Výkonový zesilovač KS-AX4700 KS-AX4500 NÁVOD K POUŽITÍ
Výkonový zesilovač NÁVOD K POUŽITÍ Děkujeme, že jste si zakoupili výrobek JVC. Před použitím přístroje si pečlivě přečtěte tento návod k použití. Ujištění: Přístroj odpovídá požadavkům zákona o technických
Stereo zesilovač Amplificador
3-215-703-11 (1) Stereo zesilovač Amplificador Návod k obsluze Před připojením a použitím tohoto zařízení si prosím pečlivě přečtěte tento návod k obsluze. XM-ZR602 2007 Sony Corporation Vytištěno v České
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452
Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0452 OV_2_26_Koncový stupeň s IO Název školy
Přenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
Laboratorní úloha č. 1 Základní elektrická měření
Laboratorní úloha č. 1 Základní elektrická měření Úkoly měření: 1. Zvládnutí obsluhy klasických multimetrů. 2. Jednoduchá elektrická měření měření napětí, proudu, odporu. 3. Měření volt-ampérových charakteristik
Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu
Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu 1. Rozbor možných opravných prostředků na výstupu z napěťového střídače vč. příkladů zapojení
MĚŘENÍ POLOVODIČOVÉHO USMĚRŇOVAČE STABILIZACE NAPĚTÍ
Úloha č. MĚŘENÍ POLOVODIČOVÉHO SMĚRŇOVČE STBILIZCE NPĚTÍ ÚKOL MĚŘENÍ:. Změřte charakteristiku křemíkové diody v propustném směru. Měřenou závislost zpracujte graficky formou I d = f ( ). d. Změřte závěrnou
MĚŘENÍ JALOVÉHO VÝKONU
MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí
Měření hladiny intenzity a spektrálního složení hluku hlukoměrem
Měření hladiny intenzity a spektrálního složení hluku hlukoměrem Problém A. V režimu váhového filtru A změřit závislost hladiny akustické intenzity LdB [ ] vibrační sirény na napětí UV [ ] napájecího zdroje.
( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty
Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,
KAIFAT S610A, S815A, S1018A
KAIFAT S610A, S815A, S1018A Manuál k ozvučovací sestavě 1 2015 AUDIO PARTNER s.r.o. OBSAH 1) Vlastnosti a parametry 2) Zapojení a ovládací prvky 3) Technická data 4) Příslušenství 5) Řešení problémů 1)